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In this supplementary material, we first provide a visualization video for addi-
tional qualitative comparisons. Please refer to the video1 and Sec. A for details.
In Sec. B, we demonstrate the additional information of our approach includ-
ing the network architecture, and implementation details for both stochastic
and deterministic prediction. In Sec. C, for completeness, we provide additional
qualitative results and comparisons, including a user study, and quantitative
analysis for both stochastic and deterministic predictions on Human3.6M and
HumanEva-I.

A Visualization Video

We include a video here to provide more comprehensive visualizations of 3D
human motion prediction. These visualizations show that indeed our approach
produces more diverse sequences, which we attribute to our STARS strategy,
where anchors can explicitly locate diverse modes. We further show the visual-
ization of controllable motion prediction and illustrate the motion variation at
both spatial and temporal levels, suggesting our novel manipulation of future
motion in the native space and time.

B Additional Details of Methodology

B.1 Multi-Level Spatial-Temporal Anchor-Based Sampling

Architecture. Here we detail our STARS w/ IE-STGCN by formulating the
incorporation of backbone and anchor-based sampling, as illustrated in Fig. 3 of
the main paper. For instance, we sample z ∈ p(z) and select i-th spatial anchor

asi ∈ RM×V×C(l)

and j-th temporal anchor atj ∈ RM×V×C(l)

at each level, where
(i, j) is the 2D spatial-temporal anchor index corresponding to the 1D index k.
(1) The 4th layer in Fig. 3 of the main paper is denoted as

as1i ∈ A(1)
s ,at1j ∈ A(1)

t , H
(4)
k = σ(Adj(3)s Adj

(3)
f (H(3) + as1i + at1j )W(3)). (1)

* Yu-Xiong Wang and Liang-Yan Gui contributed equally to this work.
1 Video: https://youtu.be/ibYfsvCg7tQ
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(2) The 5th layer in Fig. 3 of the main paper is denoted as

z ∼ p(z), H
(5)
k = σ((Ms ⊙Adj(4)s )Adj

(4)
f [H

(4)
k : z]W(4)), (2)

where the 5th layer is the pruned layer, and Ms is the predefined mask used for
spatial interaction pruning.

(3) The 6th layer in Fig. 3 of the main paper is denoted as

as2i ∈ A(2)
s ,at2j ∈ A(2)

t , H
(6)
k = σ(Adj(5)s Adj

(5)
f (H

(5)
k + as2i + at2j )W(5)). (3)

Training. Recall that in Sec. 3 of the main paper, we divide the loss functions
into the following three categories: (1) reconstruction losses, including recon-
struction error and multi-modal reconstruction error; (2) diversity promoting
loss; (3) motion constraint losses, including history reconstruction error, pose
prior, limb loss, and angle loss. Here, we provide detailed formulations of these
loss functions.

(1) Reconstruction error, encouraging the best prediction close to the ground
truth, thus prompting the corresponding anchor capture a mode, denoted as

Lr = min
k

∥Ŷk −Y∥2. (4)

(2) Multi-modal reconstruction error [4], which encourages predictions to cover
multi-modal ground truth and thus promoting anchors to capture more modes,
is denoted as

Lmm =
1

N

N∑
n=1

min
k

∥Ŷk −Yn∥2. (5)

The multi-modal ground truth [11] is defined as {Yn}Nn=1, representing the
possible future motions in multiple modes. Specifically, given a threshold ϵ, we
cluster the future motions with similar start pose, as {Yn}Nn=1 = {Yn|∥Xn[Th]−
X[Th]∥ ≤ ϵ}, where Xn is the historical pose sequence of Yn.

(3) Historical reconstruction error [5] alleviates the discontinuity between pre-

diction and history by bringing the recovered historical motion X̂k close to the
past sequence of ground truth X. Recall that our model recovers the past motion
via Inverse DCT (IDCT) as X̂k = (CTỸk)1:Th

. We denote this loss as

Lh =
1

K

K∑
k=1

∥X̂k −X∥2. (6)

(4) Diversity-promoting loss [12], which explicitly promotes pairwise distances
of predictions to ensure that the anchors do not collapse to the same, is defined
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as

Ld =
2

K(K − 1)

K∑
j=1

K∑
k=j+1

exp(−∥Ŷj − Ŷk∥1
α

). (7)

(5) Pose prior, using a pretrained normalizing flow pnf to measure the likelihood

of the generated human poses Ŷk. We use this module to constrain that the
generated poses have a high probability in pnf ,

Lnf = −
K∑

k=1

log pnf (Ŷk). (8)

(6) Limb loss, constraining the limb length to be consistent with the ground
truth, is denoted as

Ll =
1

K

K∑
k=1

∥L̂k − L∥2, (9)

where the limb length is defined as the distance between two physically connected
joints, and the vector L̂k includes limb lengths of all poses in X̂k.

(7) Angle loss constrains the angles of human skeleton to be in some valid ranges.
Please refer to [4] for more details on the pose prior, limb loss, and angle loss.

Additional Implementation Details. First, the number of channels of the 8
STGCN layers C(l) starts from C(0) = 3, then 128, 64, 128, 64, 128, 64, 128, and
finally C(8) = 3. Accordingly, we insert 128-dimensional anchors in the fourth
and sixth layers and use a 64-dimensional random noise in the fifth layer. Our
code is based on PyTorch [6], and we use ADAM [3] to train the model. The
learning rate is set to 0.001 and decayed after the 100 epochs as

lr = 0.001× (1.0− max(0, epoch− 100)

400
). (10)

For Human3.6M, the weight of each loss term (λr, λmm, λh, λd, λnf , λl, λa) is
(2, 1, 50, 160, 0.01, 500, 100). And the first 20 DCT coefficients are used.

For HumanEva-I, the weight of each loss term (λr, λmm, λh, λd, λnf , λl, λa)
is (2, 1, 10, 32, 0.002, 50, 10). Only the first 8 DCT coefficients are used.

We set the distance threshold ϵ for generating multi-modal ground truth
mentioned above to 0.5 on both datasets.

Limitation. One potential limitation of our STARS is that the number of spa-
tial and temporal anchors is decided manually via cross-validation. We conduct
several ablation studies in Fig. 4 of the main paper to investigate the impact of
anchor number. However, a better strategy might be learning it directly from
data.
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Fig. I: Overview of deterministic models. For IE-STGCN-Short, we set all middle
layers as pruned STGCN layers, while we further apply temporal pruning to interme-
diate pruned layers for IE-STGCN-Long

B.2 Deterministic Human Motion Prediction

Architecture. We illustrate our architecture for deterministic prediction with-
out STARS, as shown in Fig. I. Note that there are only 4 pruned STGCN
layers for stochastic prediction model. Here, we design all middle layers to be
the pruned layers from layer 2 to layer 7. For IE-STGCN-Long, we further apply
temporal interaction pruning to the these middle layers.

Temporal Interaction Pruning. We emphasize the locality of frequency com-
ponents by leveraging a temporal mask Mf to the frequency adjacency matrix
of the spatial-temporal graph,

Âdj
(l)

f = Mf ⊙Adj
(l)
f , Mf [i][j] =

{
1, for |fi − fj | = 1, vi = vj

0, otherwise.
(11)

Training. We retain only two loss terms from Sec. B.1 i.e., , the reconstruction
error, and the history reconstruction error. We denote the unique output as Ŷ,
and the recovered historical motion as X̂. These two loss terms are adapted as
follows.
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Table I: Quantitative results on Human3.6M and HumanEva-I for K = 50. Our
model significantly outperforms two additional baselines in all metrics. The results of
two baselines are directly reported from [7,10]

Method
Human3.6M [2] HumanEva-I [8]

APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

ProTran [10] / 0.381 0.491 / / / 0.258 0.255 / /

Motron [7] 7.168 0.375 0.488 / / / / / / /

STARS (Ours) 15.884 0.358 0.445 0.442 0.471 6.031 0.217 0.241 0.328 0.321

Table II: Quantitative results of short-term prediction on Human3.6M. We com-
pare our IE-STGCN-Short with deterministic prediction baselines. We report the
MPJPE error of 3D joint positions in millimeter. Our model outperforms all base-
lines

Actions Walking Eating Smoking Discussion

msec 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LTD [5] 11.1 21.2 37.4 43.6 7.3 15.1 29.6 36.8 7.1 14.9 29.5 36.2 11.5 25.5 55.8 69.2

STS-GCN [9] 14.5 26.0 43.8 51.0 9.2 18.0 35.5 43.3 9.5 18.1 34.9 42.3 13.3 27.9 57.5 71.9

MSR-GCN [1] 10.8 20.9 36.9 42.4 6.9 14.6 29.0 36.0 7.5 15.4 30.6 37.5 10.4 23.5 51.9 65.0

IE-STGCN-Short 10.0 19.4 35.1 41.6 6.3 13.8 28.3 35.9 6.4 13.1 25.8 32.3 9.0 19.9 42.8 55.2

Actions Directions Greeting Phoning Posing Purchases Sitting

msec 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LTD [5] 8.3 19.1 43.5 54.5 14.6 30.8 64.5 79.9 9.0 18.6 39.3 49.2 11.2 25.8 59.6 76.5 13.7 30.2 63.4 77.7 9.8 20.3 44.1 55.7

STS-GCN [9] 10.2 23.0 50.6 63.2 17.0 36.6 72.5 86.4 11.0 21.9 44.0 53.8 13.7 30.4 67.3 84.7 16.3 35.9 70.5 83.1 11.9 23.8 49.3 60.8

MSR-GCN [1] 7.7 18.9 44.7 56.2 15.1 33.1 70.9 85.4 9.1 18.9 39.9 50.0 10.3 24.6 59.2 75.9 13.3 30.1 63.6 77.8 9.8 20.6 44.2 55.5

IE-STGCN-Short 7.1 17.8 43.1 54.7 12.8 28.5 61.1 75.9 8.2 17.5 37.3 47.3 8.3 18.9 43.6 57.7 12.2 28.3 60.0 74.1 8.9 19.4 42.9 54.4

Actions Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

msec 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LTD [5] 14.8 29.5 57.2 71.2 9.1 19.1 41.1 51.8 9.4 19.7 43.2 54.6 21.1 41.2 75.1 88.8 9.6 19.2 36.0 43.1 11.2 23.3 47.9 59.3

STS-GCN [9] 18.2 37.2 66.2 79.4 10.8 22.3 47.7 59.4 11.7 24.0 49.6 62.0 24.3 48.0 85.1 97.3 11.7 22.7 41.7 49.1 13.5 27.7 54.4 65.8

MSR-GCN [1] 15.4 32.0 60.7 73.8 8.9 19.5 43.1 54.4 10.4 22.4 50.7 62.4 24.9 51.5 100.3 112.9 9.2 18.7 35.7 43.2 11.3 24.3 50.8 61.9

IE-STGCN-Short 14.6 30.8 60.2 72.8 7.9 17.8 39.7 50.3 7.9 17.6 40.2 51.6 18.4 38.2 74.4 87.9 8.3 17.2 33.3 41.2 9.7 21.2 44.5 55.5

(1) Reconstruction error:

Lr = min
k

∥Ŷk −Y∥2 = ∥Ŷ −Y∥2. (12)

(2) History reconstruction error:

Lh =
1

K

K∑
k=1

∥X̂k −X∥2 = ∥X̂−X∥2. (13)

Implementation Details. We adopt the same number of channels as demon-
strated in Sec. B.1. We increase the batch size to 256 and train the model for
only 50 epochs. The learning rate is set to 0.01 and decays by a factor of 0.1
every 5 epochs after the 20th epoch. For IE-STGCN-Short, we use the first 20
DCT coefficients. For IE-STGCN-Long, we use the first 35 DCT coefficients.
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Table III: User study on Human3.6M. Pairwise human voting results for predicted
motions. Under human evaluation, our predictions significantly outperform the baseline
in terms of diversity, considering the motion fidelity

Model pair
Motion diversity

Ours GSPS

STARS (Ours) vs. n/a 62.1%
GSPS vs. 37.9% n/a

Table IV: Quantitative results of long-term prediction on Human3.6M. We com-
pare our IE-STGCN-Long with deterministic prediction baselines. We report the
MPJPE error of 3D joint positions in millimeter. Our model outperforms all base-
lines

Actions Walking Eating Smoking Discussion

msec 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

LTD [5] 52.3 55.7 58.1 59.2 49.9 60.9 69.2 74.2 50.1 59.8 67.4 72.1 90.7 105.4 114.9 120.4

STS-GCN [9] 60.3 64.6 65.9 70.2 57.2 68.3 75.5 82.6 54.2 63.8 70.8 76.1 91.8 105.2 113.8 118.9

MSR-GCN [1] 53.3 55.4 58.1 63.7 50.8 61.4 69.7 75.4 50.5 59.5 67.1 72.1 87.0 101.9 111.4 116.8

IE-STGCN-Long 49.3 53.5 57.4 61.1 50.2 61.1 69.1 74.1 44.2 51.8 59.0 64.3 74.0 85.1 94.1 100.4

Actions Directions Greeting Phoning Posing Purchases Sitting

msec 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

LTD [5] 76.0 91.2 103.0 108.8 105.0 120.6 133.2 139.4 67.9 82.2 95.0 103.3 111.2 137.3 159.2 172.8 100.3 115.2 127.7 135.5 79.5 98.4 113.5 122.8

STS-GCN [9] 79.5 92.9 102.2 109.6 111.2 122.4 131.8 136.1 72.5 87.9 99.7 108.3 115.8 142.4 161.7 178.4 104.6 119.4 132.7 141.0 82.0 97.6 110.9 121.4

MSR-GCN [1] 75.8 89.9 100.5 105.9 106.3 120.0 131.5 136.3 67.9 82.5 95.8 104.7 112.5 140.1 162.8 176.5 99.2 114.0 126.9 134.4 77.6 94.0 107.7 115.9

IE-STGCN-Long 76.5 91.6 102.4 107.6 101.2 116.5 129.5 135.8 67.2 82.1 95.1 103.8 79.7 97.2 113.9 129.3 100.3 117.5 131.1 139.4 77.5 95.0 109.1 117.6

Actions Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

msec 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

LTD [5] 98.2 119.1 136.1 147.1 76.8 95.0 110.3 120.4 76.8 91.0 102.3 109.5 108.3 121.2 135.8 146.3 56.3 61.9 65.5 68.2 79.9 94.3 106.1 113.3

STS-GCN [9] 104.1 121.4 137.6 148.4 81.2 99.6 111.6 126.3 80.3 95.0 105.9 113.6 119.0 129.0 143.9 151.5 61.9 65.4 69.1 72.5 85.0 98.3 108.9 117.0

MSR-GCN [1] 102.4 122.7 139.6 149.3 77.7 96.9 112.3 121.9 74.8 87.8 98.2 105.5 107.7 120.8 135.7 145.7 56.2 60.9 65.0 69.5 80.0 93.8 105.5 112.9

IE-STGCN-Long 100.9 120.7 136.6 146.8 78.1 96.9 112.1 122.1 71.7 85.0 96.0 103.6 111.9 126.3 142.9 153.1 54.1 59.5 63.5 67.5 75.8 89.3 100.8 108.4

C Additional Results

C.1 Quantitative Results

Comparison with Additional Baselines. Motron [7] provides a flexible out-
put structure, which can produce deterministic predictions by weighting each
mode by a confidence value. Another baseline is ProTran [10], a deep prob-
abilistic method combining transformer architectures and state space models.
However, these two baselines do not provide results for all standard metrics in
the literature. In Table I, we compare our method with them. For all metrics
reported, our method still consistently outperforms baselines.

C.2 Qualitative Results

User study on Human3.6M. In Tables 1 and 2 of the main paper, we compare
our method with the state-of-the-art method GSPS [4]. We measure the quality
of the best predictions and overall diversity according to the metrics demon-
strated in Sec 4.1 of the main paper. Here, we conduct a user study to evaluate
the diversity of predicted human motions under consideration of motion fidelity.
The reason for this user study is that there may be unrealistic predictions, or
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Fig. II: Additional visualization on Human3.6M. We show the start pose, the
end pose of ground truth future motion, and the end poses of ten samples predicted
by our approach

outliers, that result in very large APD, but do not affect the ADE since ADE
measures only the quality of the best prediction. We evaluate and rule out such
“cheating” behavior through user studies.

We conduct a double-blind user study. We randomly sample 20 input se-
quences on Human3.6M. For GSPS, we randomly sample two predicted se-
quences. For our STARS w/ IE-STGCN, we randomly sample two predictions
generated by different spatial-temporal anchors. We design pairwise evaluations.
Considering one pair from ours and another one from GSPS, human judges are
asked to determine which pair is more diverse given the action labels, taking
into account motion fidelity.

From the results of the human evaluations in Table III, our approach has a
success rate of 62.1% against GSPS, verifying that our method generates more
diverse and valid motions than the baseline method.
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GTStart End Pose of 10 Samples

Seq 1

Seq 2

Seq 3
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Seq 6

Fig. III: Additional visualization on HumanEva-I. We show the start pose, the
end pose of ground truth future motion, and the end poses of ten samples predicted
by our approach

Additional Visualizations on Human3.6M and HumanEva-I. In Fig. II
and Fig. III, we provide additional qualitative results by visualizing the end
poses of 10 samples.
Additional Qualitative Comparisons with GSPS Baseline. We provide
comparisons with GSPS in Fig. IV, in addition to Fig. 5 of the main paper. Our
model still successfully generates predictions that are closer to the ground truth.
Additional Visualizations on Controllable Motion Prediction. In addi-
tion to Fig. 7 of the main paper, we present the visualization of the controllable
motion prediction in Fig. V.

C.3 Additional Results on Deterministic Prediction

Effectiveness on Deterministic Prediction. To evaluate the deterministic
prediction, we randomly select 256 sequences for each action category. We re-
evaluate the pretrained models provided by baseline approaches [1,5,9] with the
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Ours GSPS

End Pose of 10 SamplesGTStart End Pose of 10 Samples

Fig. IV: Additional comparisons with the baseline on Human3.6M. As high-
lighted by the red and blue dashed boxes, the best predictions of our method are closer
to the ground truth than the state-of-the-art baseline GSPS [4]

Table V: Average MPJPE error in mm on Human3.6M, comparing different spatial-
temporal enhancement techniques. “TP” indicates whether we prune the temporal
interaction. “TS” means if we share the temporal adjacency matrix across some of the
layers (See Figure I). ”TF” stands for start GCN and end GCN containing unpruned
fully temporal interactions. “SP”, “SS” and “SF” have the similar meaning but apply
to temporal interaction

TP TS TF SP SS SF
Short-term prediction Long-term prediction

80 160 320 400 560 720 880 1000

✓ ✓ 10.1 21.7 44.9 55.8 79.8 94.3 106.3 113.9

✓ ✓ ✓ ✓ 9.8 21.3 44.8 55.8 77.0 91.1 102.7 110.1
✓ ✓ ✓ ✓ 10.2 22.1 46.2 57.2 77.1 90.8 101.9 109.6

✓ ✓ ✓ ✓ ✓ 9.7 21.2 44.5 55.5 77.1 91.1 102.6 110.1
✓ ✓ ✓ ✓ ✓ 23.8 44.4 76.1 88.2 76.9 90.2 101.3 109.2
✓ ✓ ✓ ✓ ✓ 10.0 21.8 45.7 56.9 75.8 89.3 100.8 108.4
✓ ✓ ✓ ✓ ✓ ✓ 10.0 21.8 45.7 56.9 75.7 89.4 100.8 108.5
✓ ✓ ✓ ✓ ✓ 10.0 21.8 45.7 56.9 75.8 89.3 100.8 108.4
✓ ✓ ✓ ✓ 9.9 21.6 45.1 56.3 75.7 89.5 100.8 108.4
✓ ✓ ✓ ✓ 9.9 21.7 45.3 56.3 76.3 89.9 101.3 109.0
✓ ✓ ✓ ✓ 10.3 23.2 48.5 59.8 79.0 92.5 103.7 111.2

same selection of test data. Note that we re-evaluate STS-GCN using a standard
evaluation metric for a fair comparison, reporting MPJPE in millimeters at each
frame, rather than the average MPJPE over all frames as in [9].

Here, we provide detailed results and comparisons across all actions. As
shown in Table II and Table IV, our model achieves state-of-the-art short- and
long-term prediction performance.
Effectiveness of interaction enhancements. We conduct an ablation study
in Table V to demonstrate the effectiveness of our proposed interaction enhance-
ments in deterministic predictions. The results show that with proper use of
interaction enhancements, we could improve the accuracy for both the short-
and long-term deterministic predictions. We observe that the spatial interaction
enhancements are effective for both short-term and long-term horizon, while
temporal enhancements are helpful only for long-term prediction. The reason
may be that in the long-term prediction, we use more DCT coefficients, which
may contain redundancies that need to be pruned.
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Fig.V: Linear interpolation of anchors. We show additional visualizations on
Human3.6M and HumanEva-I. We provide seamless control over directions and speeds
of future motion by linear interpolation of the spatial and temporal anchors
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