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Abstract. Modeling the dynamics of people walking is a problem of
long-standing interest in computer vision. Many previous works involving
pedestrian trajectory prediction define a particular set of individual ac-
tions to implicitly model group actions. In this paper, we present a novel
architecture named GP-Graph which has collective group representations
for effective pedestrian trajectory prediction in crowded environments,
and is compatible with all types of existing approaches. A key idea of
GP-Graph is to model both individual-wise and group-wise relations as
graph representations. To do this, GP-Graph first learns to assign each
pedestrian into the most likely behavior group. Using this assignment in-
formation, GP-Graph then forms both intra- and inter-group interactions
as graphs, accounting for human-human relations within a group and
group-group relations, respectively. To be specific, for the intra-group
interaction, we mask pedestrian graph edges out of an associated group.
We also propose group pooling&unpooling operations to represent a group
with multiple pedestrians as one graph node. Lastly, GP-Graph infers
a probability map for socially-acceptable future trajectories from the
integrated features of both group interactions. Moreover, we introduce a
group-level latent vector sampling to ensure collective inferences over a
set of possible future trajectories. Extensive experiments are conducted
to validate the effectiveness of our architecture, which demonstrates con-
sistent performance improvements with publicly available benchmarks.
Code is publicly available at https://github.com/inhwanbae/GPGraph.
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1 Introduction

Pedestrian trajectory prediction attempts to forecast the socially-acceptable
future paths of people based on their past movement patterns. These behavior
patterns often depend on each pedestrian’s surrounding environments, as well
as collaborative movement, mimicking a group leader, or collision avoidance.
Collaborative movement, one of the most frequent patterns, occurs when several
colleagues form a group and move together. Computational social scientists
estimate that up to 70% of the people in a crowd will form groups [40,48]. They
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Fig. 1. Comparison of existing agent-agent interaction graphs and the proposed group-
aware GP-Graph. To capture social interactions, (a) existing pedestrian trajectory
prediction models each pedestrian on a graph node. Since the pedestrian graph is a
complete graph, it is difficult to capture the group’s movement because it becomes overly
complex in a crowded scene. (b) GP-Graph is directly able to learn an intra-/inter-group
interaction while keeping the agent-wise structure.

also gather surrounding information and have the same destination [40]. Such
groups have characteristics that are distinguishable from those of individuals,
maintain rather stable formations, and even provide important cues that can be
used for future trajectory prediction [48,78].

Pioneering works in human trajectory forecasting model the group movement
by assigning additional hand-crafted terms as energy potentials [41,66,47]. These
works account for the presence of other group members and physics-based at-
tractive forces, which are only valid between the same group members. In recent
works, convolutional neural networks (CNNs) and graph neural networks (GNNs)
show impressive progress modeling the social interactions, including traveling
together and collision avoidance [1,17,39,2,54]. Nevertheless, trajectory prediction
is still a challenging problem because of the complexity of implicitly learning
individual and group behavior at once.

There are several attempts that explicitly encode the group coherence be-
haviors by assigning hidden states of LSTM with a summation of other agents’
states, multiplied by a binary group indicator function [6]. However, existing
studies have a critical problem when it comes to capturing the group interaction.
Since their forecasting models focus more on individuals, the group features are
shared at the individual node as illustrated in Fig. 1(a). Although this approach
can conceptually capture group movement behavior, it is difficult for the learning-
based methods to represent it because of the overwhelming number of edges for
the individual interactions. And, this problem is increasingly difficult in crowded
environments.

To address this issue, we propose a novel general architecture for pedestrian
trajectory prediction: GrouP-Graph (GP-Graph). As illustrated in Fig. 1(b), our
GP-Graph captures intra-(members in a group) and inter-group interactions by
disentangling input pedestrian graphs. Specifically, our GP-Graph first learns to
assign each pedestrian into the most likely behavior group. The group indices
of each pedestrian are generated using a pairwise distance matrix. To make the
indexing process end-to-end trainable, we introduce a straight-through group
back-propagation trick inspired by the Straight-Through estimator [5,21,35].
Using the group information, GP-graph then transforms the input pedestrian
graph into both intra- and inter-group interaction graphs. We construct the intra-
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group graph by masking out edges of the input pedestrian graph for unassociated
group members. For the inter-group graph, we propose group pooling&unpooling
operations to represent a group with multiple members as one graph node. By
applying these processes, GP-Graph architecture has three advantages: (1) It
reduces the complexity of trajectory prediction which is caused by the different
social behaviors of individuals, by modeling group interactions. (2) It alleviates
inherent scene bias by considering the huge number of unseen pedestrian graph
nodes between the training and test environments, as discussed in [8]. (3) It offers
a graph augmentation effect with pedestrian node grouping.

Next, through weight sharing with baseline trajectory predictors, we force
a hierarchy representation from both the input pedestrian graph and the disen-
tangled interactions. This representation is used to infer a probability map for
socially-acceptable future trajectories after passing through our group integration
module. In addition, we introduce a group-level latent vector sampling to ensure
collective inferences over a set of plausible future trajectories.

To the best of our knowledge, this is the first model that literally pools
pedestrian colleagues into one group node to efficiently capture group motion
behaviors, and learns pedestrian grouping in an end-to-end manner. Furthermore,
GP-Graph has the best performance on various datasets among existing methods
when unifying with GNN-based models, and it can be integrated with all types of
trajectory prediction models, achieving consistent improvements. We also provide
extensive ablation studies to analyze and evaluate our GP-Graph.

2 Related Works

2.1 Trajectory Prediction

Earlier works [18,42,38,66] model human motions in crowds using hand-crafted
functions to describe attractive and repulsive forces. Since then, pedestrian
trajectory prediction has been advanced by research interest in computer vision.
Such research leverages the impressive capacity of CNNs which can capture social
interactions between surrounding pedestrians. One pioneering work is Social-
LSTM [1], which introduces a social pooling mechanism considering a neighbor’s
hidden state information inside a spatial grid. Much of the emphasis in subsequent
research has been to add human-environment interactions from a surveillance
view perspective [49,33,23,58,11,75,61,59,37,52]. Instead of taking environmental
information into account, some methods directly share hidden states of agents
between other interactive agents [17,64,50]. In particular, Social-GAN [17] takes
the interactions via max-pooling in all neighborhood features in the scene, and
Social-Attention [64] introduces an attention mechanism to impose a relative
importance on neighbors and performs a weighted aggregation for the features.

In terms of graph notations, each pedestrian and their social relations can
be represented as a node and an edge, respectively. When predicting pedes-
trian trajectories, graph representation is used to model social interactions
with graph convolutional networks (GCNs) [22,39,59,2], graph attention net-
works (GATs) [63,19,23,32,54,3], and transformers [69,70,16]. Usually, these ap-
proaches infer future paths through recurrent estimations [1,17,50,74,9,26,16]
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or extrapolations [39,2,54,31]. Other types of relevant research are based on
probabilistic inferences for multi-modal trajectory prediction using Gaussian
modeling [1,2,39,55,69,30,54,65], generative models [17,49,23,75,58,11,19], and a
conditional variational autoencoder [27,29,20,50,36,9,60,26]. We note that these
approaches focus only on learning implicit representations for group behaviors
from agent-agent interactions.

2.2 Group-aware Representation

Contextual and spatial information can be derived from group-aware representa-
tions of agent dynamics. To accomplish this, one of the group-aware approaches
is social grouping, which describes agents in groups that move differently than
independent agents.

In early approaches [76,24,77], pedestrians can be divided into several groups
based on behavior patterns. To represent the collective activities of agents in a
supervised manner, a work in [41] exploits conditional random fields (CRF) to
jointly predict the future trajectories of pedestrians and their group membership.
Yamaguchi et al . [66] harness distance, speed, and overlap time to train a linear
SVM to classify whether two pedestrians are in the same group or not. In contrast,
a work in [14] proposes automatic detection for small groups of individuals using
a bottom-up hierarchical clustering with speed and proximity features.

Group-aware predictors recognize the affiliations and relations of individual
agents, and encode their proper reactions to moving groups. Several physics-
based techniques represent group relations by adding attractive forces among
group members [66,41,46,40,44,51,56]. Although a dominant learning paradigm
[1,73,43,62,4] implicitly learns intra- and inter-group coherency, only two works
in [6,12] explicitly define group information. To be specific, one [6] identifies
pedestrians walking together in the crowd using a coherent filtering algorithm [77],
and utilizes the group information in a social pooling layer to share their hidden
states. Another work [12] proposes a generative adversarial model (GAN)-based
trajectory model, jointly learning informative latent features for simultaneous
pedestrian trajectory forecasting and group detection. These approaches only
learn individual-level interactions within a group, but do not encode their affiliated
groups and future paths at the same time. Unlike them, our GP-Graph aggregates
a group-group relation via a novel group pooling in the proposed end-to-end
trainable architecture without any supervision.

2.3 Graph Node Pooling

Pooling operations are used for features extracted from grid data, like images,
as well as graph-structured data. However, there is no geographic proximity or
order information in the graph nodes that existing pooling operations require. As
alternative methods, three types of graph pooling are introduced: topology-based
pooling [10,45], global pooling [15,72], and hierarchical pooling [7,13,68]. These
approaches are designed for general graph structures. However, since human
behavior prediction has time-variant and generative properties, it is no possible
to leverage the advantages of these pooling operations for this task.
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Fig. 2. An overview of our GP-Graph architecture. Starting with graph-structured
trajectories for N pedestrians, we first estimate grouping information with the Group
Assignment Module. We then generate both intra-/inter-group interaction graphs
by masking out unrelated nodes and by performing pedestrian group pooling. The
weight-shared trajectory prediction model takes the three types of graphs and capture
group-aware social interactions. Group pooling operators are then applied to encode
agent-wise features from group-wise features, and then fed into the Group Integration
Module to estimate the probability distribution for future trajectory prediction.

3 Proposed Method

In this work, we focus on how group awareness in crowds is formed for pedestrian
trajectory prediction. We start with a definition of a pedestrian graph and
trajectory prediction in Sec. 3.1. We then introduce our end-to-end learnable
pedestrian group assignment technique in Sec. 3.2. Using group index information
and our novel pedestrian group pooling&unpooling operations, we construct
a group hierarchy representation of pedestrian graphs in Sec. 3.3. The overall
architecture of our GP-Graph is illustrated in Fig. 2.

3.1 Problem Definition

Pedestrian trajectory prediction can be defined as a sequential inference task
made observations for all agents in a scene. Suppose that N is the number of
pedestrians in a scene, the history trajectory of each pedestrian n ∈ [1, ..., N ]
can be represented as Xn={(xtn, ytn) | t∈ [1, ..., Tobs]}, where the (xtn, y

t
n) is the

2D spatial coordinate of a pedestrian n at specific time t. Similarly, the ground
truth future trajectory of pedestrian n can be defined as Y n = {(xtn, ytn) | t ∈
[Tobs+1, ..., Tpred]}.

The social interactions are modeled from the past trajectories of other pedes-
trians. In general, the pedestrian graph Gped = (Vped, Eped) refers to a set of
pedestrian nodes Vped = {Xn |n∈ [1, ..., N ]} and edges on their pairwise social in-
teraction Eped = {ei,j | i, j∈ [1, ..., N ]}. The trajectory prediction process forecasts
their future sequences based on their past trajectory and the social interaction
as:

Ŷ = Fθ (X, Gped) (1)

where Ŷ = {Ŷ n |n∈ [1, ..., N ]} denotes the estimated future trajectories of all
pedestrians in a scene, and Fθ( · ) is the trajectory generation network.
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3.2 Learning the Trajectory Grouping Network

Our goal in this work is to encode powerful group-wise features beyond existing
agent-wise social interaction aggregation models to achieve highly accurate
human trajectory prediction. The group-wise features represent group members
in input scenes as single nodes, making pedestrian graphs simpler. We use a U-Net
architecture with pooling layers to encode the features on graphs. By reducing the
number of nodes through the pooling layers in the U-Net, higher-level group-wise
features can be obtained. After that, agent-wise features are recovered through
unpooling operations.

Unlike conventional pooling&unpooling operators working on grid-structured
data, like images, it is not feasible to apply them to graph-structured data. Some
earlier works to handle this issue [7,13]. The works focus on capturing global
information by removing relatively redundant nodes using a graph pooling, and
restoring the original shapes by adding dummy nodes from a graph unpooling
if needed. However, in pedestrian trajectory prediction, each node must keep
its identity index information and describe the dynamic property of the group
behavior in scenes. For that, we present pedestrian graph-oriented group pool-
ing&unpooling methods. We note that it is the first work to exploit the pedestrian
index itself as a group representation.
Learning pedestrian grouping. First of all, we estimate grouping information
to which the pedestrian belongs using a Group Assignment Module. Using the
history trajectory of each pedestrian, we measure the feature similarity among
all pedestrian pairs based on their L2 distance. With this pairwise distance, we
pick out all pairs of pedestrians that are likely to be a colleague (affiliated with
same group). The pairwise distance matrix D and a set of colleagues indices Υ
are defined as:

Di,j = ∥Fϕ(Xi)− Fϕ(Xj)∥ for i, j ∈ [1, ..., N ], (2)

Υ = {pair(i, j) | i, j ∈ [1, ..., N ], i ̸= j, Di,j ≤ π}, (3)

where Fϕ( · ) is a learnable convolutional layer and π is a learnable thresholding
parameter.

Next, using the pairwise colleague set Υ , we arrange the colleague members
in associated groups and assign their group index. We make a group index set G,
which is formulated as follows:

G =
{
Gk |Gk =

⋃
(i,j)∈Υ

{i, j}, Ga∩Gb = ∅ for a ̸= b
}

(4)

where Gk denotes the k-th group and is the union of each pair set (i, j). This
information is used as important prior knowledge in the subsequent pedestrian
group pooling and unpooling operators.
Pedestrian group pooling. Based on the group behavior property that group
members gather surrounding information and share behavioral patterns, we group
the pedestrian nodes, where the corresponding node’s features are aggregated into
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one node. The aggregated group features are then stacked for subsequent social
interaction capturing modules (i.e. GNNs). Here, the most representative feature
for each pedestrian node is selected via an average pooling. With the feature, we
can model the group-wise graph structures, which have much fewer number of
nodes than the input pedestrian graph, as will be demonstrated in Sec. 4.3. We
define the pooled group-wise trajectory feature Z as follows:

Z = {Zk | k ∈ [1, ...,K]}, Zk =
1

|Gk|
∑
i∈Gk

Xi, (5)

where K is the total group numbers in G.
Pedestrian group unpooling. Next, we upscale the group-wise graph struc-
tures back to their original size by using an unpooling operation. This enables
each pedestrian trajectory to be forecast with output agent-wise feature fusion
information. In existing methods [7,13], zero vector nodes are appended into the
group features during unpooling. The output of the convolution process on the
zero vector nodes fails to exhibit the group properties. To alleviate this issue, we
duplicate the group features and then assign them into nodes for all the relevant
group members so that they have identical group behavior information. The
pedestrian group unpooling operator can be formulated as follows:

X = {Xn |n ∈ [1, ..., N ]}, Xn = Zk where n ∈ Gk, (6)

where X is the agent-wise trajectory feature reconstructed from Z, having the
same order of pedestrian indices as in X.
Straight-Through Group Estimator. A major hurdle, when training the
group assignment module in Eq. (4) which is a sampling function, is that index
information is not treated as learnable parameters. Accordingly, the group index
cannot be trained using standard backpropagation algorithms. The reason is
why the existing methods utilize separate training steps from main trajectory
prediction networks for the group detection task.

We tackle this problem by introducing a Straight-through (ST) trick, inspired
by the biased path derivative estimators in [5,21,35]. Instead of making the
discrete index set Gk differentiable, we separate the forward pass and backward
pass of the group assignment module in the training process. Our intuition for
constructing the backward pass is that group members have similar features with
closer pairwise distance between colleagues.

In the forward pass, we perform our group pooling over both pedestrian
features and the group index from the input trajectory and estimated group
assignment information, respectively. For the backward pass, we propose group-
wise continuous relaxed features to approximate the group indexing process. We
compute the probability that a pair of pedestrians belongs to the same group
using the proposed differentiable binary thresholding function 1

1+exp(x−π) , and

apply it on the pairwise distance matrix D. We then measure the normalized
probability A of the summation of all neighbors’ probability. Lastly, we compute
a new pedestrian trajectory feature X′ by aggregating features between group
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Fig. 3. An illustration of our pedestrian group assignment method using a pairwise
group probability matrix A. With a group index set G, a pedestrian group hierarchy is
constructed based on three types of interaction graphs.

members through the matrix multiplication of X and A as follows:

Ai,j =

1

1+exp
(

Di,j−π

τ

)∑N
i=1

(
1

1+exp
(

Di,j−π

τ

)) for i, j ∈ [1, ..., N ], (7)

X′ = ⟨X−XA ⟩+XA, (8)

where τ is the temperature of the sigmoid function and ⟨ · ⟩ is the detach (in
PyTorch) or stop gradient (in Tensorflow) function which prevents the backprop-
agation.

For further explanation of Eq. (8), we replace the input of pedestrian group
pooling module X with a new pedestrian trajectory feature X′ in implementation.
To be specific, we can remove XA in the forward pass, allowing us to compute a
loss for the trajectory feature X. In contrast, due to the stop gradient ⟨ · ⟩, the
loss is only backpropagated to XA in the backward pass. To this end, we can
train both the convolutional layer Fϕ and the learnable threshold parameter π
which are used for the computation of the pairwise distance matrix D and the
construction of group index set G, respectively.

3.3 Pedestrian Group Hierarchy Architecture

Using the estimated pedestrian grouping information, we reconstruct the initial
social interaction graph Gped in an efficient form for pedestrian trajectory pre-
diction. Instead of the existing complex and complete pedestrian graph, intra-
and inter-group interaction graphs capture the group-ware social relation, as
illustrated in Fig. 3.
Intra-group interaction graph. We design a pedestrian interaction graph
that captures relations between members affiliated with the same group. The
intra-group interaction graph Gmember = (Vped, Emember) consists of a set of
pedestrian nodes Vped and edges on their pairwise social interaction of group
members Emember = {ei,j | i, j∈ [1, ..., N ], k∈ [1, ...,K], {i, j}⊂Gk}. Through this
graph representation, pedestrian nodes can learn social norms of internal collision
avoidance between group members while maintaining their own formations and
on-going directions.
Inter-group interaction graph. Inter-group interactions (group-group re-
lation) are indispensable to learn social norms between groups as well. To
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take various group behaviors such as following a leading group, avoiding col-
lisions and joining a new group, we create an inter-group interaction graph
Ggroup = (Vgroup, Egroup). Here, nodes refer to each group’s features Vgroup =
{Xk | k∈ [1, ...,K]} generated with our pedestrian group pooling operation, and
edges mean the pairwise group-group interactions Egroup = {ēp,q | p, q∈ [1, ...,K]}.
Group integration network. We incorporate the social interactions as a
form of group hierarchy into well-designed existing trajectory prediction baseline
models in Fig. 3(b). Meaningful features can be extracted by feeding a different
type of graph-structured data into the same baseline model. Here, the baseline
models share their weights to reduce the amount of parameters while enriching
the augmentation effect. Afterward, the output features from the baseline models
are aggregated agent-wise, and are then used to predict the probability map of
future trajectories using our group integration module. The generated output
trajectory Ŷ with the group integration network Fψ is formulated as:

Ŷ = Fψ
(
Fθ(X,Gped)︸ ︷︷ ︸

Agent-wise GNN

, Fθ(X,Gmember)︸ ︷︷ ︸
Intra-group GNN

, Fθ(X,Ggroup)︸ ︷︷ ︸
Inter-group GNN

)
. (9)

Group-level latent vector sampling. To infer the multi-modal future paths
of pedestrians, an additional random latent vector is introduced with an input
observation path. This latent vector becomes a factor, determining a person’s
choice of behavior patterns, such as acceleration/deceleration and turning to
right/left. There are two ways to adopt this latent vector in trajectory generation:
(1) Scene-level sampling [17] where everyone in the scene shares one latent vector,
unifying the behavior patterns of all pedestrians in a scene (e.g ., all pedestrians
are slow down); (2) Pedestrian-level sampling [50] that allocates the different
latent vectors for each pedestrian, but forces the pedestrians to have different
patterns, where the group behavior property is lost.

We propose a group-level latent vector sampling method as a compromise of
the two ways. We use the group information estimated from the GP-Graph to
share the latent vector between groups. If two people are not associated with the
same group, an independent random noise is assigned as a latent vector. In this
way, it is possible to sample a multi-modal trajectory, which is independent of
other groups members and follows associated group behaviors. The effectiveness
of the group-level sampling is visualized in Sec. 4.3.

3.4 Implementation Details

To validate the generality of our GP-Graph, we incorporate it into four state-of-
the-art baselines: three different GNN-based baseline methods including STGCNN
(GCN-based) [39], SGCN (GAT-based) [54] and STAR (Transformer-based) [69],
and one non-GNN model, PECNet [36]. We simply replace their trajectory
prediction parts with ours. We additionally embed our agent/intra-/inter-graphs
on the baseline networks, and compute integrated output trajectories to obtain
the group-aware prediction.

For our proposed modules, we initialize the learnable parameter π as one,
which cut the total number of nodes moderately down by half, with the group
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pooling in the initial training step. Other learnable parameters such as Fθ, Fϕ
and Fψ are randomly initialized. We set the hyperparameter τ to 0.1 to give the
binary thresholding function a steep slope.

To train the GP-Graph architecture, we use the same training hyperparameters
(e.g ., batch size, train epochs, learning rate, learning rate decay), loss functions,
and optimizers of the baseline models. We note that we do not use additional
group labels for an apple-to-apple comparison with the baseline models. Our
group assignment module is trained to estimate effective groups for trajectory
prediction in an unsupervised manner. Thanks to our powerful Straight-Through
Group Estimator, it accomplish promising results over other supervised group
detection networks [7] that require additional group labels.

4 Experiments

In this section, we conduct comprehensive experiments to verify how the grouping
strategy contributes to pedestrian trajectory prediction. We first briefly describe
our experimental setup (Sec. 4.1). We then provide comparison results with various
baseline models for both group detection and trajectory prediction (Sec. 4.3 and
Sec. 4.2). We lastly conduct an extensive ablation study to demonstrate the effect
of each component of our method (Sec. 4.4).

4.1 Experimental Setup

Datasets. We evaluate the effectiveness of our GP-Graph by incorporating it
into several baseline models and check the performance improvement on public
datasets: ETH [42], UCY [28], Stanford Drone Dataset (SDD) [47], and the
Grand Central Station (GCS) [67] datasets. The ETH & UCY datasets contain
five unique scenes (ETH, Hotel, Univ, Zara1 and Zara2) with 1,536 pedestrians,
and the official leave-one-out strategy is used to train and to validate the models.
SDD consists of various types of objects with a birds-eye view, and GCS shows
highly congested pedestrian walking scenes. We use the standard training and
evaluation protocol [17,19,39,54,50,36] in which the first 3.2 seconds (8 frames)
are observed and next 4.8 seconds (12 frames) are used for a ground truth
trajectory. Additionally, two scenes (Seq-eth, Seq-hotel) of the ETH datasets
provide ground-truth group labels. We use them to evaluate how accurately our
GP-Graph groups individual pedestrians.
Evaluation protocols. For multi-modal human trajectory prediction, we fol-
low a standard evaluation manner, in Social-GAN [17], generating 20 samples
based on predicted probabilistic distributions, and then choosing the best sample
to measure the evaluation metrics. We use same evaluation metrics of previous
works [1,17,61,34] for future trajectory prediction. Average Displacement Error
(ADE) computes the Euclidean distance between a prediction and ground-truth
trajectory, while Final Displacement Error (FDE) computes the Euclidean dis-
tance between an end-point of prediction and ground-truth. Collision rate (COL)
checks the percentage of test cases where the predicted trajectories of different
agents run into collisions, and Temporal Correlation Coefficient (TCC) measures
the Pearson correlation coefficient of motion patterns between a predicted and
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STGCNN GP-Graph - STGCNN SGCN GP-Graph - SGCN

ADE↓ FDE↓ COL↓ TCC↑ ADE↓ FDE↓ COL↓ TCC↑ Gain↑ ADE↓ FDE↓ COL↓ TCC↑ ADE↓ FDE↓ COL↓ TCC↑ Gain↑
ETH 0.73 1.21 1.80 0.47 0.48 0.77 1.15 0.63 36.4% 0.63 1.03 1.69 0.55 0.43 0.63 1.35 0.65 38.8%

HOTEL 0.41 0.68 3.94 0.28 0.24 0.40 2.00 0.32 41.2% 0.32 0.55 2.52 0.29 0.18 0.30 0.66 0.35 45.5%
UNIV 0.49 0.91 9.69 0.63 0.29 0.47 7.54 0.77 48.4% 0.37 0.70 6.85 0.69 0.24 0.42 5.52 0.80 40.0%
ZARA1 0.33 0.52 2.54 0.71 0.24 0.40 2.13 0.82 23.1% 0.29 0.53 0.79 0.74 0.17 0.31 0.62 0.86 41.5%
ZARA2 0.30 0.48 7.15 0.39 0.23 0.40 3.80 0.49 16.7% 0.25 0.45 2.23 0.49 0.15 0.29 1.44 0.56 35.6%

AVG 0.45 0.76 5.02 0.50 0.29 0.49 3.32 0.60 35.5% 0.37 0.65 2.82 0.55 0.23 0.39 1.92 0.64 40.0%
SDD 20.8 33.2 6.79 0.47 10.6 20.5 4.36 0.67 38.3% 25.0 41.5 4.45 0.57 15.7 32.5 2.59 0.60 21.7%
GCS 14.7 23.9 3.92 0.70 11.5 19.3 1.24 0.73 19.2% 11.2 20.7 1.45 0.78 7.8 13.7 0.67 0.79 33.8%

STAR GP-Graph - STAR PECNet GP-Graph -PECNet

ADE↓ FDE↓ COL↓ TCC↑ ADE↓ FDE↓ COL↓ TCC↑ Gain↑ ADE↓ FDE↓ COL↓ TCC↑ ADE↓ FDE↓ COL↓ TCC↑ Gain↑
ETH 0.36 0.65 1.46 0.72 0.37 0.58 0.88 0.77 11.0% 0.64 1.13 3.08 0.58 0.56 0.82 2.38 0.59 27.3%

HOTEL 0.17 0.36 1.51 0.32 0.16 0.24 1.46 0.31 32.2% 0.22 0.38 5.69 0.33 0.18 0.26 3.45 0.34 32.1%
UNIV 0.31 0.62 1.95 0.69 0.31 0.57 1.65 0.73 7.4% 0.35 0.57 3.80 0.75 0.31 0.46 2.89 0.77 19.5%
ZARA1 0.26 0.55 1.55 0.73 0.24 0.44 1.39 0.82 20.3% 0.25 0.45 2.99 0.80 0.23 0.40 2.57 0.82 11.7%
ZARA2 0.22 0.46 1.46 0.50 0.21 0.39 1.27 0.46 14.3% 0.18 0.31 4.91 0.55 0.17 0.27 2.92 0.58 13.0%

AVG 0.26 0.53 1.59 0.59 0.26 0.44 1.33 0.62 15.7% 0.33 0.60 4.09 0.61 0.29 0.44 2.84 0.62 26.4%
SDD 14.9 28.2 0.72 0.59 13.7 25.2 0.35 0.61 10.4% 10.0 15.8 0.22 0.64 9.1 13.8 0.23 0.65 12.7%
GCS 15.6 31.8 1.79 0.80 14.9 30.3 0.81 0.80 4.8% 17.1 29.3 0.20 0.71 14.2 23.9 0.19 0.72 18.4%

Table 1. Comparison between GP-Graph architecture and the vanilla agent-wise
interaction graph for four state-of-the-art multi-modal trajectory prediction models,
Social-STGCNN [39], SGCN [54], STAR [69] and PECNet [36]. The models are evaluated
on the ETH [42], UCY [28], SDD [47] and GCS [67] datasets. Gain: performance improve-
ment w.r.t FDE over the baseline models, Unit for ADE and FDE: meter, Bold: Best.

ground-truth trajectory. We use both ADE and FDE as accuracy measures, and
both COL and TCC as reliability measures in our group-wise prediction. For the
COL metric, we average a set of collision ratios over the 20 multi-modal samples.

For grouping measures, we use precision and recall values based on two popular
metrics, proposed in prior works [6,12]: A group pair score (PW) measures the
ratio between group pairs that disagree on their cluster membership, and all
possible pairs in a scene. A Group-MITRE score (GM) is a ratio of the minimum
number of links for group members and fake counterparts for pedestrians who
are not affiliated with any group.

4.2 Quantitative Results

Evaluation on trajectory prediction. We first compare our GP-Graph with
conventional agent-wise prediction models on the trajectory prediction bench-
marks. As reported in Table 1, our GP-Graph achieves consistent performance
improvements on all the baseline models. Additionally, our group-aware predic-
tion also reduces the collision rate between agents, and shows analogous motion
patterns with its ground truth by capturing the group movement behavior well.
The results demonstrate that the trajectory prediction models benefit from the
group-awareness cue of our group assignment module.
Evaluation on group estimation. We also compare the grouping ability
of our GP-Graph with that of state-of-the-art models in Table 2. Our group
assignment module trained in an unsupervised manner achieves superior results
in the PW precision in both scenes, but shows relatively low recall values over
the baseline models.

There are various group interaction scenarios in both scenes, and we found that
our model sometimes fails to assign pedestrians into one large group when either
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Shao et al.[53] Zanotto et al.[71] Yamaguchi et al.[66] Ge et al.[14] Solera et al.[57] Fernando et al.[12] GP-Graph GP-Graph+S

Seq-eth
PW↑ 44.5 / 87.0 79.0 / 82.0 72.9 / 78.0 80.7 / 80.7 91.1 / 83.4 91.3 / 83.5 91.7 / 82.1 91.1 / 84.1
GM↑ 69.3 / 68.2 - / - 60.6 / 76.4 87.0 / 84.2 91.3 /94.2 92.5 /94.2 86.9 / 86.8 92.5 / 91.3

Seq-hotel
PW↑ 51.5 / 90.4 81.0 / 91.0 83.7 / 93.9 88.9 / 89.3 89.1 / 91.9 90.2 / 93.1 91.5 / 80.1 90.4 /93.3
GM↑ 67.3 / 64.1 - / - 84.0 / 51.2 89.2 / 90.9 97.3 /97.7 97.5 /97.7 84.5 / 80.0 96.1 / 96.0

Table 2. Comparison of GP-Graph on SGCN with other state-of-the-art group detection
models (Precision/Recall). For fair comparison, the evaluation results are directly
referred from [6,12]. S: Use a loss for supervision, Bold: Best, Underline: Second best.

Fig. 4. (Top): Examples of pedestrian trajectory prediction results. (Bottom): Examples
of group estimation results on ETH/UCY datasets [42,28].

a person joins the group or the group splits into both sides to avoid a collision.
In this situation, while forecasting agent-wise trajectories, it is advantageous
to divide the group into sub-groups or singletons, letting them have different
behavior patterns. Although false-negative group links sometimes occur during
the group estimation because of this, it is not a big issue for trajectory prediction.

To measure the maximum capability of our group estimator, we additionally
carry out an experiment with a supervision loss to reduce the false-negative group
links. We use a binary cross-entropy loss between the distance matrix and the
ground-truth group label. As shown in Table 2, the performance is comparable
to the state-of-the art group estimation models with respect to the PW and
GM metrics. This indicates that our learning trajectory grouping network can
properly assign groups without needing complex clustering algorithms.

4.3 Qualitative Results

Trajectory visualization. In Fig. 4, we visualize some prediction results
of GP-Graph and other methods. Since GP-Graph estimates the group-aware
representations and captures both intra-/inter-group interactions, the predicted
trajectories are closer to socially-acceptable trajectories and forms more stable
behaviors between group members than those of the comparison models. Fig. 4
also shows the pedestrians forming a group with our group assignment module.
GP-Graph uses movement patterns and proximity information to properly create
a group node for pedestrians who will take the same behaviors and walking
directions in the future. This simplifies complex pedestrian graphs and eliminates
potential errors associated with the collision avoidance between colleagues.
Group-level latent vector sampling. To demonstrate the effectiveness of the
group-level latent vector sampling strategy, we compare ours with two previous
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Fig. 5. (a) Visualization of predicted trajectory distribution in ZARA1 scene. (b,c,d)
Examples of three sampled trajectories with scene-level, pedestrian-level, and group-
level latent vector sampling strategy.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

w/o Pool&Unpool 1.03 / 1.69 / 0.55 0.55 / 2.52 / 0.29 0.70 / 6.85 / 0.69 0.53 / 1.79 / 0.74 0.45 / 2.23 / 0.49 0.65 / 3.02 / 0.55
gPool&gUnpool [13] 0.73 / 1.88 / 0.66 0.44 / 1.78 /0.35 0.44 / 7.67 / 0.78 0.35 / 1.14 / 0.84 0.30 / 2.30 / 0.52 0.45 / 2.96 / 0.63

SAGPool&gUnpool [25] 0.77 /1.15/ 0.63 0.40 / 2.00 / 0.32 0.47 / 7.54 / 0.77 0.40 / 2.13 / 0.82 0.40 / 3.80 / 0.49 0.49 / 3.32 / 0.60

GroupPool&Unpool 0.63 / 1.35 / 0.65 0.30 / 0.66 /0.35 0.42/5.52/0.80 0.31/0.62/0.86 0.29/1.44/0.56 0.39/1.92/0.64
+Oracle group label 0.62/ 1.27 /0.67 0.28/0.61/0.35 - / - / - - / - / - - / - / - - / - / -

Table 3. Ablation study of various pooling&unpooling operations on SGCN [54]
(FDE/COL/TCC). In the case of our Pedestrian Group Pooling&Unpooling, we ad-
ditionally provide experimental results using the ground-truth group labels (Oracle).
Bold: Best, Underline: Second best.

strategies: scene-level and pedestrian-level sampling in Fig. 5. Even though the
probability maps of pedestrians are well predicted with the estimated group
information (Fig. 5(a)), its limitation still remains. For example, all sampled tra-
jectories in the probability distributions lean toward the same directions (Fig. 5(b))
or are scattered with different patterns even within group members, which leads
to collisions between colleagues (Fig. 5(c)). Our GP-Graph with the proposed
group-level sampling strategy predicts the collaborative walking trajectories of
associated group members, which is independent of other groups (Fig. 5(d)).

4.4 Ablation Study

Pooling&Unpooling. To check the effectiveness of the proposed group pool-
ing&unpooling layers, we compare it with different pooling methods including
gPool [13] and SAGPool [25] with respect to FDE, COL and TCC. gPool proposes
a top-k pooling by employing a projection vector to compute a rank score for each
node. SAGpool is similar to the gPool method, but encodes topology information
in a self-attention manner. As shown in Table 3, for both gPool and SAGPool,
pedestrian features are lost via the pooling operations on unimportant nodes. By
contrast, our pooling approach focuses on group representations of the pedestrian
graph structure because it is optimized to capture group-related patterns.
Group hierarchy graph. We examine each component of the group hierarchy
graph in Table 4. Both intra-/inter-group interaction graphs show a noticeable
performance improvement compared to the baseline models, and the inter-group
graph with our group pooling operation has the most important role in perfor-
mance improvement (variants 1 to 4). The best performances can be achieved
when all three types of interaction graphs are used with a weight-shared baseline
model, which takes full advantage of graph augmentations (variants 4 and 5).
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Varient
ID

Components Performance

AW MB GP WS FG GS ETH HOTEL UNIV ZARA1 ZARA2 AVG

1 - ✓ - - - - 0.45 / 0.74 0.26 / 0.48 0.39 / 0.66 0.28 / 0.48 0.23 / 0.41 0.32 / 0.55
2 - - ✓ - - - 0.47 / 0.80 0.17 / 0.31 0.26 / 0.48 0.18 / 0.34 0.16 /0.29 0.25 / 0.44
3 - ✓ ✓ ✓ - - 0.43 / 0.69 0.20 / 0.37 0.25 / 0.47 0.19 / 0.35 0.17 / 0.32 0.25 / 0.44
4 ✓ ✓ ✓ - - - 0.44 / 0.75 0.18 /0.30 0.23 / 0.43 0.18 / 0.33 0.16 / 0.29 0.24 / 0.42
5 ✓ ✓ ✓ ✓ - - 0.43 /0.63 0.18 /0.30 0.24 /0.42 0.17 /0.31 0.15 /0.29 0.23 /0.39
6 ✓ ✓ ✓ ✓ ✓ - 0.55 / 0.87 0.24 / 0.31 0.42 / 0.82 0.30 / 0.56 0.22 / 0.35 0.35 / 0.58
7 ✓ ✓ ✓ ✓ - ✓ 0.43 /0.63 0.18 /0.30 0.24 /0.42 0.17 /0.31 0.15 /0.29 0.23 /0.39

Table 4. Ablation study (ADE/FDE). AW, MB, GP, WS, FG and GS respectively
denote agent-wise pedestrian graph, intra-group member graph, inter-group group
graph, weight sharing among different interaction graph, fixed ratio node reduction of
grouping and group-level latent vector sampling respectively. All tests are performed
on SGCN. Bold: Best, Underline: Second best.

Grouping method. We introduce a learnable threshold parameter π on the
group assignment module in Eq. (2) because in practice the total number of
groups in a scene can change according to the trajectory feature of the input
pedestrian node. To highlight the importance of π, we test a fixed ratio group
pooling with a node reduction ratio of 50%. As expected, the learnable threshold
shows lower errors than the fixed ratio of group pooling (variants 5 and 6). This
means that it is effective to guarantee the variability of group numbers, since the
number can vary even when the same number of pedestrians exists in a scene.

Additionally, we report results for the group-level latent vector sampling
strategy (variants 5 and 7). Since the ADE and FDE metrics are based on best-
of-many strategies, there is no difference with respect to numerical performance.
However, it allows each group to keep their own behavior patterns, and to
represent independency between groups, as in Fig. 5.

5 Conclusion

In this paper, we present a GP-Graph architecture for learning group-aware
motion representations. We model group behaviors in crowded scenes by propos-
ing a group hierarchy graph using novel pedestrian group pooling&unpooling
operations. We use them for our group assignment module and straight-forward
group estimation trick. Based on the GP-Graph, we introduce a multi-modal
trajectory prediction framework that can attend intra-/inter group interaction
features to capture human-human interactions as well as group-group interactions.
Experiments demonstrate that our method significantly improves performance
on challenging pedestrian trajectory prediction datasets.
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5. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432
(2013) 2, 7

6. Bisagno, N., Zhang, B., Conci, N.: Group lstm: Group trajectory prediction in
crowded scenarios. In: Proceedings of European Conference on Computer Vision
Workshop (ECCVW) (2018) 2, 4, 11, 12

7. Cangea, C., Velickovic, P., Jovanovic, N., Kipf, T., Lio’, P.: Towards sparse hierar-
chical graph classifiers. arXiv preprint arXiv:1811.01287 (2018) 4, 6, 7, 10

8. Chen, G., Li, J., Lu, J., Zhou, J.: Human trajectory prediction via counterfactual
analysis. In: Proceedings of International Conference on Computer Vision (ICCV)
(2021) 3

9. Chen, G., Li, J., Zhou, N., Ren, L., Lu, J.: Personalized trajectory prediction
via distribution discrimination. In: Proceedings of International Conference on
Computer Vision (ICCV) (2021) 3, 4

10. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks
on graphs with fast localized spectral filtering. In: Proceedings of the Neural
Information Processing Systems (NeurIPS) (2016) 4
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