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In the supplementary material, we present the implementation details in
Section 1. Extensive experiments on the Waymo Open Dataset are shown in
Section 2 to demonstrate the effectiveness of the proposed components. Finally,
we present some representative visualization results in Section 3.
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Fig. 1. The detailed architecture of 2D FCN.

1 Implementation Details

In this section, we illustrate the details of the 2D FCN architecture and the
sequential instance copy-paste (SICP).
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1.1 FCN Architecture

As shown in Fig. 1, the 2D FCN architecture used in the proposed SMVF has
three downs-sampling stages and two up-sampling stages. The BEV branch and
RV branch use a similar FCN framework, but the RV branch does not apply
down-sampling along the height dimension. The down-sampling block fuses the
down-sampling features from the 2D Convolution and 2D MaxPool, respectively.
Subsequently, it adopts several standard residual blocks [3] and a standard SE-
residual block [4] to extract features. For the up-sampling stage, inspired by
AFF [2], the attention feature pyramid fusion (AFPN) module uses the spatial
attention mechanism to automatically select features from different levels.

1.2 Sequential Instance Copy-Paste

The sequential instance copy-paste (SICP) aims to generate and insert reason-
able object trajectories into the LiDAR sequences for more training samples.
The SICP has five steps as follows.

(1) It constructs an object bank, consisting of the objects cropped from their
original LiDAR scans according to the annotated 3D bounding boxes.

(2) Tt uniformly samples a category and an object from this category.

(3) It generates a trajectory for the sampled object, considering that the object
is assumed to be moving along its 3D bounding box heading yaw. Its velocity
v is sampled uniformly within a predefined range of each category and the
object is moving backward when v is negative. On the Waymo Open Dataset,
the predefined velocity ranges of vehicle, pedestrian, and cyclist are [—40,40],
[—5, 5], and [—20, 20] m/s, respectively.

(4) It randomly selects a position from feasible position candidates for the gen-
erated object trajectory in the LiDAR sequences. The feasible position can-
didates satisfy that a) the distance r from the inserted object to the sensor
in the current t** scan should be the same as that in its original LiDAR
scan; b) the inserted object should be placed on the ground in each scan; c)
there is no occlusion between the inserted object and any existing object in
each scan.

(5) The occluded background points are removed.

2 Experiments On the Waymo Open Dataset

In this section, we report some ablative experiments on the validation split of
the Waymo Open Dataset for the motion velocity prediction task.

2.1 Analysis of the number of history LiDAR scans

On the Waymo Open Dataset, we evaluate the effect of the number of history
LiDAR scans. As shown in Table 1, more history LiDAR scans (k < 3) lead to
higher performance, but the performance saturates when k > 3. These observa-
tions are similar to those of the SemanticKITTI.
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Table 1. Analysis of the number of history LiDAR scans on the validation split of
the Waymo Open Dataset. k denotes the number of history LiDAR scans. A: All. M:
Moving. S: Stationary.

Method k|SICP|  Metric N Vel’c’["le S A P edel\flt”“” S A C“ﬁ”t g |Background|Runtime
mean (m/s) }] 0.16 046 005 | 023 028 011 | 035 038 0.1 | 0.028
SMVF [ours]|1| v | <0.1m/s 1 |67.8% 10.2% 89.8%|29.4% 11.7% 67.9% |15.3% 7.7% 73.2%| 99.0% | 30ms
<1.0m/s 1 [97.9% 92.8% 99.7%|98.1% 97.4% 99.5% |97.0% 96.8% 99.3% | 99.5%
mean (m/s) J] 0.14 0.41 005 | 021 026 011 | 0.29 032 009 | 0.027
<01lm/s?t [69.1% 11.7% 89.2%|33.3% 15.4% 69.1% |18.5% 10.7% 77.1%| 99.1% | 32.8ms
< 1.0 m/s 1 [98.5% 94.8% 99.8%| 98.6% 98.1% 99.7%|98.1% 97.8% 99.7% |  99.5%
mean (m/s) }] 0.14 042 0.04 | 020 0.24 0.10 | 0.29 0.31 0.08 | 0.026
SMVF [ours][3| v | <0.1m/s 1 |69.6% 12.0% 89.7%|35.4% 18.2% 70.0%|19.2% 11.4% 78.5%| 99.2% | 36.3ms
< LOm/s T |984% 94.4% 99.8%|98.8% 98.3% 99.7%|97.9% 97.7% 99.9%| 99.6%
mean (m/s) || 0.14 0.41 0.04 | 0.19 0.24 0.10 | 0.29 0.31 0.09 0.027
SMVT [ours][4| v | <0.1m/s 1 |69.6% 12.1% 89.6% |35.5% 18.2% 70.0%|19.1% 11.2% 78.2%| 99.2% | 38.4ms
< 1.0m/s 1 [98.5% 94.7% 99.8%|98.9% 98.4% 99.7%|97.9% 97.6% 99.8% | 99.6%

SMVF [ours|
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a) LIDAR Sequence b) BEV ¢) RV d) SMVF (ours)

Fig. 2. Visualization comparison results on the SemanticKITTI test set. The left col-
umn (a) shows the two consecutive LIDAR scans, where the red points mark the current
t'" scan and the green ones mark the history (¢t — 1)'® scan. The middle two columns
(b,c) present the moving object segmentation results of the BEV-based MotionNet [7]
and the RV-based Chen et al. [1], respectively. The right column shows the prediction
results of our SMVF. The predicted moving points are shown in red, while the station-
ary ones are shown in black.

3 Visualization

3.1 Results On the SemanticKITTI

The visualization results of the BEV-based MotionNet [7], the RV-based Chen
et al. [1], and our SMVF are shown in Fig. 2. The prediction results of Chen
et al. [1] are acquired by its official code. The MotionNet is re-implemented on
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| Date of Last Entry loU (moving) A Recall (moving) A

1 SMVF1 7 01/25/22 0.759 (1) g
2 Jykim g 02/24/22 0.747 ) <
3 zexihan 4 12/11/21 0.741 3)

4 SVQNet 3 11/17/21 0.727 @) =
5 Tenghao i 01/17/22 0.712 (5) -
6 JiadaiSun 10 11/18/21 0.708 (6)

7 qgipeng_li 5 02/25/22 0.702 (7)

8 daihm 4 02/19/22 0.702 (8) -
8 maoyuxin 9 01/15/22 0.696 (9) =
10 shengyuhuang 6 07/23/21 0.692 (10) -
11 shougang 9 11/17/21 0.688 (11) =
12 denghui22 7 01/05/22 0.685 (12) =
13 PRNet! 1 01/21/22 0.678 (13) =
14 benemer 9 02/23/22 0.652 (14) =
15 ivzju_song 1 11/01/21 0.638 (15) -
16 MaxUN 10 11/24/21 0.636 (16) =
% Xieyuanli_Chen 5 02/17/21 0.625 (17) =
18 xiaoyang_121 9 11/16/21 0.623 (18)

Fig. 3. Screenshot of the public leaderboard on the SemanticKITTI moving object
segmentation (MOS) benchmark at 2022-03-07. Our SMVF ranks 1st.

Fig. 4. Visualization results of the proposed SICP on the Waymo Open Dataset. The

red points mark the current ¢ scan and the green ones mark the history (¢t —1)"™

The black boxes show the inserted objects.

scan.

the SemanticKITTI based on its official code and the settings can be seen in the
main paper. The two single-view methods frequently confuse points projected
to the same or nearby 2D grids, while our SMVF solves the problem by the
cooperation between different views. Our SMVF achieves the 1st place on the
public SemanticKITTI moving object segmentation (MOS) leaderboard in Fig. 3.



b) Motion Compensation ¢) Motion State

Fig. 5. Visualization results of our SMVF on the validation split of the Waymo Open
Dataset. The first column (a) shows two consecutive LiDAR scans, where the red
points mark the current ™ scan and the green ones mark the history (t — 1)* scan.
For visualizing the velocity, the positions of the 3D points are compensated by their
predicted velocities in the middle column (b). The last column (c) presents the point-
level motion state, where the points with their speed > 0.5 m/s are shown in red, and
the others are shown in black.

3.2 Results On the Waymo Open Dataset

Sequential Instance Copy-Paste. The visualization results of the proposed
SICP on the Waymo Open Dataset are shown in Fig. 4. The SICP can be used
for more than two LiDAR scans, although we present only two consecutive Li-
DAR scans for better visualization. We find that the SICP can generate realistic
LiDAR sequences for all categories except some abnormal cases. For example,
the first column of the 1st and 3rd rows in Fig. 4 presents that a cyclist and
a vehicle break the traffic rules and are crossing the road. For the safety of
the autonomous driving system, these abnormal cases make a motion estimator
generalize well to various scenarios since these cases may occur in real-world
applications.

Motion Velocity Prediction. We visualize the predicted velocity results of
the proposed SMVF on the Waymo Open Dataset. For convenience, we use
the velocity predictions to compensate the current t** LiDAR scan, assuming
that the speed of an object is constant in a short time interval (e.g. a LiDAR
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a) LIDAR Sequence b) Ground-Truth ¢) SMVF (ours)

Fig. 6. Generalization to the unlabeled objects of our SMVF on the validation split of
the Waymo Open Dataset. The middle and last columns present the results from the
ground truth and our SMVF. The points with their speed > 0.5 m/s are shown in red,
and the others are shown in black.

scan period). If the motion velocity prediction is perfect, the compensated scan
should completely overlap with the (¢—1)*" LiDAR scan. As shown in Fig. 5, our
SMVF can predict accurate velocities for all categories. Moreover, our SMVF
accurately classifies the road points near a moving object as stationary, while
the FastFlow3D [5] frequently classifies these points as moving as shown in Fig.6
of the paper [5]. Although the FastFlow3D integrates the point features with the
BEV motion features, the point features cannot be fully explored by a shared
MLP and fail to compensate for the 2D projection information loss. Our SMVF
solves the problem by introducing a single-scan RV branch.

Generalization to the Unlabeled Objects. As illustrated in FastFlow3D [5],
the point-level ground-truth velocities are obtained by the tracked 3D bounding
boxes. Without a tracked box, an object is regarded as stationary. For a reli-
able autonomous driving system, a motion estimator should generalize well to
these unlabeled objects. In the main paper, we have quantitatively evaluated the
generalization ability by ablating pedestrian and cyclist during training. Here,
we present some visualization results in Fig. 6. Our SMVF can predict accurate
results for these unlabeled objects.
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