Sequential Multi-View Fusion Network for Fast
LiDAR Point Motion Estimation

Gang Zhang?, Xiaoyan Li'™, and Zhenhua Wang?

! Beijing Municipal Key Lab of Multimedia and Intelligent Software Technology,
Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing
University of Technology, Beijing 100124, China
2 Damo Academy, Alibaba Group
3 Cenozoic Robot
{zhanggang11021136,hblixy2,zhwang.me}@gmail . com

Abstract. The LiDAR point motion estimation, including motion state
prediction and velocity estimation, is crucial for understanding a dy-
namic scene in autonomous driving. Recent 2D projection-based methods
run in real-time by applying the well-optimized 2D convolution networks
on either the bird’s-eye view (BEV) or the range view (RV) but suffer
from lower accuracy due to information loss during the 2D projection.
Thus, we propose a novel sequential multi-view fusion network (SMVF),
composed of a BEV branch and an RV branch, in charge of encoding
the motion information and spatial information, respectively. By look-
ing from distinct views and integrating with the original LiDAR point
features, the SMVF produces a comprehensive motion prediction, while
keeping its efficiency. Moreover, to generalize the motion estimation well
to the objects with fewer training samples, we propose a sequential in-
stance copy-paste (SICP) for generating realistic LIDAR sequences for
these objects. The experiments on the SemanticKITTI moving object
segmentation (MOS) and Waymo scene flow benchmarks demonstrate
that our SMVF outperforms all existing methods by a large margin.

Keywords: Motion State Prediction, Velocity Estimation, Multi-View
Fusion, Generalization of Motion Estimation

1 Introduction

Based on the 3D point clouds captured at consecutive time steps, the motion
estimation aims at describing which parts of the scene are moving and where
they are moving to. It is a combination of moving object segmentation and scene
flow estimation, which are highly related and can be given by a single inference.
The motion estimation provides a low-level understanding of a dynamic scene
that not only benefits downstream tasks, such as object trajectory prediction,
object tracking, simultaneous localization and mapping (SLAM), etc., but also
remedies for undetected objects in the perception system. Therefore, an accurate,
fast, and well-generalized motion estimation algorithm is crucial for real-world

2 G. Zhang et al.

g) BEV space

Fig. 1. The left part shows that the previous single-view methods frequently confuse
points projected to the same or nearby 2D grids (a,c), while our SMVF solves the
problem (b,d). The predicted moving points are shown in red, while the stationary
ones are shown in black. The right part shows two moving pedestrians with almost the
same velocity in the 3D space (e), while their trajectories are distorted in the RV space
(f) but consistent in the BEV space (g). The red pedestrians are in the current scan
and the green ones are in the history scan.

applications, e.g. autonomous driving. Previous methods are grouped as point-
based methods, sparse voxel-based methods, and 2D projection-based methods.

The point-based methods, including FlowNet3D [14], FlowNet3D++ [24],
MeteorNet [15], and HPLFlowNet [9], directly process the raw unordered 3D
points. These methods extract motion information by searching the spatiotem-
poral neighborhoods, which is both memory and computation inefficient. Thus,
these methods are rarely used in real-world autonomous driving systems. To re-
duce the memory and computation costs, the sparse voxel-based methods [4], [18]
quantize a sequence of the LiDAR points into sparse voxels, and apply convo-
lution operations on these non-empty voxels along spatial and temporal dimen-
sions. However, they are still too computationally expensive to run in real-time.

The 2D projection-based methods first project the 3D points onto a 2D plane,
such as bird’s-eye view (BEV) [10], [25] or range view (RV) [3], [6], to generate a
sequence of 2D pseudo images, where existing optical flow methods [5], [19], [17]
of the 2D image domain can be applied. Generally, these methods achieve real-
time inference speed but have lower accuracy due to the 2D projection informa-
tion loss as shown in Fig. 1(a,c).

For accurate and fast LIDAR point motion estimation, it is argued that the
deficiencies of the 2D projection-based paradigms can be remedied by division
and cooperation between different views. As shown in Fig. 1(b,d), our SMVF
solves this problem by using the proposed multi-view features since the distinct
3D points that are confused in the BEV space are separated in the RV space.
Moreover, in this work, the properties of different views are explored. Specifically,

SMVF 3

the BEV branch consumes multiple LiDAR scans for motion features extraction,
considering that objects primarily move on the BEV plane. The RV branch only
uses the current scan to extract the spatial features to distinguish the 3D points
that fall in the same BEV grid, since the object trajectories are distorted in the
RV space as shown in Fig. 1(e,f,g). Moreover, the original point features are also
fused to alleviate other information loss during the 2D projection.

In this work, we present a novel sequential multi-view fusion network (SMVF),
which consists of two complementary branches, namely a BEV branch and an RV
branch. The BEV branch is responsible for motion features extraction according
to a sequence of consecutive LiDAR scans, while the RV branch extracts com-
plementary spatial features only from the current scan. Finally, the motion and
spatial features are fused with the 3D point features to acquire per-point mo-
tion estimation. Besides, the sequential instance copy-paste (SICP) is designed
to generate and insert object trajectories into a sequence of LiDAR scans to
mimic the real data and further improve the generalization ability of a motion
estimator. Our contributions include:

— The SMVF is designed for accurate and fast LIDAR point motion estimation
by fusing motion features from the BEV and spatial features from the RV.

— The SICP is proposed to generalize the motion estimation well to the objects
with fewer training samples.

— Our SMVF currently ranks 1st on the SemanticKITTI MOS leaderboard
and Waymo scene flow benchmark, running 13 ms on NVIDIA RTX 2080Ti
GPU with TensorRT [22] FP16 inference mode.

2 Related Work

Point motion estimation, including moving object segmentation (MOS) and
scene flow estimation, can not only benefit the downstream tasks, such as track-
ing and SLAM, but also serve as a powerful basis for planning when the object
detection and tracking systems fail in the presence of undetected objects.

Moving Object Segmentation (MOS). In this task, each 3D point is classi-
fied as moving or stationary. SpSequenceNet [18] divides the 3D space uniformly
into structured voxels, and then a cross-frame global attention module and a
cross-frame local interpolation module operating on these sparse voxels are pro-
posed to capture spatial and temporal information. Recently, Chen et al. [3]
project the 3D points to the RV, and generate the 2D residual distance images
between the current frame and history frames to provide motion information. Dif-
ferent from the previous voxel-based methods, the 2D projection-based methods
support real-time perception and are easily deployed on an autonomous vehicle.

Scene Flow Estimation. In this work, the scene flow estimation refers to pre-
dicting the velocity for each 3D point instead of each BEV grid. To achieve this

4 G. Zhang et al.

goal, a series of point-based methods are proposed. FlowNet3D [14] adopts the
time-consuming farthest point sampling (FPS) for downsampling points, and ball
query for spatiotemporal neighbor searching. MeteorNet [15] proposes a direct
grouping and a chained-flow grouping to determine the spatiotemporal neigh-
borhoods. Inspired by Bilateral Convolution Layers (BCL), HPLFlowNet [9]
proposes DownBCL, UpBCL, and CorrBCL that restore the spatial relationship
of points to accelerate the FlowNet3D. These point-based methods can preserve
and exploit the information from raw point clouds, but they are computation
and memory inefficient. Recently, the FastFlow3D [10] fuses the BEV motion
features and the point features for real-time scene flow estimation. However, the
point features cannot be fully digested by a shared MLP and fail to compensate
for the aforementioned projection information loss. Therefore, the FastFlow3D
may classify the stationary points as moving.

Other Spatiotemporal Encoding Methods Other methods that also exploit
the spatiotemporal information are introduced for inspiration. For multi-scan Li-
DAR semantic segmentation, Minkowski CNN [4] projects 3D points into voxels
and applies a novel 4D spatiotemporal convolution along both 3D spatial and
1D temporal dimensions. Duerr et al. [6] project the input point clouds onto the
RV and propose a novel temporal memory alignment strategy to align features
between adjacent frames. For object trajectory prediction, the RV-FuseNet [11]
consumes multiple LIiDAR scans in the RV space and predicts object trajectory
on the BEV plane. MVFuseNet [12] fuses the features from the multi-scan BEV
and multi-scan RV branches to form the new BEV features for the latter predic-
tion. In contrast to RV-FuseNet and MVFuseNet, our SMVF conducts motion
estimation on 3D points instead of BEV grids. Moreover, our SMVF illustrates
the complementary properties of the two views, which is not discussed before.

3 Approach

The sequential multi-view fusion network (SMVF) is proposed for LiDAR point
motion estimation, as shown in Fig. 2. The SMVF encodes the features in a multi-
view manner: the bird’s-eye view (BEV) branch takes a sequence of consecutive
LiDAR scans as input for motion information extraction; the range view (RV)
branch only uses the current LiDAR scan to extract spatial information for
distinguishing nearby points; finally, the features of the point clouds and the
two views are fused for per-point motion prediction. Moreover, the sequential
instance copy-paste (SICP) is designed to augment more training samples.

The problem definition, multi-view feature encoding paradigm, sequential
instance copy-paste, and the overall optimization objectives are illustrated in
Sec. 3.1, 3.2, 3.3, and 3.4, respectively.

3.1 Problem Definition

Point motion estimation is an integration of scene flow estimation and moving
object segmentation. A motion estimator M takes a sequence of 3D point clouds

SMVF 5

Generated - Bird's-Eye View (BEV) Branch
Trajectory’

o iy :
Cloud tk b—off—{rc

G2P

Point §
Cloud t-1 l PG Y —
e W
PZ(‘) 2
Point i Concat r_‘m: oci P
Clteli Projectionlto2D Projection 03D
Sequential G2p - -
Ego-mothn Instance Moving / Stationary
Compensation Copy-Paste - S
(SICP) Range View (RV) Branch Motion Estimation
U Multi-Layer Perception P2G: Point to Grid G2P: Grid to Point PF: Point Fusion Fully Connected Layer

Fig. 2. Overview of the SMVF. First, the input sequential point clouds are adjusted by
ego-motion compensation and augmented by the sequential instance copy-paste. Then,
efficient and effective feature extraction is achieved by looking from the BEV and RV
with 2D FCNs. Finally, features from the original points and the two branches are
fused in 3D space to produce per-point motion predictions. Note that the multi-layer
perception (MLP) of each LiDAR frame has shared parameters.

{pl}, {pl_.}, ..., {p]_,} as inputs (where t is a constant denoting the time
stamp, and k 4 1 is the size of the time window, and 7 = 1,..., N denotes the
index of the point in a scan with N points), and outputs a set of motion vectors
{mJ} at time ¢, as the following,

Mpi}Apia) Api) = {mi} (1)
where the motion vector mi = (Vg, Uy, vz, m) corresponding to the point p{
includes the velocities (vy,vy,v,) of the point p; in each axis, and a binary
variable m, indicating whether the point is moving (m = 1) or not (m = 0).

3.2 Multi-View Feature Encoding

The proposed SMVF exploits the multi-view projection-based paradigm for ef-
ficient and effective feature encoding. Since object movements in autonomous
driving are mostly present on the x-y plane, the BEV that squeezes the z-axis is
adequate for encoding temporal motion information. However, there are spatial
confusions between points that are projected to the same or nearby BEV grid.
Thus, the RV encoding of the current LiDAR scan is required for complementing
the spatial information. Both BEV and RV branches have a similar three-step
process, including 1) projection to the 2D space (P2G), 2) feature extraction
with a fully convolutional network (FCN), and 3) projection back to the 3D
space (G2P). For the BEV branch, each LiDAR frame is projected to the BEV
grid separately.

Ego-Motion Compensation. Each LiDAR scan is described by its local co-
ordinate system. The proposed method transforms the history LiDAR scans

6 G. Zhang et al.

3D space ’ 2D space 2D space ’ 3D space
5} ol 5o ol
L 3PS e °
3 2 °3 2
° ° % e » %
4 L 4 L4 I
—> max pooling bilinear interpolation

e 3D point e projected 2D point e 2D grid point
(a) P2G (b) G2P

Fig. 3. An illustration of Point to Grid (a) and Grid to Point (b) operations. The white
area shows the targets of interest in the output space.

(t—1,...,t — k) to the coordinates of the current scan (t), to avoid specious
motion estimation caused by ego-motion. The k consecutive relative transfor-
mations are represented as transformation matrices Tf_,..., T}, (T} € R4X4),
and assumed to be known following the common practice.

Point to Grid (P2G). The Point to Grid (P2G) operation transforms the 3D
point features to the 2D grid feature maps (e.g. BEV, RV), as shown in Fig. 3(a).
Each frame of consecutive LIDAR scans applies the same P2G operation sepa-
rately. Thus, we only illustrate the P2G of the current scan ¢. The 4t 3D point
of the current scan ¢ is p] = (z;,y;, z;), which is first projected onto the 2D grid
to acquire the corresponding 2D coordinates (u;,v;). Then the features .’F?]? of
3D points that fall in the same 2D grid (h, w), namely |u;] = h and |v;| = w,
are aggregated by max-pooling to form the 2D grid features .7:%{3“)70,

2D 3D (2)

= max PN
hywe Vj s.t. |uj]=h,|v;]=w)€

Both BEV and RV are 2D representations. They use a similar P2G operation
and just differ in the way of 2D projection. For the BEV projection, it projects
the 3D point onto the z-y plane that is discretized by using a rectangular 2D
grid (Tmin, Ymin, Tmaz, Ymaz) With the predefined width Wi, and height Hye,.
The corresponding 2D coordinates on the BEV are formulated as

Uj L e X Wbev

Tmaz —Tmin

- . (3)

. Yji—Ymi
Uj . T X Hbe'u

Ymaz —Ymin

For the RV projection, the 3D point is first mapped to the spherical space

(rj, 05,05,
[22 2 4,2
T YT

0; | = : zj , (4)
d)JJ arcsm(W)

arctan2(y;, x;)

SMVF 7

where 75, 8;, ¢; denote the distance, zenith, and azimuth angle, respectively.
Then, its corresponding 2D coordinates (u;, v;) on the RV are given by quantiz-
ing 6; and ¢; but ignoring r; as the following,

<uj> _ (%(1 - ¢j771)er) (5>
Uj B [1 - (Hj + fup)f_l] H.,)’

where f = fup + fdown is the LIDAR vertical field-of-view, and W,., and H,.,, are
the width and height of the RV.

Fully Convolutional Network (FCN). For efficiency, both BEV and RV
branches adopt a similar 2D fully convolutional network (FCN) to extract mean-
ingful features. The RV branch only takes the current LiDAR scan as input to
provide spatial information and the input size of RV is C x H,.,, x W,.,,, where C
denotes the number of feature channels. For the BEV branch, the features from
consecutive LIDAR scans are concatenated to form a (kC + C) X Hpey X Wiey
input tensor, where k denotes the number of history LiDAR scans. The detailed
architecture of the FCN can be seen in the supplementary material.

Grid to Point (G2P). On the contrary to the Point to Grid (P2G) operation,
the Grid to Point (G2P) operation transfers the features from the 2D grid to
the 3D point for the latter point-level prediction, as shown in Fig. 3(b). The
features of the j'" 3D point p! can be obtained by bilinear interpolation within
the four-neighbor grids of its corresponding 2D position (u;,v;) as follows,

1 1
3D __ 2D
Fi0 = wnaiFlu ip o) tae (6)
p=0 q=0

where wy, 4 = (1 — |u; — (lu;] +p)))(1 — |v; — (lv;] + ¢)|) denotes the bilinear
interpolation weight. The neighbor grids beyond the 2D grid range are regarded
as all zeros.

Point Fusion. The point fusion (PF) module fuses the features from the 3D
points and the projected features from the BEV and RV to form a final per-point
estimation. The PF serves as a mid-fusion module and allows end-to-end training
of the proposed SMVEF. For efficiency, it only adopts a feature concatenation
operation and two MLP layers for feature fusion. Finally, two additional fully
connected (FC) layers predict the velocity and segmentation results, respectively.
By using this simple fusion module, the network automatically learns motion
information from the BEV branch, spatial information from the RV branch, and
other complementary information from the original point clouds.

3.3 Sequential Instance Copy-Paste

The motion estimator usually presents lower confidence on the objects with fewer
or even no training samples (e.g. cyclist, dog, toy car). Inspired by the previous
3D detection methods [26], [13] that adopt the instance copy-paste strategy to
improve the performance of rare classes (e.g. pedestrian and cyclist), we extend
the instance copy-paste from a single frame to multiple frames as shown in Fig. 4.

8 G. Zhang et al.

Generated
Trajectory

Valid positions

QO All positions

_ remove the occluded
background points

Fig. 4. Overview of the proposed sequential instance copy-paste (SICP). The aug-
mented LiDAR sequence is shown with all scans overlapped. Note that all LiDAR
scans have been compensated with ego-motion.

First, it constructs an object bank, consisting of the objects cropped from their
original LiDAR scans according to the annotated 3D bounding boxes. Then, it
uniformly samples a category and an object from this category. Finally, an object
trajectory is generated by inserting this object to the LiDAR sequence.

Specifically, the object is assumed to be moving along its 3D bounding box
heading yaw with a random sampled velocity © on the z-y plane. The velocities
U, Uy of an inserted object are formulated by

Vg ¥ cos(yaw)

(f}y) - (f/ sin(yaw)) ’ (7)
¥ is sampled uniformly within a predefined range of each category and the object
is moving backward when v is negative. Its speed v, along the z-axis is calculated
by ensuring that the object is moving on the ground.

Then, the position of an inserted object trajectory is determined by first
filtering out the infeasible positions and then randomly sampling from the re-
maining candidates. The inserted object has a distance 7; to the sensor in its
original LiDAR scan. Given that the LiDAR point density is changed across dif-
ferent distances, the candidate positions in the t'" scan are kept, only when their
distance to the sensor are the same as 7 (marked as a black circle in Fig. 4).
Then, the corresponding positions in the history LiDAR scans can be derived
from the above velocity (¥s,7y,0.). A candidate position of the trajectory is
filtered out if the inserted object cannot be placed on the ground or there is
occlusion between the inserted object and the existing objects in any time step.
Finally, the inserted position is randomly selected from the remaining candidates
(marked as transparent yellow in Fig. 4) and the occluded background points
are removed. Different from the previous methods [26], [13], the SICP specially
considers the inserted position and the ray occlusion to ensure the reality of the
augmented LiDAR sequence.

SMVF 9

3.4 Optimization Objectives

For the moving object segmentation (MOS) task, the 3D points are classified into
two categories, namely moving or stationary. Therefore, we apply the commonly-
used cross-entropy (CE) loss, which can be formulated as,

A
Lcg = N 2:31 ; Yy, log (7). (8)

where y¢& (y& € {0,1}) and g (9 € [0,1]) are the ground-truth label and the
predicted probability of the ¢*? class on the nt" point. To facilitate more accurate
classification on hard samples, another loss term E%Ob%’ only considers the top 20%
points with higher losses. In addition, the Lovasz-Softmax loss [2] L1 is also
adopted to directly optimize the Intersection over Union (IoU) metric. The total

loss function for the MOS task is defined as
Lomos = Lop +4L27 + 3L 6. (9)

For the scene flow estimation task, the Ly error between the ground-truth
velocities v, and the predicted velocities v,, is used as the following,

N
1 -
Lsy = NZHUTL_UHHZ (10)
n=1

If a dataset simultaneously provides benchmarks of the two tasks, £;,,s and
L, are both adopted for the guidance of corresponding predictions.

4 Experiments

We conduct ablation studies and evaluate the performance of the proposed
SMVF on the SemanticKITTTI [1] benchmark for moving object segmentation
and the Waymo Open Dataset [10] for scene flow estimation.

4.1 Datasets and Evaluation Metrics

SemanticKITTI. The SemanticKITTI [1] derives from the odometry dataset
of the KITTI Vision Benchmark [8]. It contains 43,552 360° LiDAR scans from
22 sequences collected in a city of Germany. The training set (19,130 scans)
consists of sequences from 00 to 10 except 08, and the sequence 08 (4,071 scans)
is used for validation. The rest sequences (20,351 scans) from 11 to 21 are only
provided with LiDAR point clouds and are used for the online leaderboard. This
dataset is labeled with 28 classes. For the moving object segmentation (MOS)
task, the same splits for training, validation, and test sets are used, while all
classes are reorganized into only two types: moving and non-moving/static [3].

10 G. Zhang et al.

As the official guidance [3] suggests, we adopt the Intersection over Union
(IoU) [7] on the moving class to evaluate the proposed SMVF and its competi-
tors. It can be formulated as

TP

oU=— — 11
U= Tp - FP+ IN’ (11)

where TP, FP, and FN correspond to the true positive, false positive, and false
negative of the moving points.

Waymo Open Dataset. The Waymo Open Dataset is a large-scale dataset
for autonomous driving perception across a diverse and rich domain [10], [20].
The scene flow labels are generated by leveraging the human-annotated tracked
3D objects in this dataset [20]. The training split consists of 800 run segments
containing 158,081 frames in total, while the validation split contains 200 run
segments with 39,987 frames.

The commonly-used metrics for scene flow estimation are the mean Lo error
of point-wise flow and the percentage of predictions with Lo error below a given
threshold [23], [14]. Considering that objects in autonomous driving have differ-
ent speed distributions dictated by the object category (e.g. vehicle, pedestrian),
prediction performances delineated by the object category are also reported.

4.2 Experimental Setup

Network Setup. The input point features contain z, y, z, intensity, r, Az and
Ay, where Ax and Ay denote the offsets to the corresponding BEV grid center.
For the Waymo Open Dataset, elongation is used as an additional feature. As
shown in Fig. 2, the first MLP layer of each LiDAR frame has shared parameters
and outputs 64 feature channels, which the following P2G operation transforms
to the BEV and RV feature maps, respectively. Both BEV and RV branches
utilize a similar 2D FCN network with three down-sampling and two up-sampling
stages, but the RV does not apply down-sampling along the height dimension.
The PF module with only two MLP layers takes features from the three sources
as inputs and outputs 64 feature channels. Finally, two FC layers are used for
motion state prediction and scene flow estimation, respectively.

Data Augmentation. During training, we apply the widely-used data augmen-
tation strategies, including random rotation around the z-axis, random global
scale sampled from [0.95,1.05], random flipping along = and y axes, and random
Gaussian noise N (0, 0.02). Besides, the proposed SICP is adopted.

4.3 Results on the SemanticKITTI

Moving object segmentation is evaluated on the SemanticKITTI. The 3D space
is set to be within [—50, 50)m for the and y axes and [—2,4]m for the z-axis.
For the BEV branch, the input resolutions are Wye,, = 512 and Hp.,, = 512.
For the RV branch, the input resolutions are W,., = 2048 and H,, = 64. Our
SMVF is trained from scratch for 48 epochs with a batch size of 24, taking

SMVF 11

Table 1. Moving object segmentation results on the SemanticKITTI validation and
test set. k denotes the number of history LiDAR scans. * means the re-implementation
based on its official code. “TRT16” means the TensorRT FP16 inference.

Method [k [val IoU [test ToU [Runtime
KPConv [21] 1] - 60.9 | 168ms
SpSequenceNet [18] |1 - 43.2 450 ms
Chen et al. [3] 1] 59.9 52.0 | 24.3ms
SMVF [ours] 1] 75.1 72.1 |21.8ms
Chen et al. [3] 8| 66.5 62.5 | 24.8ms
MotionNet™ [25] 4] 67.8 62.6 | 78.9ms
SMVF [ours] 2| 76.9 75.9 |24.3ms
SMVF [ours]; TRT16|2| 77.0 75.9 13 ms

around 15 hours on 8 NVIDIA RTX 2080Ti GPUs. Stochastic gradient descent
(SGD) serves as the optimizer with a weight decay of 0.001 and a learning rate
initialized to 0.02, which is decayed by 0.1 every 10 epochs.

Comparison With the State of the Art. All methods are evaluated on
the SemanticKITTI validation and test set with the official evaluation code. In
Table 1, our SMVF outperforms the previous methods by remarkable margins.
By utilizing the current LiDAR scan and one history LiDAR scan (k = 1),
the point-based KPConv [21] and the sparse voxel-based SpSequenceNet [18]
are x7.7 and x20.6 slower than our SMVF, respectively, and they also perform
worse with —11.2 and —28.9 IoU drops on the test set, respectively. Chen et al.
[3] (k = 8) based on the RV representation, runs as fast as our SMVF (k = 2),
but it performs much worse with —10.4 and —13.4 IoU drops on the validation
and test set, respectively. We re-implement the BEV-based MotionNet [25] on
the SemanticKITTI based on its official code. For a fair comparison, the scope
and partition of the 3D space are the same as our SMVF, while it divides 20
bins along the z-axis. The point-level prediction is acquired by its corresponding
BEV grid prediction. Our SMVF (k = 2) outperforms the MotionNet on both
ToU metric and inference speed. There are three primary reasons: 1) the Motion-
Net is a BEV-based method that cannot distinguish the 3D points on the same
BEV grid; 2) the MotionNet encodes the BEV features by the binary voxels
that lead to information loss; 3) the MotionNet adopts a expensive spatiotem-
poral network to extract motion information. Besides, our SMVF can be easily
deployed with TensorRT FP16 inference mode and runs only 13 ms, supporting
real-time perception tasks in autonomous driving.

Ablation Studies. The settings for the multi-view framework and the number
of history LiDAR scans are evaluated on the SemanticKITTI validation set. As
shown in Table 2, we can discover that: 1) the BEV branch is more suitable for
extracting motion information than the RV branch (a,c and b,d); 2) the multi-
view framework performs better than the single-view one (a,b and c,d); 3) based
on our SMVF, the RV branch does not need to extract temporal information

12 G. Zhang et al.

Table 2. Ablative analysis on the SemanticKITTI validation set. “-”: the branch is
not applied. “multi”: the branch takes multiple LIDAR scans as input. “single”: the
branch only uses the current LiDAR scan. k: the number of history LiDAR scans.

(a) Multi-view framework. (b) Number of history LiDAR scans.

[BEV. RV k][IoU [Runtime [BEV. RV k[IoU | Runtime

a) - multi 2| 63.8 | 14.4ms f) | multi single 1| 75.1 | 21.8 ms

b) | single multi 2| 66.5 | 22.3ms d) | multi single 2| 76.9 | 24.3ms

¢) | multi - 2| 73.5 | 15.9ms g) | multi single 3 | 76.8 | 26.5ms

d) | multi single 2 | 76.9 | 24.3ms h) | multi single 4 | 76.9 | 29.0ms
e) | multi multi 2| 76.7 | 28.1ms

)

(d,e); 4) the segmentation performance rises up when more history LiDAR scans
(k < 2) are incorporated, but the performance saturates when k > 2 (f,d,g,h).

4.4 Results on the Waymo Open Dataset

The scene flow estimation task is conducted on the Waymo Open Dataset. The
same configuration as FastFlow3D [10] is adopted. The 3D space is limited to
[—85, 85]m for the and y axes and [—3, 3]m for the z-axis. For the BEV branch,
the input resolutions are Wye,, = 512 and Hpe, = 512. For the RV branch, the
input resolutions are W,., = 2560 and H,., = 64. The proposed SMVF is trained
from scratch for 24 epochs with a batch size of 24, taking around 40 hours on
8 NVIDIA RTX 2080Ti GPUs. The optimizer is AdamW [16] with a weight
decay of 0.001 and an initial learning rate of 0.002, which is decayed by 0.1
every 10 epochs. The SICP constructs the object bank on the training split by
the annotated 3D bounding boxes and it inserts 10 object trajectories into each
training sample consisting of k£ + 1 LiDAR scans.

Comparison With the State of the Art. As shown in Table 3, the point-
based FlowNet3D [14] over-fits on the stationary class, and our SMVF surpasses
it by a large margin for all the other metrics, while our SMVF runs x5.7 faster.
Compared with the FastFlow3D [10], our SMVF achieves higher performance
especially for the mean L, error and the percentage of predictions with Lo error
< 1.0m/s. Besides, our SMVF shows obvious superiority for Background and the
class with fewer training samples (e.g. Cyclist), demonstrating its generalization
ability for various classes. We also re-implement the BEV-based MotionNet [25]
based on its official code and assign the predicted BEV grid velocities to the
corresponding LiDAR points. The scope and partition of the 3D space are the
same as our SMVF, while it divides 20 bins along the z-axis. Our SMVF outper-
forms the MotionNet on most metrics and inference speed for the same reason
in Section 4.3. Moreover, we integrate the proposed SICP into the MotionNet
and SMVF, respectively, and it improves the performance across all categories,
especially Cyclist that has fewer training samples.

Ablation Studies. The ablative analysis of the multi-view framework on the
Waymo Open Dataset is shown in Table 4. All methods here do not adopt the

SMVF 13

Table 3. Scene flow performance comparison on the validation split of the Waymo

Open Dataset. k denotes the number of history LiDAR scans.

*

means the re-

implementation based on its official code. A: All. M: Moving. S: Stationary.

Method k|SICP Metric A VB;L;CIB 3 A Pedel\sltrzan 3 A Cylillzst 3 Background|Runtime
mean (m/s) || 1.90 7.25 0.04 | 0.92 1.34 0.09 | 349 394 0.09 0.00
FlowNet3D* [14]|1 <01m/st|674% 0.0% 90.9%|24.3% 0.0% 72.9%| 92% 0.0% 79.3%| 99.9% 172 ms
<1.0m/s1|75.9% 7.0% 99.9%|44.9% 17.3% 99.9%|12.6% 1.1% 99.9%| 99.9%
mean (m/s) || 0.18 054 0.05 | 025 032 0.10 | 0.51 0.57 0.10 0.07
FastFlow3D [10] |1 < 0.1 m/s 1 |70.0% 11.6% 90.2% |33.0% 14.0% 71.4% |13.4% 4.8% 78.0% 95.7% 32.5ms
<1.0m/s1|97.7% 92.8% 99.4%|96.7% 95.4% 99.4% |89.5% 88.2% 99.6% 96.7%
mean (m/s) || 0.17 051 0.05 | 0.23 0.29 0.11 | 0.38 0.42 0.10 0.028
SMVF [ours] 1 <01m/st|67.7% 10.6% 90.4% |[30.1% 13.3% 68.6% |14.6% 6.7% 75.1% 98.9% 30 ms
< 1.0m/s 1 (97.9% 92.9% 99.6% (98.2% 97.5% 99.6% | 95.6% 95.1% 99.7% 99.5%
mean (m/s) || 0.16 0.46 0.05 | 0.23 0.28 0.11 | 0.35 0.38 0.11 0.028
SMVF [ours] 1 v | <01m/st |67.8% 10.2% 89.8% |29.4% 11.7% 67.9% |15.3% 7.7% 73.2% 99.0% 30 ms
<1.0m/s 1 (97.9% 92.8% 99.7% | 98.1% 97.4% 99.5% |97.0% 96.8% 99.3% 99.5%
mean (m/s) || 0.20 0.64 0.04 | 0.20 025 0.10 | 0.35 0.38 0.09 0.05
MotionNet* [25] |4 <01m/s?1|68.8% 8.9% 89.7% |34.8% 17.6% 69.4% |15.6% 7.3% T77.2% 97.2% 79.1ms
<1.0m/s1|97.5% 90.5% 99.8%]|98.8% 98.3% 99.8%|96.4% 95.9% 99.9%| 97.9%
mean (m/s) || 0.19 0.61 0.04 | 020 0.24 0.10 | 0.31 0.34 0.09 0.05
MotionNet* [25] [4| v | <0.1m/st [69.0% 9.0% 89.9%|34.4% 16.7% 69.7% |16.5% 82% 78.0% 96.9% 79.1ms
<1.0m/s1]97.3% 90.1% 99.8%]|98.8% 98.3% 99.8%|97.8% 97.5% 99.9%| 97.6%
mean (m/s) || 0.14 0.41 0.04 | 0.19 0.24 0.10 | 0.29 0.31 0.09 0.027
SMVF [ours] 4 v | <01m/s?1 (69.6% 12.1% 89.6% |35.5% 18.2% 70.0%|19.1% 11.2% 78.2%| 99.2% |38.4ms
< 1.0m/s 1 |98.5% 94.7% 99.8%(98.9% 98.4% 99.7% |97.9% 97.6% 99.8% 99.6%
Table 4. Multi-view framework analysis on the validation split of the Waymo Open
Dataset with £ = 1. A: All. M: Moving. S: Stationary.
‘BEV‘ RV ‘ Metric ‘ A Vﬁﬁ;dg S A Pedelv\s:ltrm'n, S A (/yﬁzst S ‘Backgm’u,nd Runtime
mean (m/s) L[0.18 0.53 0.05 | 0.24 0.30 0.12 0.40 0.44 0.10 0.04
a) |multi| — <01lm/st |67.6% 9.7% 87.9% |30.5% 12.3% 66.9% |14.7% 6.7% 75.1% 97.5% 17.0ms
<1.0m/s?t | 97.7% 92.2% 99.7%|98.2% 97.3% 99.6% | 94.6% 94.0% 99.6% 98.3%
mean (m/s) [| 0.70 2.48 0.08 0.58 0.77 0.19 1.45 1.62 0.18 0.06
b)| — |multi| <0.1m/s?t | 64.8% 2.5% 86.6% |22.6% 3.48% 60.7% |8.29% 1.19% 62.2% 97.9% 16.5 ms
<1.0m/st |86.9% 52.3% 99.0% | 77.6% 67.7% 97.3% | 52.6% 46.6% 98.3% 98.9%
mean (m/s) || 0.17 0.51 0.05 0.23 0.29 0.11 0.38 0.42 0.10 0.028
¢) | multi|single| <0.1 m/s?1 | 67.7% 10.6% 90.4%| 30.1% 13.3% 68.6% | 14.6% 6.7% 75.1% 98.9% 30 ms
<1.0m/s?t [97.9% 92.9% 99.6% |98.2% 97.5% 99.6% |95.6% 95.1% 99.7% 99.5%
mean (m/s) || 0.17 0.52 0.05 0.24 0.30 0.12 0.39 0.42 0.11 0.028
d) | multi | multi | <0.1m/s?t [67.8% 9.81% 88.1% | 29.9% 12.0% 65.6% |15.1% 7.24% T74.4% 99.0% 34.8ms
<1.0m/s1 |97.9% 92.8% 99.7%|98.2% 97.5% 99.6% | 94.8% 94.3% 99.1% 99.5%

proposed SICP. Compared with the BEV-only model, the performance of the
RV-only model drops drastically on the moving points (a,b). Moreover, when
the multi-view fusion framework is adopted, the performance drops, if the RV
branch uses multiple LIDAR scans instead of a single scan (c,d). These obser-
vations are similar to those of the SemanticKITTI in Table 2. It proves that
the distorted object trajectories in the RV space are not helpful for extracting
motion information, while a single LiDAR scan in the RV space is enough to
compensate for the spatial information loss in the BEV space. More ablation
studies can be found in the supplementary material.

Generalization of Scene Flow. As illustrated in FastFlow3D [10], the point-
level ground-truth velocities are obtained by the tracked 3D bounding boxes.

14 G. Zhang et al.

Table 5. Generalization of scene flow on the validation split of the Waymo Open
Dataset with k£ = 1.

Cyclist Pedestrain
Method SICP mean error (m/s)| | mean error (m/s)]
A M S A M S
supervised | 0.51 0.57 0.10 | 0.25 0.32 0.10
FastFlow3D [10] stationary | 1.13 1.24 0.06 | 0.90 1.30 0.10
ignored | 0.83 0.93 0.06 | 0.88 1.25 0.10
supervised | 0.38 0.42 0.10 [0.23 0.29 0.11
SMVF stationary | 0.49 0.54 0.10 | 0.79 1.15 0.09
ignored | 0.47 0.53 0.10 | 0.57 0.80 0.09
supervised | 0.35 0.38 0.11 | 0.23 0.28 0.11
SMVF v stationary | 0.35 0.37 0.11 | 0.70 1.01 0.09
ignored |0.34 0.37 0.11 | 0.36 0.48 0.10

However, some objects (e.g. dog, toy car) do not have any annotated 3D bound-
ing boxes. For a reliable autonomous driving system, the ability to predict ac-
curate motion velocity should generalize well to these objects, even though they
are treated to be “stationary” or “ignored” during training. To quantitatively
evaluate the generalization ability, we selectively ablate the categories for pedes-
trian and cyclist during training in two ways: 1) “stationary” treats the ablated
category to be stationary; 2) “ignored” treats the ablated category to be ignored.
On the Waymo Open Dataset, the number of cyclist samples is much fewer than
that of pedestrian samples. Generally, the objects (e.g. dog, toy car) that have
no annotated 3D bounding boxes have a limited number of samples, similar to
or even fewer than that of the cyclist. As shown in Table 5, we can discover that:
1) the performance gets better when the ablated category is labeled as “ignored”
rather than “stationary”; 2) our SMVF shows a much stronger generalization
ability than the FastFlow3D; 3) the proposed SICP significantly improves the
performance for the two categories. It indicates that the SICP can be used to
generate reliable training samples for these unlabeled objects and promotes the
model to be comparable with that in the supervised manner.

5 Conclusion

A novel SMVF is proposed for fast LIDAR point motion estimation, where fea-
tures from the 3D points, the BEV, and the RV are assigned complementary roles
and fused for accurate prediction. The SICP is designed to augment the training
LiDAR sequences and improve the generalization ability for the category with
fewer training samples. Experimental results on the SemanticKITTI dataset and
the Waymo Open Dataset demonstrate the effectiveness and superiority of the
proposed components. It can be observed that the information loss during the
2D projection can be remedied by using the multi-view fusion framework and
the BEV branch is more suitable for extracting motion features, while the RV
can be used to provide the complementary spatial information.

SMVF 15

References

10.

11.

12.

13.

14.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall,
J.: Semantickitti: A dataset for semantic scene understanding of lidar sequences.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp- 9297-9307 (2019)

Berman, M., Triki, A.R., Blaschko, M.B.: The lovédsz-softmax loss: A tractable
surrogate for the optimization of the intersection-over-union measure in neural
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4413-4421 (2018)

Chen, X., Li, S., Mersch, B., Wiesmann, L., Gall, J., Behley, J., Stachniss, C.:
Moving object segmentation in 3d lidar data: A learning-based approach exploiting
sequential data. IEEE Robotics and Automation Letters 6(4), 6529-6536 (2021)
Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolu-
tional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 3075-3084 (2019)

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van
Der Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convo-
lutional networks. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 27582766 (2015)

Duerr, F., Pfaller, M., Weigel, H., Beyerer, J.: Lidar-based recurrent 3d semantic
segmentation with temporal memory alignment. In: 2020 International Conference
on 3D Vision (3DV). pp. 781-790. IEEE (2020)

Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. International Journal of Computer Vision
88(2), 303-338 (2010)

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE conference on computer vision and pattern
recognition. pp. 3354-3361. IEEE (2012)

Gu, X., Wang, Y., Wu, C., Lee, Y.J., Wang, P.: Hplflownet: Hierarchical per-
mutohedral lattice flownet for scene flow estimation on large-scale point clouds.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 3254-3263 (2019)

Jund, P., Sweeney, C., Abdo, N., Chen, Z., Shlens, J.: Scalable scene flow from
point clouds in the real world. IEEE Robotics and Automation Letters (2021)
Laddha, A., Gautam, S., Meyer, G.P., Vallespi-Gonzalez, C., Wellington, C.K.:
Rv-fusenet: Range view based fusion of time-series lidar data for joint 3d object
detection and motion forecasting. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 7060-7066. IEEE (2020)

Laddha, A., Gautam, S., Palombo, S., Pandey, S., Vallespi-Gonzalez, C.: Mv-
fusenet: Improving end-to-end object detection and motion forecasting through
multi-view fusion of lidar data. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2865-2874 (2021)

Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast
encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 12697-12705 (2019)
Liu, X., Qi, C.R., Guibas, L.J.: Flownet3d: Learning scene flow in 3d point clouds.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 529-537 (2019)

16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

G. Zhang et al.

Liu, X., Yan, M., Bohg, J.: Meteornet: Deep learning on dynamic 3d point cloud se-
quences. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 9246-9255 (2019)

Loshchilov, 1., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 4161-4170 (2017)

Shi, H., Lin, G., Wang, H., Hung, T.Y., Wang, Z.: Spsequencenet: Semantic seg-
mentation network on 4d point clouds. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 4574-4583 (2020)

Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 8934-8943 (2018)

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., et al.: Scalability in perception for autonomous
driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2446-2454 (2020)

Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 6411-6420
(2019)

Vanholder, H.: Efficient inference with tensorrt. In: GPU Technology Conference.
vol. 1, p. 2 (2016)

Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric con-
tinuous convolutional neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 2589-2597 (2018)

Wang, Z., Li, S., Howard-Jenkins, H., Prisacariu, V., Chen, M.: Flownet3d++:
Geometric losses for deep scene flow estimation. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. pp. 91-98 (2020)

Wu, P., Chen, S., Metaxas, D.N.: Motionnet: Joint perception and motion pre-
diction for autonomous driving based on bird’s eye view maps. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
11385-11395 (2020)

Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection.
Sensors 18(10), 3337 (2018)

