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Abstract. For autonomous driving systems, the storage cost and trans-
mission speed of the large-scale point clouds become an important bot-
tleneck because of their large volume. In this paper, we propose a range
image-based three-stage framework to compress the scanning LiDAR’s
point clouds using the entropy model. In our three-stage framework, we
refine the coarser range image by converting the regression problem into
the limited classification problem to improve the performance of generat-
ing accurate point clouds. And in the feature extraction part, we propose
a novel attention Conv layer to fuse the voxel-based 3D features in the 2D
range image. Compared with the Octree-based compression methods, the
range image compression with the entropy model performs better in the
autonomous driving scene. Experiments on LiDARs with different lines
and in different scenarios show that our proposed compression scheme
outperforms the state-of-the-art approaches in reconstruction quality and
downstream tasks by a wide margin.

Keywords: Point Cloud Compression, Entropy Encoding, Autonomous
Driving

1 Introduction

Point clouds from scanning LiDARs are to be used in the downstream tasks in the
autonomous systems, such as localization[26], detection[42], global mapping[46],
etc. In autonomous vehicles, point clouds are required to be transmitted to the
server for data recording or backup, or be stored for mapping. The large amount
of precision point cloud data from high-frequency scanning LiDAR may cause
storage and transmission problems, especially when the network is unstable.
Thus, point cloud compression has attracted many people’s research attention
[3,24,13].

Large-scale outdoor LiDAR point clouds have the characteristics of large-
area coverage, unstructured organization, and huge volume in Cartesian space.
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Fig. 1. The comparison of our reconstructed point cloud in red points with the baseline
reconstructed point cloud in cyan points. On the left are boxes and to the right is a
wall.

Thus, the compression performance is not satisfactory when using the ordinary
methods of compressing files to compress the XYZ data. There are two com-
mon representations, octree and range image, to make the point cloud more
structured. The octree, which divides the three-dimensional space into eight
parts recursively, has been widely used to progressively compress point cloud
data[27,20,15]. However, octree focuses on structural characteristics and does
not eliminate redundancy. It is also inefficient to use the octree method for
encoding when the high-precision requirement must be satisfied in the LiDAR
point cloud data for autonomous mobile robots. For the range image, the point
cloud can be projected into a 2D arrangement, and the shape of the 2D range
image is fixed when the point cloud is collected from the scanning LiDAR.

Researchers have focused on using existing image and video encoders to com-
press the range image[16,36,39,25]. However, these methods are limited in several
ways. Traditional image or video encoding algorithms, designed for encoding in-
teger pixel values, will cause significant distortion when encoding floating-point
LiDAR data. Additionally, the range image is characterized by sharp edges and
homogeneous regions with nearly constant values because of the object geometry.
Encoding the range image with traditional techniques, for instance, the block-
based discrete cosine transform (DCT)[48] followed by coarse quantization, will
result in significant encoding errors at the sharp edges. Moreover, image-based
compression methods do not make use of the 3D characteristics of point clouds,
while it is inefficient to use existing image-based prediction techniques to remove
the redundancy in LiDAR data. Another problem of the traditional compression
methods based on the quantization of point clouds is that the reconstructed
point cloud will show a wave-like shape from the bird’s-eye-view. For example,
in Fig. 1, the cyan points are the reconstructed point cloud from the baseline
range image-based method[43] using a quantizer. The wavy appearance is ex-
tremely obvious in a plane. To solve this issue, we are motivated to refine the
quantized point cloud to improve the reconstruction quality.

Wang et al. [43] introduced several data encoding algorithms, such as BZip2,
LZ4, arithmetic coding, etc. Among all these algorithms, the arithmetic coding is
the most popular choice in learning-based compression methods [40,21,24,13], be-
cause its differentiable version is open-source and implemented with pytorch[19].
Besides, the probability model in the algorithm can be easily obtained by a neu-
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ral network. Tree-based methods [24,13] used voxelized point clouds by octree
and predicted the occupancy code of each voxel in the tree. Inspired by that, we
propose a three-stage coarse-to-fine framework. By transferring the regression
problem to the classification problem, we can use a neural network to predict
the probability of the quantized occupancy code for compression.

In this paper, we propose a three-stage framework to compress single-frame
large-scale dense point clouds from a mechanical-scanning LiDAR. The first stage
projects the point cloud into the 2D range image, and then segments the whole
point cloud into ground points and non-ground points. The points are quantized
to be the coarse points with a large-error quantization module. The second stage
is to refine the coarse points to finer points, by enhancing the accuracy of the
non-ground points as a classification problem, and then apply arithmetic coding
to encode the probability of each point in the entropy model. The last stage
refines the finer point cloud to the accurate points, and makes the reconstructed
point cloud more similar to the original point cloud.

To the best of our knowledge, this is the first method that explores the idea
of using an end-to-end range image-based entropy network for intra-frame com-
pression. With the 3D feature extracted from sparse voxels and the 2D attention-
based fusion module, the reconstructed point cloud can obtain much higher qual-
ity within less volume compared with the state-of-the-art methods. The major
contributions of the paper are summarized as follows.

– We propose a novel three-stage entropy model-based compression frame-
work, to apply the differentiable arithmetic coding in the range image-based
method, by transferring the regression problem to the classification problem.

– We introduce a geometry-aware attention layer to replace the 2D convolu-
tional layer in the 3D-2D feature fusion part, to improve the performance of
high-resolution processing in the range image.

– The experiment results show that our compression framework yields better
performance than the state-of-the-art methods in terms of compression ratio,
reconstruction quality, and the performance of downstream tasks.

2 RELATED WORKS

2.1 Point Cloud Compression Frameworks

According to the representation types of point cloud, compression algorithms
can be roughly divided into tree-based and range image-based compression.

Tree-based compression: For tree-based compression, Wang et al. [41]
introduced the voxel representation for sparse point cloud to utilize the geom-
etry information. From the highest root depth level to the lowest leaf depth
level, the size of the voxel gradually decreases. The accuracy of the voxel-based
point cloud is determined by the size of the leaf voxel[24]. For the traditional
algorithm, the MPEG group developed a geometry-based point cloud compres-
sion, G-PCC[28,11,10], as a standard compression library. For the learning-
based method, VoxelContext-Net[24] and OctSqueeze [13] are two state-of-the-
art octree-based methods, but without open-source code. The proposed networks
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Fig. 2. The overall architecture of our proposed three-stage compression framework.
Stage 0 consists of the ground extraction and quantization pre-processing, the stage 1 is
an entropy model RICNetstage1 for occupancy probability prediction, and the stage 2 is
a refinement module RICNetstage2 which is used during decompression. The encoding
and decoding of the bitstream are totally lossless.

predict the occupancy probability of each voxel in the octree, and apply arith-
metic coding to encode the probability with the ground truth symbol.

Range image-based compression: To transform the 3D point cloud into
2D image, Houshiar et al. [12] project 3D points onto three panorama images,
and Ahn et al. [1] projected the point cloud into a range image with the geometry
information. Then they compressed the 2D images using an image compression
method[39]. Clustering is another common method used in range image compres-
sion. Sun et al. [32,31] first clustered the point cloud into several segments, and
then used traditional compression algorithms, such as BZiP2[29], to encode the
residual of the ground truth points with the clustering centers. Wang et al.[43]
proposed an open-source baseline method for range image-based compression
framework, which can choose uniform or non-uniform compression after obtain-
ing the clustering result. However, all of these range image-based compression
methods are based on hand-crafted techniques and thus cannot be optimized in
an end-to-end network with a large amount of unsupervised point cloud data.
Thus, in this paper, we propose an unsupervised end-to-end framework, to en-
code and refine the point cloud with the entropy model.

2.2 3D and 2D Feature Extractors

PointNet[22] and PointNet++[23] are two widely used point-wise feature ex-
traction backbones for 3D point clouds. PointNet concatenates all points and
learns global features, and PointNet++ can extract the local features by group-
ing the neighbors of each point. The 3D sparse convolution (SPConv)[9] and the
MinkowskiEngine[4] are the two latest 3D feature extraction backbones with 3D
convolution, pooling, unpooling, and broadcasting operations for sparse voxel
tensors. In this work, we choose MinkowskiEngine as our 3D backbones after
comparing the performance of different network backbones.
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SqueezeSeg[45] and PointSeg [44] use the FireConv and FireDeconv modules
to extract the 2D features from a range image and output pixel-wise segmenta-
tion results for autonomous driving. Attention networks [37] and graph attention
networks [38] are used widely in context-related tasks. In our 2D feature extrac-
tion module, a geometry-aware scan-attentive convolutional block is used to fuse
the 3D features to smooth the final results.

3 OUR APPROACH

3.1 System Overview

In this paper, we propose a three-stage entropy model-based point cloud com-
pression framework, which is shown in Fig. 2. The first stage is for basic coarse
point cloud creation and storage, the second and third stages use the neural
network iteratively, RICNetstage1 and RICNetstage2, for point cloud refinement.
The output of RICNetstage1 helps to generate the compressed bitstream from
arithmetic coding. There are two quantization modules, Q1 and Q2, which have
different quantization accuracies, q1 and q2 respectively, with q1 larger than q2.
The non-ground points of the stage 0 output have accuracy q1, and the whole
point cloud of the stage 1 output has an accuracy of q2.

The input of our framework is the range image collected from scanning Li-
DAR, and each point in the point cloud can be converted from the row and
column indexes with the depth of each pixel. If we collect the disordered point
cloud at the beginning, we can project the point cloud into the range image, and
then use the range image to create an ordered point cloud.

In the stage 0, the segmentation map M , ground points Pg and non-ground
points Png are extracted from the original point cloud by the traditional RANSAC
algorithm[43]. Note that a small difference in the segmentation module will only
have a very limited impact on the compression rate, which can be ignored. The
ground points are quantized with Q2, [Pg]

Q2 = ⌊Pg/q2⌉ ∗ q2, where ⌊⌉ repre-
sents a rounding operation, [P ]Q means the original complete point cloud P is
quantized with the quantization module Q, and the non-ground points Png are
quantized with Q1 and Q2, and named [Png]

Q1 and [Png]
Q2 respectively. The

ground points are easier for compression compared with the non-ground points
because they are denser and well-organized. Thus, in the stage 1, RICNetstage1
only predicts the probability distribution of the non-ground points [Png]

Q2 . The
differentiable arithmetic coding[19] takes as input the probability with the occu-
pancy symbol, and outputs the encoded bitstream. In the decompression process,
the stage 1 will recover the point cloud with accuracy q2 losslessly. Stage 2 is
trained with the ground truth point cloud and only works in the decompression
process. In the stage 2, the point cloud with quantized module Q2, [P ]Q2 , is fed
into RICNetstage2 to get the final accurate reconstructed point cloud.

During compression, the M , [Pg]
Q2 , and [Png]

Q1 are encoded by a basic
compressor, and the distribution occupancy symbols are encoded by the entropy
coding. All of these coding and decoding processes are losslessly. Based on the
comparative results given in [43], we choose BZip2 as our basic compressor.
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Fig. 3. Our proposed SAC block. The shadow W block is the added weights for at-
tention calculation. The K-scan group block groups the neighbors of each point in the
same LiDAR scan.

3.2 Network Architecture

RICNetstage1 and RICNetstage2 are two similar 3D-2D feature fusion networks
with the same network architecture, for point cloud refinement. These two net-
works take as input the coarse points and output the probability of the occupancy
code of the refined points. In the stage 1, the output is fed into the arithmetic
coding for entropy encoding; in the stage 2, the output can output the final accu-
rate reconstructed point cloud as a refinement module. The 3D feature extractor
and 2D attention block in RICNetstage1 and RICNetstage2 are the same, but the
weights are not shared.

3D Feature Extractor: We implement the Minkowski convolutional UNet
backbone[4] as our 3D feature extraction module. It is an open-source auto-
differentiation library for high-dimensional sparse tensors. The encoder-decoder
3D UNet architecture is similar to the well-known 2D UNet for point-wise pre-
diction, including four convolutional layers and four transposed convolutional
layers. The encoder can reduce the spatial dimensions and increase the feature
channels, and the skip connection can directly fast-forward the high-resolution
features from the encoder to the decoder. The input features are the concate-
nated point depths with the Cartesian XYZ coordinates, and the output features
are the point-wise features.

2D Scan-Attentive Feature Extractor: Owing to the features of different
points in the same voxel obtained from the 3D extractor being the same, the
3D features can be seen as the global features. Inspired by GCN[38] and scan-
based geometry features in range images used in SLAM [47], we devise the
Scan-Attentive Conv (SAC) block to integrate the geometry information of the
neighbors of each pixel. Our proposed 2D feature extraction module can fuse the
3D features in the 2D range image, which consists of two SAC blocks after the
3D feature extractor.
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Probability model

q2

q1

Scanning LiDAR

r

Q1 result

Q2 result

Fig. 4. Toy example of the two quantizers’ combination relationship. The red point is
the target point, with depth r. The quantized points after Q1 and Q2 are labeled. The
residual is calculated by quantized depth −r. The probability distribution predicted
from the RICNetstage1 is fed into the arithmetic encoder to encode the ground truth
occupancy label ([0, 1, 0, 0] in this example).

The details of the SAC block are shown in Fig. 3. After obtaining the input
features, let Fin be the input of a SAC block, Fin ∈ RH×W×C , where H and W
are the height and width of the range image respectively, and C is the number of
channels. After the quantization, the points in single scan have obvious geometric
characteristics. Thus, for each pixel pi, we only group 2k neighbors (adjacent
pixels) in the scan s, {qj , |i−j| ≤ k}, where {s, i}, {s, j} are the pixel coordinates
and k is the kernel size (k = 3 in experiments). Because range images have sharp
edges, the values of adjacent pixels may vary greatly. We would like to pay
more attention to the features of the adjacent pixels that are not too far away,
and ignore the points in different objects. We first obtain the relative geometry
features ∆G = Gp − Gq and relative input features ∆F = Convinit(Fp) −
Convinit(Fq), where ∆G = {(r, x, y, z)} ∈ R4, r is the depth of the points,
Convinit is an initial convolutional layer with kernel size 3 and out channels C ′,
and ∆F ∈ RC′

. To calculate the important coefficients between the grouped
pixels and the object point, a weight-shared linear transformation with weight
matrix W ∈ R4×C′

is applied to every pixel. The attention coefficient between
pixel pi and its neighbors can be calculated:

α = softmax(LeakyReLU(W∆G)). (1)

Then, the relative features of the neighbors ∆F are multiplied with the at-
tention, and the sum of the neighbors’ geometry-attentive features is the output
of our SAC block.

Occupancy Head and Refinement Head:We propose an occupancy head
for RICNetstage1 and a refinement head for RICNetstage2. The output of the
occupancy head is the probability of each occupancy code for entropy encoding,
and the output of the refinement head is the residual of the Q2 quantized point
cloud for accurate point cloud reconstruction.

Fig. 4 shows a toy example of a point in red and its ground truth occupancy
label in the stage 0 and stage 1. Q1 result corresponds to the coarse point,
and Q2 result corresponds to the finer point, in Fig. 2. For point p{i,j} in the
range image with depth r, the residual between the quantized point from the
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two quantizers and the ground truth points:

resQ1

{i,j} = [p]Q1 − r = ⌊ r

q1
⌉ ∗ q1 − r ∈ (−q1

2
,
−q1
2

], (2)

resQ2

{i,j} = [p]Q2 − r = ⌊ r

q2
⌉ ∗ q2 − r ∈ (−q2

2
,
−q2
2

], (3)

and the length of the occupancy label in the stage 1 for arithmetic coding can
be calculated as

len(O) = (⌈q1
2
/q2⌉) ∗ 2 + 1 ≥ ⌈resQ1

{i,j}/res
Q2

{i,j}⌉. (4)

Eq. 4 helps to ensure the occupancy label contains all possible conditions when
q1 cannot be divided by q2. Thus, in the stage 1, the occupancy head outputs
the probability prediction

occpred = softmax(Conv(F )), (5)

where Conv is the 1D convolutional layer with out channels len(O).

In the stage 2, since the absolute ground truth residual of every point is less
than q2/2, the refinement head predicts a sigmoid residual with q2 gain:

respred = sigmoid(Conv(F )) ∗ q2 − q2/2, (6)

where Conv has one out channel as the limited residual. In this way, we can
ensure the maximum error of the reconstructed point cloud does not exceed
q2/2.

3.3 Network Learning

The training of our network is unsupervised, with the real-world point cloud
only. RICNetstage1 is an entropy model with the classification output. The loss
function in this stage consists of three parts: an l2-regression loss for the residual
between the predicted range image and the original range image, a cross entropy
loss for classification in the occupancy label, and an entropy loss for end-to-end
encoding the bitrate from the differentiable arithmetic coding algorithm. And in
RICNetstage2, only the mean square error loss of the residual is counted. Thus,
the total loss is

L = LS1 + LS2 = LS1

MSE + LCE + LBPP + LS2

MSE .

More specifically, to calculate the predicted point cloud in the stage 1, the classi-
fication probability can be converted to the regression residual by accumulating
each occupancy location with its probability.
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3.4 Compression and Decompression

During compression and decompression, our method can keep the number of
points constant, and the only lossy part in our framework is the second quan-
tizer Q2. The first quantizer is restricted by the ground truth occupancy label,
and the maximum error of each pixel in the range image will be less than q2/2.
All encoding and decoding processes can be fully lossless in compression and de-
compression. RICNetstage1 takes as input the probability model with the ground
truth label of the occupancy label and outputs the compressed bitstream during
data encoding. It decodes the ground truth occupancy losslessly using the pre-
dicted probability model and the encoded bitstream. Meanwhile, RICNetstage2
only works during the decompression as a refinement module.

4 EXPERIMENTS

4.1 Datasets

We evaluate our proposed compression framework on three real-world point cloud
datasets, KITTI[7], Oxford[17], and Campus16[43]. The KITTI dataset is col-
lected from a Velodyne-HDL64 LiDAR with 64 scans. The city scene in the
KITTI raw-data dataset is evaluated in reconstruction quality experiments, and
the KITTI detection dataset is evaluated in the detection downstream task ex-
periments. The Oxford dataset is collected from the Velodyne-HDL32 LiDAR
with 32 LiDAR scans. The point clouds collected from the left-hand LiDAR are
used for training and testing. Meanwhile, the Campus16 dataset is shared by
Wang et al.[43], who collected from a Velodyne-VLP16 LiDAR with 16 scans.
All three datasets are split into training (2,000 frames), validation (1,000 frames)
and testing (1000 frames) sets. The shapes of the range images on three datasets
are [64, 2000], [32, 2250], and [16, 1800], respectively. All of the experimental re-
sults are evaluated on the testing dataset.

4.2 Evaluation Metrics

To evaluate the degree of compression, we apply bit-per-point (BPP) and com-
pression ratio (CR) as two evaluation metrics. This is because we only consider
the geometric compression of the point cloud, and the original points have float32
x, y, and z, CR equals (32 ∗ 3)/BPP.

To evaluate the reconstruction quality, we calculate the Chamfer distance
(CD)[14,6], F1 score, point-to-point PSNR, and point-to-plane peak signal-to-
noise ratio (PSNR)[34,18], where the voxel size of the F1 score is set as 0.02m,
and the peak constant values of the two PSNR metrics are set as 59.70m[2]. The
definition and the other settings are the same as the corresponding cited papers.
The chamfer distance and the PSNR are all symmetric for the original point
cloud and the reconstructed point cloud. We then choose the average of these
two bi-directional results as the final results.
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3D 2D Attention Bpp ↓ CD ↓ F1 score ↑ PSNR1 ↑ PSNR2 ↑

% SqueezeSeg % 2.65 0.0367 0.285 67.48 72.53

PointNet++ % % 2.46 0.0283 0.421 68.41 75.19

Minkowski % % 2.38 0.0265 0.467 69.74 75.36

Minkowski 2D Conv % 2.26 0.027 0.466 69.54 75.28
Minkowski 2D Attentive Conv (SAC) 2.25 0.0255 0.508 69.86 75.39

Table 1. Compression ratio and reconstruction quality vs. different network architec-
tures. The bold font highlights the best results. PSNR1 is the point-to-point PSNR,
and PSNR2 is the point-to-plane PSNR.

BPP 0.2 0.3 0.4 0.5 0.6

w/o Stage 0 & 1 2.27 2.27 2.27 2.27 2.27
w/o Stage 0 2.04 1.97 2.1 2.14 2.18

Ours 2.04 1.92 2.08 2.09 2.13

Table 2. BPP ↓ results of different architectures and quantizer combination ratios.
The bold font highlights the best results.

To utilize our compression and decompression framework in an autonomous
driving system, the performance degradation after using the reconstructed point
cloud is also important. In this paper, we evaluate the bounding box average
precision (AP) [5,30] for 3D object detection, and the absolute trajectory error
(ATE) and the relative pose error (RPE) [49] for simultaneous localization and
mapping (SLAM) using the reconstructed point clouds.

4.3 Ablation Study

In this section, we perform ablation studies on compression frameworks and net-
work architectures. The reconstruction quality and compression ratio are evalu-
ated over different 3D and 2D network modules, and only the compression ratio
is evaluated over different quantizer combinations.

Three-stage Architecture. In this section, we evaluate the BPP when
the first quantizer uses different quantization accuracy q1, and proves the sig-
nificance of stage 0 and stage 1 in our proposed three-stage framework. In the
experiments, we first guarantee that the accuracy of the second quantizer is al-
ways 0.1, and change the accuracy of the first quantizer to 0.2, 0.3, 0.4, 0.5, and
0.6. When the first quantizer changes from finer to coarser, the bitstream length
of the non-ground points encoded by the basic compressor changes from long
to short, but the bitstream length of the arithmetic coding will grow because
the probability results become worse simultaneously. The BPP results in Tab.
2 show that the compression performance of our stage 1 entropy model is best
when q1/q2 = 3. When we remove stage 0 and stage 1 from our three-stage
architecture, RICNetstage1 is replaced with the basic compressor BZiP2, and the
point cloud will be quantized with q2 = 0.1. In addition, when we remove stage
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0 only, the input of RICNetstage1 changes to the whole point cloud rather than
the non-ground points. The experimental results in Tab. 2 show that our hier-
archical range image entropy model is better than the traditional encoding, and
only using the non-ground points can remove the interference of ground points,
especially in the low-precision quantization situation.

Network Architectures. In this section, we test and compare different
well-known 3D and 2D feature extractors for point-wise tasks from the point
cloud or pixel-wise tasks from the range image:

– SqueezeSeg [45,44]: We implement the SqueezeSeg twice to replace RIC-
Net, and the heads of the two networks are changed to be the same as the
occupancy head and refinement head in RICNetstage1 and RICNetstage2, re-
spectively.

– PointNet++ [22,23]: Consists of four down-sampling layers (set abstraction
modules), and four up-sampling layers (feature propogation modules) with
the skip connections.

– Our Minkowski UNet architecture [4]: The Minkowski UNet14 is imple-
mented as the 3D feature extractor. The network architecture performs
quickly and well on the point-wise segmentation tasks.

– 2D Conv: We replace the two SAC blocks in the 2D module with two 2D
Conv layers with kernel size 3.

Tab. 1 shows the comparative results of different network architectures. The
bottom row is the setting in our proposed RICNet. From the first three rows, we
can find that the Minkowski encoder-decoder architecture performs best when
the network only has a single 2D or 3D feature extractor. The fourth row shows
that using the single 2D feature fusion with 2D convolutional layers, the network
performs better, with a 0.12 BPP improvement in the stage 1. However, the
performance of stage 2 remains unchanged. And with our proposed 2D attentive
convolutional layer, the BPP metric shows a further 0.01 improvement, and
our refinement model in the stage 2 can predict the point cloud with better
reconstruction quality.

4.4 Comparative Results

In this section, we compare our RICNet with the baseline point cloud compres-
sion frameworks: Google Draco[8], G-PCC[28,11], JPEG Range[39,25] (using
FPEG2000 for range image compression), and R-PCC [43]. In R-PCC imple-
mentation, we only evaluate and compare the uniform compression framework
for equal comparison.

Reconstruction Quality in Different Datasets. Fig. 5 shows the quanti-
tative results of our proposed method with the baseline methods on the KITTI,
Oxford, and Campus datasets. The results show that our RICNet shows a large
improvement in the low-BPP compression, which means it can generate a better
refined point cloud from the low-precision point cloud from stage 1. At the same
time, the bitrate and reconstruction quality of the range image-based meth-
ods are better than the tree-based methods, which means that the range image
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Fig. 5. Quantitative results on KITTI city dataset. Bit-per-point vs. symmetric Cham-
fer distance (↓), F1 score (with τgeo = 0.02m) (↑), and point-to-plane PSNR (with
r = 59.70) (↑) are shown from top to bottom. The left column is the campus point
clouds collected from a Velodyne-VLP16, the middle column is the Oxford dataset col-
lected from a Velodyne-HDL32, and the right column is the KITTI dataset collected
from a Velodyne-HDL64.

presentation is efficient enough for compression. In high-accuracy compression
situations, our method becomes closer to R-PCC. This is because the error from
LiDAR collection and the uneven surfaces of the objects will infer the geometric
feature learning when the quantization accuracy of the first quantizer is high.
It is also hard to use the irregular learned features to recover the original point
cloud.

Downstream Tasks. In this section, we evaluate the performance of the
downstream tasks (3D object detection and SLAM) using the reconstructed
point cloud. In Fig. 6, the first row shows the evaluation results of the 3D ob-
ject detection, and the second row shows the comparative SLAM results with
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Fig. 6. Quantitative results of the 3D object detection (first row) and SLAM (second
row) using reconstructed point cloud. The 3D object detection task is using pre-trained
PointPillar from OpenPCDet[33] on the KITTI detection dataset. Car, pedestrian, and
cyclist bounding box AP are evaluated from left to right in the first row. The SLAM
is using A-LOAM[35] on the KITTI odometry dataset (seq 00).

the baseline methods. Similar to the experimental results of reconstruction qual-
ity, the performance in the low-BPP compression situation shows obvious im-
provements in the downstream tasks too. The lossless threshold of our proposed
method is lower than that of the other baseline methods. Since our learning-
based method can learn more features from the structured point regions and
reconstruct them better, our method has advantages in the downstream tasks
for autonomous driving system implementation.

4.5 Qualitative Results

From the quantitative results, we illustrate the advantages of our method in
terms of reconstruction quality and downstream tasks. And in Fig. 7, we show
the comparative bird’s-eye-view image of the predicted point cloud with the
ground-truth point cloud and the baseline quantized point cloud in the stage
1. It shows the outstanding prediction and refinement ability of our proposed
network, whether using a high-precision quantized point cloud or a low-precision
point cloud. And it is also robust for point clouds of different densities, which
are collected from different LiDARs. In structured locations and environments
especially, such as walls, the predicted points are almost the same as the real
points.

5 Conclusion

Our proposed unsupervised end-to-end three-stage compression framework with
RICNet outperforms the state-of-the-art methods not only in terms of the recon-
struction quality but also in downstream tasks. The experimental results show



14 S. Wang and M. Liu.

Fig. 7. The qualitative results of our predicted point cloud with the baseline quantized
point cloud and ground truth point cloud. From top to bottom, the red points are the
predicted point clouds of RICNetstage1, RICNetstage1, RICNetstage2, and RICNetstage2,
respectively; the cyan points are the baseline quantized point cloud using the first
quantizer Q1, ground truth point cloud, the quantized point cloud using Q2, and ground
truth point cloud, respectively. The left column is the KITTI dataset with the two
quantizers q1 = 0.3m, q2 = 0.1m, while in the middle column q1 = 1.5m, q2 = 0.5m.
The right column is the Campus dataset with q1 = 0.3m, q2 = 0.1m.

that our compression framework can bring great improvement in low-precision
quantization situations, and the network can learn and reconstruct the struc-
tured point regions better. The drawback of our framework is that our method
can only compose point clouds collected from a scanning LiDAR. The bottleneck
of all range image-based point cloud compression frameworks is the error caused
by point cloud projection.
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