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Abstract. The current popular two-stream, two-stage tracking frame-
work extracts the template and the search region features separately
and then performs relation modeling, thus the extracted features lack
the awareness of the target and have limited target-background dis-
criminability. To tackle the above issue, we propose a novel one-stream
tracking (OSTrack) framework that unifies feature learning and relation
modeling by bridging the template-search image pairs with bidirectional
information flows. In this way, discriminative target-oriented features
can be dynamically extracted by mutual guidance. Since no extra heavy
relation modeling module is needed and the implementation is highly
parallelized, the proposed tracker runs at a fast speed. To further im-
prove the inference efficiency, an in-network candidate early elimination
module is proposed based on the strong similarity prior calculated in the
one-stream framework. As a unified framework, OSTrack achieves state-
of-the-art performance on multiple benchmarks, in particular, it shows
impressive results on the one-shot tracking benchmark GOT-10k, i.e.,
achieving 73.7% AO, improving the existing best result (SwinTrack) by
4.3%. Besides, our method maintains a good performance-speed trade-
off and shows faster convergence. The code and models are available at
https://github.com/botaoye/OSTrack.

1 Introduction

Visual object tracking (VOT) aims at localizing an arbitrary target in each video
frame, given only its initial appearance. The continuously changing and arbitrary
nature of the target poses a challenge to learn a target appearance model that
can effectively discriminate the specified target from the background. Current
mainstream trackers typically address this problem with a common two-stream
and two-stage pipeline, which means that the features of the template and the
search region are separately extracted (two-stream), and the whole process is
divided into two sequential steps: feature extraction and relation modeling (two-
stage). Such a natural pipeline employs the strategy of “divide-and-conquer”
and achieves remarkable success in terms of tracking performance.

https://github.com/botaoye/OSTrack
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Fig. 1: A comparison of AO and
speed of state-of-the-art trackers
on GOT-10k under one-shot set-
ting. Our OSTrack-384 sets a new
SOTA of 73.7% AO on GOT-
10k, showing impressive one-shot
tracking performance. OSTrack-
256 runs at 105.4 FPS while still
outperforming all previous track-
ers.
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However, the separation of feature extraction and relation modeling suffers
from the following limitations. Firstly, the feature extracted by the vanilla two-
stream two-stage framework is unaware of the target. In other words, the ex-
tracted feature for each image is determined after off-line training, since there is
no interaction between the template and the search region. This is against with
the continuously changing and arbitrary nature of the target, leading to limited
target-background discriminative power. On some occasions when the category of
the target object is not involved in the training dataset (i.e., one-shot tracking),
the above problems are particularly serious. Secondly, the two-stream, two-stage
framework is vulnerable to the performance-speed dilemma. According to the
computation burden of the feature fusion module, two different strategies are
commonly utilized. The first type, shown in Fig 2(a), simply adopts one sin-
gle operator like cross-correlation [1,23] or discriminative correlation filter [2,6],
which is efficient but less effective since the simple linear operation leads to dis-
criminative information loss [4]. The second type, shown in Fig 2(b), addresses
the information loss by complicated non-linear interaction (Transformer [38]),
but is less efficient due to a large number of parameters and the use of iterative
refinement (e.g ., for each search image, STARK-S50 [43] takes 7.5 ms for the
feature extraction and 14.1 ms for relation modeling on an RTX2080Ti GPU).

In this work, we set out to address the aforementioned problems via a uni-
fied one-stream one-stage tracking framework. The core insight of the one-stream
framework is to bridge a free information flow between the template and search
region at the early stage (i.e., the raw image pair), thus extracting target-
oriented features and avoiding the loss of discriminative information. Specifi-
cally, we concatenate the flattened template and search region and feed them
into staked self-attention layers [38] (widely used Vision Transformer (ViT) [10]
is chosen in our implementation), and the produced search region features can be
directly used for target classification and regression without further matching.
The staked self-attention operations enable iteratively feature matching between
the template and the search region, thus allowing mutual guidance for target-
oriented feature extraction. Therefore, both template and search region features
can be extracted dynamically with strong discriminative power. Additionally,
the proposed framework achieves a good balance between performance and speed
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because the concatenation of the template and the search region makes the one-
stream framework highly parallelizable and does not require additional heavy
relational modeling networks.

Moreover, the proposed one-stream framework provides a strong prior about
the similarity of the target and each part of the search region (i.e. candidates)
as shown in Fig. 4, which means that the model can identify background regions
even at the early stage. This phenomenon verifies the effectiveness of the one-
stream framework and motivates us to propose an in-network early candidate
elimination module for progressively identifying and discarding the candidates
belonging to the background in a timely manner. The proposed candidate elim-
ination module not only significantly boosts the inference speed, but also avoids
the negative impact of uninformative background regions on feature matching.

Despite its simple structure, the proposed trackers achieve impressive perfor-
mance and set a new state-of-the-art (SOTA) on multiple benchmarks. Moreover,
it maintains adorable inference efficiency and shows faster convergence compared
to SOTA Transformer based trackers. As shown in Fig. 1, our method achieves
a good balance between the accuracy and inference speed.

The main contributions of this work are three-fold: (1) We propose a simple,
neat, and effective one-stream, one-stage tracking framework by combining the
feature extraction and relation modeling. (2) Motivated by the prior of the early
acquired similarity score between the target and each part of the search region,
an in-network early candidate elimination module is proposed for decreasing the
inference time. (3) We perform comprehensive experiments to verify that the
one-stream framework outperforms the previous SOTA two-stream trackers in
terms of performance, inference speed, and convergence speed. The resulting
tracker OSTrack sets a new state-of-the-art on multiple tracking benchmarks.

2 Related Work

In this section, we briefly review different tracking pipelines, as well as the adap-
tive inference methods related to our early candidate elimination module.

Tracking Pipelines. Based on the different computational burdens of fea-
ture extraction and relation modeling networks, we compare our method with
two different two-stream two-stage archetypes in Fig. 2. Earlier Siamese track-
ers [1, 23, 46] and discriminative trackers [2, 6] belong to Fig. 2(a). They first
extract the features of the template and the search region separately by a CNN
backbone [15, 20], which shares the same structure and parameters. Then, a
lightweight relation modeling network (e.g ., the cross-correlation layer [1, 22] in
Siamese trackers and correlation filter [3, 16] in discriminative trackers) takes
responsibility to fuse these features for the subsequent state estimation task.
However, the template feature cannot be adjusted according to the search re-
gion feature in these methods. Such a shallow and unidirectional relation mod-
eling strategy may be insufficient for information interaction. Recently, stacked
Transformer layers [38] are introduced for better relation modeling. These meth-
ods belong to Fig. 2(b) where the relation modeling module is relatively heavy
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Fig. 2: Three different taxonomies of tracking pipeline. The height of each rect-
angular represents the relative model size.

and enables bi-directional information interaction. TransT [4] proposes to stack
a series of self-attention and cross-attention layers for iterative feature fusion.
STARK [43] concatenates the pre-extracted template and search region features
and feeds them into multiple self-attention layers. The bi-directional heavy struc-
ture brings performance gain but inevitably slows down the inference speed.
Differently, our one-stream one-stage design belongs to Fig. 2(c). For the first
time, we seamlessly combine feature extraction and relation modeling into a uni-
fied pipeline. The proposed method provides free information flow between the
template and search region with minor computation costs. It not only generates
target-oriented features by mutual guidance but also is efficient in terms of both
training and testing time.

Adaptive Inference. Our early candidate elimination module can be seen
as a progressive process of adaptively discarding potential background regions
based on the similarity between the target and the search region. One related
topic is the adaptive inference [24,33,44] in vision transformers, which is proposed
to accelerate the computation of ViT. DynamicViT [33] trains extra control
gates with the Gumbel-softmax trick to discard tokens during inference. Instead
of directly discarding non-informative tokens, EViT [24] fuses them to avoid
potential information loss. These works are tightly coupled with the classification
task and are therefore not suitable for tracking. Instead, we treat each token as
a target candidate and then discard the candidates that are least similar to
the target by means of a free similarity score calculated by the self-attention
operation. To the best of our knowledge, this is the first work that attempts to
eliminate potential background candidates within the tracking network.

3 Method

This section describes the proposed one-stream tracker (OSTrack). The input
image pairs are fed into a ViT backbone for simultaneous feature extraction and
relation modeling, and the resulting search region features are directly adopted
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Fig. 3: (a) The overall framework of the proposed one-stream framework. The
template and search region are split, flattened, and linear projected. Image em-
beddings are then concatenated and fed into Transformer encoder layers for joint
feature extraction and relation modeling. (b) The structure of the encoder layer
with early candidate elimination module, which is insert after the multi-head
attention operation [38].

for subsequent target classification and regression. An overview of the model is
shown in Fig. 3(a).

3.1 Joint Feature Extraction and Relation Modeling

We propose to combine the feature extraction and relation modeling modules
and construct a free information flow between the contents of the template and
the search region. The global contextual modeling capacity of self-attention [38]
operation perfectly fits our goal, therefore, vanilla ViT [10] is selected as the
main body of OSTrack. Adopting the existing Vision Transformer architecture
also provides a bunch of publicly available pre-trained models [14, 36], freeing
us from the time-consuming pre-training stage. The input of OSTrack is a pair
of images, namely, the template image patch z ∈ R3×Hz×Wz and the search
region patch x ∈ R3×Hx×Wx . They are first split and flattened into sequences of

patches zp ∈ RNz×(3·P 2) and xp ∈ RNx×(3·P 2), where P × P is the resolution of
each patch, and Nz = HzWz/P

2, Nx = HxWx/P
2 are the number of patches of

template and search region respectively. After that, a trainable linear projection
layer with parameter E is used to project zp and xp into D dimension latent
space as in Eq. 1 and Eq. 2, and the output of this projection is commonly
called patch embeddings [10]. Learnable 1D position embeddings P z and P x

are added to the patch embeddings of the template and search region separately
to produce the final template token embeddings H0

z ∈ RNz×D and search region
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token embeddings H0
x ∈ RNx×D.

H0
z =

[
z1
pE; z2

pE; · · · ; zNz
p E

]
+ P z, E ∈ R(3·P

2)×D,P z ∈ RNz×D (1)

H0
x =

[
x1
pE;x2

pE; · · · ;xNz
p E

]
+ P x, P x ∈ RNx×D (2)

To verify whether adding addition identity embeddings (to indicate a token be-
longing to the template or search region as in BERT [9]) or adopting relative
positional embeddings are beneficial to the performance, we also conduct abla-
tion studies and observe no significant improvement, thus they are omitted for
simplicity (details can be found in the supplementary material).

Token sequences H0
z and H0

x are then concatenated as H0
zx = [H0

z;H
0
x],

and the resulting vector H0
zx is then fed into several Transformer encoder lay-

ers [10]. Unlike the vanilla ViT [10], we insert the proposed early candidate
eliminating module into some of encoder layers as shown in Fig. 3(b) for in-
ference efficiency, and the technical details are presented in Sec. 3.2. Notably,
adopting the self-attention of concatenated features makes the whole framework
highly parallelized compared to the cross-attention [4]. Although template im-
ages are also fed into the ViT for each search frame, the impact on the inference
speed is minor due to the highly parallel structure and the fact that the number
of template tokens is small compared to the number of search region tokens.

Analysis. From the perspective of the self-attention mechanism [38], we
further analyze the intrinsic reasons why the proposed framework is able to
realize simultaneous feature extraction and relation modeling. The output of
self-attention operation A in our approach can be written as:

A = Softmax

(
QK⊤
√
dk

)
· V = Softmax

(
[Qz;Qx][Kz;Kx]

⊤
√
dk

)
· [V z;V x], (3)

where Q, K, and V are query, key and value matrices separately. The subscripts
z and x denote matrix items belonging to the template and search region. The
calculation of attention weights in Eq. 3 can be expanded to:

Softmax

(
[Qz;Qx][Kz;Kx]

⊤
√
dk

)
= Softmax

(
[QzK

⊤
z ,QzK

⊤
x ;QxK

⊤
z ,QxK

⊤
x ]√

dk

)
≜ [W zz,W zx;W xz,W xx],

(4)
whereWzx is a measure of similarity between the template and the search region,
and the rest are similar. The output A can be further written as:

A = [W zzV z +W zxV x;W xzV z +W xxV x]. (5)

In the right part of Eq. 5, W xzV z is responsible for aggregating the iter-image
feature (relation modeling) and W xxV x aggregating the intra-image feature
(feature extraction) based on the similarity of different image parts. Therefore,
the feature extraction and relation modeling can be done with a self-attention
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Fig. 4: Visualization of the attention weights of search region corresponding to
the center part of template after different ViT layers, the green rectangles indi-
cate target objects. It can be seen as an estimate of the similarity between the
target and each position of the search region.

operation. Moreover, Eq. 5 also constructs a bi-direction information flow that
allows mutual guidance of target-oriented feature extraction through the simi-
larity learning.

Comparisons with Two-Stream Transformer Fusion Trackers. 1)
Previous two-stream Transformer fusion trackers [4, 25] all adopt a Siamese
framework, where the features of the template and search region are separately
extracted first, and the Transformer layer is only adopted to fuse the extracted
features. Therefore, the extracted features of these methods are not adaptive
and may lose some discriminative information, which is irreparable. In contrast,
OSTrack directly concatenates linearly projected template and search region im-
ages at the first stage, so feature extraction and relation modeling are seamlessly
integrated and target-oriented features can be extracted through the mutual
guidance of the template and the search region. 2) Previous Transformer fusion
trackers only employ ImageNet [8] pre-trained backbone networks [15, 27] and
leave Transformer layers randomly initialized, which degrades the convergence
speed, while OSTrack benefits from pre-trained ViT models for faster conver-
gence. 3) The one-stream framework provides the possibility of identifying and
discarding useless background regions for further improving the model perfor-
mance and inference speed as presented in Sec. 3.2.

3.2 Early Candidate Elimination

Each token of the search region can be regarded as a target candidate and
each template token can be considered as a part of the target object. Previous
trackers keep all candidates during feature extraction and relation modeling,
while background regions are not identified until the final output of the network
(i.e., classification score map). However, our one-stream framework provides a
strong prior on the similarity between the target and each candidate. As shown
in Fig. 4, the attention weights of the search region highlight the foreground
objects in the early stage of ViT (e.g ., layer 4), and then progressively focus on
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the target. This property makes it possible to progressively identify and eliminate
candidates belonging to the background regions inside the network. Therefore,
we propose an early candidate elimination module that progressively eliminates
candidates belonging to the background in the early stages of ViT to lighten
the computational burden and avoid the negative impact of noisy background
regions on feature learning.

Candidate Elimination. Recall that the self-attention operation in ViT
can be seen as a spatial aggregation of tokens with normalized importances [38],
which is measured by the dot product similarity between each token pair. Specif-
ically, each template token hi

z, 1 ≤ i ≤ Nz is calculated as:

hi
z = Softmax

(
qi · [Kz;Kx]

⊤
√
d

)
· V = [wi

z;w
i
x] · V , (6)

where qi, Kz, Kx and V denote the query vector of token hi
z, the key matrix

corresponding to the template, the key matrix corresponding to the search re-
gion and the value matrix. The attention weight wi

x determines the similarity
between the template part hi

z and all search region tokens (candidates). The
j − th item (1 ≤ j ≤ n, n is the number of input search region tokens) of wi

x

determines the similarity between hi
z and the j − th candidate. However, the

input templates usually include background regions that introduce noise when
calculating the similarity between the target and each candidate. Therefore, in-
stead of summing up the similarity of each candidate to all template parts wi

x,
i = 1, . . . , Nz, we take w

ϕ
x, ϕ = ⌊Wz

2 ⌋+Wz · ⌊Hz

2 ⌋ (ϕ− th token corresponding to
the center part of the original template image) as the representative similarity.
This is fairly reasonable as the center template part has aggregated enough infor-
mation through self-attention to represent the target. In the supplementary, we
compare the effect of different template token choices. Considering that multi-
head self-attention is used in ViT, there are multiple similarity scores wϕ

x(m),
where m = 1, ...,M and M is the total number of attention heads [38]. We av-

erage the similarity scores of all heads by wϕ
x =

∑M
m=1 w

ϕ
x(m)/M , which serves

as the final similarity score of the target and each candidate. One candidate is
more likely to be a background region if its similarity score with the target is
relatively small. Therefore, we only keep the candidates corresponding to the k
largest (top-k) elements in wϕ

x (k is a hyperparameter, and we define the to-
ken keeping ratio as ρ = k/n), while the remaining candidates are eliminated.
The proposed candidate elimination module is inserted after the multi-head at-
tention operation [38] in the encoder layer, which is illustrated in Fig. 3(b). In
addition, the original order of all remaining candidates is recorded so that it can
be recovered in the final stage.

Candidate Restoration. The aforementioned candidate elimination mod-
ule disrupts the original order of the candidates, making it impossible to reshape
the candidate sequence back into the feature map as described in Sec. 3.3, so we
restore the original order of the remaining candidates and then pad the missing
positions. Since the discarded candidates belong to the irrelevant background re-
gions, they will not affect the classification and regression tasks. In other words,
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Fig. 5: Visualization of the progressive early candidate elimination process. The
main body of “Input” is the search region image, and the upper left corner shows
the corresponding template image. The Green rectangles indicate target objects
and the masked regions represent the discarded candidates. The results show
that our method can gradually identify and discard the candidates belonging to
the background regions.

they just act as placeholders for the reshaping operation. Therefore, we first re-
store the order of the remaining candidates and then zero-pad in between them.

Visualization. To further investigate the behavior of the early candidate
elimination module, we visualize the progressive process in Fig. 5. By iteratively
discarding the irrelevant tokens in the search region, OSTrack not only largely
lightens the computation burden but also avoids the negative impact of noisy
background regions on feature learning.

3.3 Head and Loss

We first re-interpret the padded sequence of search region tokens to a 2D spatial
feature map and then feed it into a fully convolutional network (FCN), which
consists of L stacked Conv-BN-ReLU layers for each output. Outputs of the FCN

contrain the target classification score map P ∈ [0, 1]
Hx
P ×Wx

P , the local offset

O ∈ [0, 1)2×
Hx
P ×Wx

P to compensate the discretization error caused by reduced
resolution and the normalized bounding box size (i.e. width and height) S ∈
[0, 1]2×

Hx
P ×Wx

P . The position with highest classification score is considered to be
target position, i.e., (xd, yd) = argmax(x,y) P xy and the finial target bounding
box is obtained as:

(x, y, w, h) = (xd +O(0, xd, yd), yd +O(1, xd, yd),S(0, xd, yd),S(1, xd, yd)). (7)

During training, both classification and regression losses are used. We adopt
the weighted focal loss [21] for classification (see the supplementary for more de-
tails). With the predicted bounding box, ℓ1 loss and the generalized IoU loss [34]
are employed for bounding box regression. Finally, the overall loss function is:

Ltrack = Lcls + λiouLiou + λL1
L1, (8)

where λiou = 2 and λL1
= 5 are the regularization parameters in our experiments

as in [43].



10 B. Ye, H. Chang et al.

4 Experiments

After introducing the implementation details, this section first presents a com-
parison of OSTrack with other state-of-the-art methods on seven different bench-
marks. Then, ablation studies are provided to analyze the impact of each com-
ponent and different design choices.

4.1 Implementation Details

Our trackers are implemented in Python using PyTorch. The models are trained
on 4 NVIDIA A100 GPUs and the inference speed is tested on a single NVIDIA
RTX2080Ti GPU.

Model. The vanilla ViT-Base [10] model pre-trained with MAE [14] is adopted
as the backbone for joint feature extraction and relation modeling. The head is a
lightweight FCN, consisting of 4 stacked Conv-BN-ReLU layers for each of three
outputs. The keeping ratio ρ of each candidate elimination module is set as 0.7,
and a total of three candidate elimination modules are inserted at layers 4, 7,
and 10 of ViT respectively, following [33]. We present two variants with different
input image pair resolution for showing the scalability of OSTrack:

– OSTrack-256. Template: 128×128 pixels; Search region: 256×256 pixels.
– OSTrack-384. Template: 192×192 pixels; Search region: 384×384 pixels.

Training. The training splits of COCO [26], LaSOT [12], GOT-10k [17]
(1k forbidden sequences from GOT-10k training set are removed following the
convention [43]) and TrackingNet [31] are used for training. Common data aug-
mentations including horizontal flip and brightness jittering are used in training.
Each GPU holds 32 image pairs, resulting in a total batch size of 128. We train
the model with AdamW optimizer [28], set the weight decay to 10−4, the initial
learning rate for the backbone to 4 × 10−5 and other parameters to 4 × 10−4,
respectively. The total training epochs are set to 300 with 60k image pairs per
epoch and we decrease the learning rate by a factor of 10 after 240 epochs.

Inference. During inference, Hanning window penalty is adopted to utilize
positional prior in tracking following the common practice [4,46]. Specifically, we
simply multiply the classification map P by the Hanning window with the same
size, and the box with the highest score after multiplication will be selected as
the tracking result.

4.2 Comparison with State-of-the-arts

To demonstrate the effectiveness of the proposed models, we compare them with
state-of-the-art (SOTA) trackers on seven different benchmarks.

GOT-10k. GOT-10k [17] test set employs the one-shot tracking rule, i.e.,
it requires the trackers to be trained only on the GOT-10k training split, and
the object classes between train and test splits are not overlapped. We follow
this protocol to train our model and evaluate the results by submitting them to
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Table 1: Comparison with state-of-the-arts on four large-scale benchmarks: La-
SOT, LaSOText, TrackingNet and GOT-10k3. The best two results are shown
in red and blue fonts.

Method Source
LaSOT [12] LaSOText [11] TrackingNet [31] GOT-10k∗ [17]

AUC PNorm P AUC PNorm P AUC PNorm P AO SR0.5 SR0.75

SiamFC [1] ECCVW16 33.6 42.0 33.9 23.0 31.1 26.9 57.1 66.3 53.3 34.8 35.3 9.8
MDNet [32] CVPR16 39.7 46.0 37.3 27.9 34.9 31.8 60.6 70.5 56.5 29.9 30.3 9.9

ECO [7] ICCV17 32.4 33.8 30.1 22.0 25.2 24.0 55.4 61.8 49.2 31.6 30.9 11.1
SiamPRN++ [22] CVPR19 49.6 56.9 49.1 34.0 41.6 39.6 73.3 80.0 69.4 51.7 61.6 32.5

DiMP [2] ICCV19 56.9 65.0 56.7 39.2 47.6 45.1 74.0 80.1 68.7 61.1 71.7 49.2
SiamR-CNN [39] CVPR20 64.8 72.2 - - - - 81.2 85.4 80.0 64.9 72.8 59.7
MAMLTrack [40] CVPR20 52.3 - - - - - 75.7 82.2 72.5 - - -

LTMU [5] CVPR20 57.2 - 57.2 41.4 49.9 47.3 - - - - - -
Ocean [46] ECCV20 56.0 65.1 56.6 - - - - - - 61.1 72.1 47.3

TrDiMP [41] CVPR21 63.9 - 61.4 - - - 78.4 83.3 73.1 67.1 77.7 58.3
TransT [4] CVPR21 64.9 73.8 69.0 - - - 81.4 86.7 80.3 67.1 76.8 60.9

AutoMatch [45] ICCV21 58.3 - 59.9 - - - 76.0 - 72.6 65.2 76.6 54.3
STARK [43] ICCV21 67.1 77.0 - - - - 82.0 86.9 - 68.8 78.1 64.1

KeepTrack [29] ICCV21 67.1 77.2 70.2 48.2 - - - - - - - -
SwinTrack-B [25] arXiv21 69.6 78.6 74.1 47.6 58.2 54.1 82.5 87.0 80.4 69.4 78.0 64.3

OSTrack-256 Ours 69.1 78.7 75.2 47.4 57.3 53.3 83.1 87.8 82.0 71.0 80.4 68.2
OSTrack-384 Ours 71.1 81.1 77.6 50.5 61.3 57.6 83.9 88.5 83.2 73.7 83.2 70.8

Table 2: Comparison with state-of-the-arts on three benchmarks: NFS [19],
UAV123 [30] and TNL2K [42]. AUC(%) scores are reported. The best two results
are shown in red and blue fonts.

SiamFC
[1]

RT-MDNet
[18]

ECO
[7]

Ocean
[46]

ATOM
[6]

DiMP50
[2]

STMTrack
[13]

TransT
[4]

STARK
[43]

OSTrack
-256

OSTrack
-384

NFS 37.7 43.3 52.2 49.4 58.3 61.8 - 65.3 66.2 64.7 66.5
UAV123 46.8 52.8 53.5 57.4 63.2 64.3 64.7 68.1 68.2 68.3 70.7
TNL2K 29.5 - 32.6 38.4 40.1 44.7 - 50.7 - 54.3 55.9

the official evaluation server. As reported in Tab. 1, OSTrack-384 and OSTrack-
256 outperform SwinTrack-B [25] by 1.6% and 4.3% in AO. The SR0.75 score of
OSTrack-384 reaches 70.8%, outperforming SwinTrack-B by 6.5%, which verifies
the capability of our trackers in both accurate target-background discrimination
and bounding box regression. Moreover, the high performance on this one-shot
tracking benchmark demonstrates that our one-stream tracking framework can
extract more discriminative features for unseen classes by mutual guidance.

LaSOT. LaSOT [12] is a challenging large-scale long-term tracking bench-
mark, which contains 280 videos for testing. We compare the result of the OS-
Track with previous SOTA trackers in Tab. 1. The results show that the proposed
tracker with smaller input resolution, i.e., OSTrack-256, already obtains compa-
rable performance with SwinTrack-B [25]. Besides, OSTrack-256 runs at a fast
inference speed of 105.4 FPS, being 2x faster than SwinTrack-B (52 FPS), which
indicates that OSTrack achieves an excellent balance between accuracy and in-
ference speed. By increasing the input resolution, OSTrack-384 further improves
the AUC on LaSOT to 71.1% and sets a new state-of-the-art.

3 We add the symbol ∗ to GOT-10k if the corresponding models are trained following
the one-shot protocol, otherwise they are trained with all training data.
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Table 3: The effect of our proposed early candidate elimination module on the in-
ference speed, MACs and tracking performance on LaSOT, GOT-10k and Track-
ingNet benchmarks, and w/o and w/ denote the models with or without early
candidate elimination module separately.

Input
Resolution

FPS MACs (G) LaSOT AUC (%) TrackingNet AUC (%) GOT-10k∗ AO (%)
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

256x256 93.1 105.4(+13.2%) 29.0 21.5(-25.9%) 68.7 69.1(+0.4) 82.9 83.1(+0.2) 71.0 71.0(+0.0)
384x384 41.4 58.1(+40.3%) 65.3 48.3(-26.0%) 71.0 71.1(+0.1) 83.5 83.9(+0.4) 73.5 73.7(+0.2)

TrackingNet. The TrackingNet [31] benchmark contains 511 sequences for
testing, which covers diverse target classes. Tab. 1 shows that OSTrack-256 and
OSTrack-384 surpass SwinTrack-B [25] by 0.6% and 1.4% in AUC separately.
Moreover, both models are faster than SwinTrack-B.

LaSOText. LaSOText [11] is a recently released extension of LaSOT, which
consists of 150 extra videos from 15 object classes. Tab 1 presents the results.
Previous SOTA tracker KeepTrack [29] designs a complex association network
and runs at 18.3 FPS. In contrast, our simple one-stream tracker OSTrack-256
shows slightly lower performance but runs at 105.4 FPS. OSTrack-384 sets a
new state-of-the-art AUC score of 50.5% while runs in 58.1 FPS, which is 2.3%
higher in AUC score and 3x faster in speed.

NFS, UAV123 and TNL2K. We also evaluate our tracker on three addi-
tional benchmarks: NFS [19], UAV123 [30] and TNL2K [42] includes 100, 123,
and 700 video sequences, separately. The results in Tab. 2 show that OSTrack-
384 achieves the best performance on all three benchmarks, demonstrating the
strong generalizability of OSTrack.

4.3 Ablation Study and Analysis

The Effect of Early Candidate Elimination Module Tab. 1 shows that
increasing the input resolution of the input image pairs can bring significant
performance gain. However, the quadratic complexity with respect to the input
resolution makes simply increasing the input resolution unaffordable in infer-
ence time. The proposed early candidate elimination module addresses the above
problem well. We present the effect of the early candidate elimination module
from the aspects of inference speed (FPS), multiply-accumulate computations
(MACs), and tracking performance on multiple benchmarks in Tab. 3. The effect
on different input search region resolutions is also presented. Tab. 3 shows that
the early candidate elimination module can significantly decrease the calcula-
tion and increase the inference speed, while slightly boosting the performance in
most cases. This demonstrates that the proposed module alleviates the negative
impact brought by the noisy background regions on feature learning. For exam-
ple, adding the early candidate elimination module in OSTrack-256 decreases
the MACs by 25.9% and increases the tracking speed by 13.2%, and the LaSOT
AUC is increased by 0.4%. Furthermore, larger input resolution benefits more
from this module, e.g ., OSTrack-384 shows a 40.3% increase in speed.
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Table 4: The effect of different pre-training methods. All the models are trained
without the early candidate elimination module.

Trackers
LaSOT TrackingNet GOT-10k

Success PNorm P Success PNorm P AO SR0.5 SR0.75

No pre-training 60.4 70.0 62.8 77.5 83.0 73.8 62.7 72.8 53.7
ImageNet-1k 66.1 75.8 70.6 82.0 86.7 80.1 69.7 79.0 65.6
ImageNet-21k 66.9 76.3 71.2 82.4 86.9 80.1 70.2 80.7 65.4

MAE 68.7 78.1 74.6 82.9 87.5 81.6 73.6 83.0 71.7

Different Pre-training Methods.While previous Transformer fusion track-
ers [4,25,43] random initialize the weights of Transformer layers, our joint feature
learning and relation modeling module can directly benefit from the pre-trained
weights. We further investigate the effect of different pre-training methods on
the tracking performance by comparing four different pre-training strategies:
no pre-training; ImageNet-1k [8] pre-trained model provided by [37]; ImageNet-
21k [35] pre-trained model provided by [36]; unsupervised pre-training model
MAE [14]. As the results in Tab. 4 show, pre-training is necessary for the model
weights initialization. Interestingly, we also observe that the unsupervised pre-
training method MAE brings better tracking performance than the supervised
pre-training ones using ImageNet. We hope this can inspire the community for
designing better pre-training strategies tailored for the tracking task.

Aligned Comparison with SOTA Two-stream Trackers. One may
wonder whether the performance gain is brought by the proposed one-stream
structure or purely by the superiority of ViT. We thus compare our method
with two SOTA two-stream Transformer fusion trackers [25, 43] by eliminating
the influencing factors of backbone and head structure. To be specific, we align
two previous SOTA two-stream trackers (STRAK-S [43] and SwinTrack [25])
with ours for fair comparison as follows: replacing their backbones with the same
pre-trained ViT and setting the same input resolution, head structure, and train-
ing objective as OSTrack-256. The remaining experimental settings are kept the
same as in the original paper. As shown in Tab. 5, our re-implemented two-stream
trackers show comparable or stronger performance compared to the initially
published performance, but still lag behind OSTrack, which demonstrates the
effectiveness of our one-stream structure. We also observe that OSTrack signifi-
cantly outperforms the previous two-stream trackers on the one-shot benchmark
GOT-10k, which further proves the advantage of our one-stream framework in
the challenging scenario. Actually, the discriminative power of features extracted
by the two-stream framework is limited since the object classes in the testing
set are completely different from the training set. Whereas, by iterative inter-
action between the features of the template and search region, OSTrack can
extract more discriminative features through mutual guidance. Different from
the two-stream SOTA trackers, OSTrack neglects the extra heavy relation mod-
eling module while still keeping the high parallelism of joint feature extraction
and relation modeling module. Therefore, when the same backbone network is
adopted, the proposed one-stream framework is much faster than STARK (40.2
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Input OSTrackSwinTrack-aligned Input OSTrackSwinTrack-aligned

Fig. 6: Visualization of discriminative regions (i.e., activation maps) of backbone
features extracted by OSTrack and two-stream tracker (SwinTrack-aligned).

Table 5: Comparison with re-implemented previous SOTA trackers aligned with
OSTrack. Here OSTrack is trained without the early candidate elimination mod-
ule for fair comparison and “aligned” denotes that the backbone, head, loss and
input resolution are kept the same as OSTrack.

Trackers
LaSOT TrackingNet GOT-10k∗

FPS Traing Pairs(×106)
Success PNorm P Success PNorm P AO SR0.5 SR0.75

STARK-aligned 67.6 76.3 72.8 82.6 87.4 81.5 68.8 78.4 65.6 52.9 30
SwinTrack-aligned 68.0 77.6 73.9 82.9 87.6 81.6 69.5 79.2 65.0 67.5 39.3

OSTrack 68.7 78.1 74.6 82.9 87.5 81.6 71.0 80.3 68.2 93.1 18

FPS faster) and SwinTrack (25.6 FPS faster). Besides, OSTrack requires fewer
training image pairs to converge.

Discriminative Region Visualization. To better illustrate the effective-
ness of the proposed one-stream tracker, we visualize the discriminative regions
of the backbone features extracted by OSTrack and a SOTA two-stream tracker
(SwinTrack-aligned) in Fig. 6. As can be observed, due to the lack of target
awareness, features extracted by the backbone of SwinTrack-aligned show lim-
ited target-background discriminative power and may lose some important target
information (e.g ., head and helmet in Fig. 6), which is irreparable. In contrast,
OSTrack can extract discriminative target-oriented features, since the proposed
early fusion mechanism enables relation modeling between the template and
search region at the first stage.

5 Conclusion

This work proposes a simple, neat, and high-performance one-stream tracking
framework based on Vision Transformer, which breaks out of the Siamese-like
pipeline. The proposed tracker combines the feature extraction and relation mod-
eling tasks, and shows a good balance between performance and inference speed.
In addition, we further propose an early candidate elimination module that pro-
gressively discards search region tokens belonging to background regions, which
significantly boosts the tracking inference speed. Extensive experiments show
that the proposed one-stream trackers perform much better than previous meth-
ods on multiple benchmarks, especially under the one-shot protocol. We expect
this work can attract more attention to the one-stream tracking framework.
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