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Abstract. We introduce MotionCLIP, a 3D human motion auto-encoder
featuring a latent embedding that is disentangled, well behaved, and sup-
ports highly semantic textual descriptions. MotionCLIP gains its unique
power by aligning its latent space with that of the Contrastive Language-
Image Pre-training (CLIP) model. Aligning the human motion manifold
to CLIP space implicitly infuses the extremely rich semantic knowledge
of CLIP into the manifold. In particular, it helps continuity by placing
semantically similar motions close to one another, and disentanglement,
which is inherited from the CLIP-space structure. MotionCLIP com-
prises a transformer-based motion auto-encoder, trained to reconstruct
motion while being aligned to its text label’s position in CLIP-space.
We further leverage CLIP’s unique visual understanding and inject an
even stronger signal through aligning motion to rendered frames in a
self-supervised manner. We show that although CLIP has never seen the
motion domain, MotionCLIP offers unprecedented text-to-motion abili-
ties, allowing out-of-domain actions, disentangled editing, and abstract
language specification. For example, the text prompt “couch” is decoded
into a sitting down motion, due to lingual similarity, and the prompt
“Spiderman” results in a web-swinging-like solution that is far from seen
during training. In addition, we show how the introduced latent space
can be leveraged for motion interpolation, editing and recognition. 1

1 Introduction

Human motion generation includes the intuitive description, editing, and gener-
ation of 3D sequences of human poses. It is relevant to many applications that
require virtual or robotic characters. Motion generation is, however, a challeng-
ing task. Perhaps the most challenging aspect is the limited availability of data,
which is expensive to acquire and to label. Recent years have brought larger sets
of motion capture acquisitions [29], sometimes sorted by classes [25, 21] or even
labeled with free text [37, 35]. Yet, it seems that while this data may span a sig-
nificant part of human motion, it is not enough for machine learning algorithms

1 See our project page: https://guytevet.github.io/motionclip-page/
* The authors contributed equally
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“Usain Bolt”

“Gollum”

“Swan lake”

“Spiderman in action!”

Fig. 1. Motions generated by MotionCLIP conditioned on different cultural references.
MotionCLIP exploits the rich knowledge encapsulated in pre-trained language-images
model (CLIP) and projects the human motion manifold over its latent space.

to understand the semantics of the motion manifold, and it is definitely not de-
scriptive enough for natural language usage. Hence, neural models trained using
labeled motion data [2, 24, 48, 33, 28] do not generalize well to the full richness
of the human motion manifold, nor to the natural language describing it.

In this work, we introduce MotionCLIP, a 3D motion auto-encoder that
induces a latent embedding that is disentangled, well behaved, and supports
highly semantic and elaborate descriptions. To this end, we employ CLIP [38], a
large scale visual-textual embedding model. Our key insight is that even though
CLIP has not been trained on the motion domain what-so-ever, we can inherit
much of its latent space’s virtue by enforcing its powerful and semantic structure
onto the motion domain. To do this, we train a transformer-based [43] auto-
encoder that is aligned to the latent space of CLIP, using existing motion textual
labels. In other words, we train an encoder to find the proper embedding of an
input sequence in CLIP space, and a decoder that generates the most fitting
motion to a given CLIP space latent code. To further improve the alignment with
CLIP-space, we also leverage CLIP’s visual encoder, and synthetically render
frames to guide the alignment in a self-supervised manner (see Figure 2). As we
demonstrate, this step is crucial for out-of-domain generalization, since it allows
finer-grained description of the motion, unattainable using text.

The merit of aligning the human motion manifold to CLIP space is two-fold:
First, combining the geometric motion domain with lingual semantics benefits
the semantic description of motion. As we show, this benefits tasks such as text-
to-motion and motion style transfer. More importantly however, we show that
this alignment benefits the motion latent space itself, infusing it with semantic
knowledge and inherited disentanglement. Indeed, our latent space demonstrates
unprecedented compositionality of independent actions, semantic interpolation
between actions, and even natural and linear latent-space based editing.

As mentioned above, the textual and visual CLIP encoders offer the semantic
description of motion. In this aspect, our model demonstrates never-before-seen
capabilities for the field of motion generation. For example, motion can be spec-
ified using arbitrary natural language, through abstract scene or intent descrip-
tions instead of the motion directly, or even through pop-culture references. For
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Fig. 2. MotionCLIP overview. A motion auto-encoder is trained to simultaneously re-
construct motion sequences while aligning their latent representation with correspond-
ing texts and images representations in CLIP space.

example, the CLIP embedding for the phrase “wings” is decoded into a flapping
motion like a bird, and “Williams sisters” into a tennis serve, since these terms
are encoded close to motion seen during training, thanks to CLIP’s semantic
understanding. Through the compositionality induced by the latent space, the
aforementioned process also yields clearly unseen motions, such as the iconic
web-swinging gesture that is produced for the input ”Spiderman” (see this and
other culture references in Figure 1). Our model also naturally extents to other
downstream tasks. In this aspect, we depict motion interpolation to depict latent
smoothness, editing to demonstrate disentanglement, and action recognition to
point out the semantic structure of our latent space. For all these applications,
we show comparable or preferable results either through metrics or a user study,
even though each task is compared against a method that was designed espe-
cially for it. Using the action recognition benchmark, we also justify our design
choices with an ablation study.

2 Related Work

2.1 Guided Human Motion Generation

One means to guide motion generation is to condition on another domain. An
immediate, but limited, choice is conditioning on action classes. ACTOR [33] and
Action2Motion [14] suggested learning this multi-modal distribution from exist-
ing action recognition datasets using Conditional Variational-Autoencoder(CVAE)
[42] architectures. MUGL [28] model followed with elaborated Conditional Gaussian-
Mixture-VAE [6] that supports up to 120 classes and multi-person generation,
based on the NTU-RGBD-120 dataset [25].

Motion can be conditioned on other domains. For example, recent works [23,
3] generated dance moves conditioned on music and the motion prefix. Ed-
wards et al. [8] generated facial expressions to fit a speaking audio sequence.

A more straightforward approach to control motion is using another mo-
tion. In particular, for style transfer applications. Holden et al. [18] suggested
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Fig. 3. Motion Auto-Encoder. A transformer encoder is trained to project a motion
sequence p1:T into a latent vector zp in CLIP latent space. Simultaneously, a trans-
former decoder is trained to recover the motion by attending to zp.

to code style using the latent code’s Gram matrix, inspired by Gatys et al. [12].
Aberman et al. [1] injected style attributes using a dedicated temporal-invariant
AdaIN layer [20]. Recently, Wen et al. [47] encoded style in the latent code of
Normalizing Flow generative model [7]. We show that MotionCLIP also encodes
style in its latent representation, without making any preliminary assumptions
or using a dedicated architecture.

2.2 Text-to-Motion

The KIT dataset[35] provides about 11 hours of motion capture sequences, each
sequence paired with a sentence explicitly describing the action performed. KIT
sentences describe the action type, direction and sometimes speed, but lacks de-
tails about the style of the motion, and not including abstract descriptions of
motion. Current text-to-motion research is heavily based on KIT. Plappert et
al. [36] learned text-to-motion and motion-to-text using seq2seq RNN-based ar-
chitecture. Yamada et al. [48] learned those two mappings by simultaneously
training text and motion auto-encoders while binding their latent spaces using
text and motion pairs. Lin et al. [24] further improved trajectory prediction by
adding a dedicated layer. Ahuja et al. [2] introduced JL2P model, which got
improved results with respect to nuanced concepts of the text, namely veloc-
ity, trajectory and action type. They learned joint motion-text latent space and
apply training curriculum to ease optimization. Concurrent to our work, Petro-
vich et al. [34] and Guo et al. [13] encourage diverse generation using VAE based
models [22], yet not generalizing outside of the limited available data.

More recently, BABEL dataset [37] provided per-frame textual labels ordered
in 260 classes to the larger AMASS dataset [29], including about 40 hours of mo-
tion capture. Although providing explicit description of the action, often lacking
any details besides the action type, this data spans a larger variety of human mo-
tion. MotionCLIP overcomes the data limitations by leveraging out-of-domain
knowledge using CLIP [38].
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2.3 CLIP aided Methods

Neural networks have successfully learned powerful latent representations cou-
pling natural images with natural language describing it [17, 39]. A recent ex-
ample is CLIP[38], a model coupling images and text in deep latent space using
a constructive objective[16, 4]. By training over hundred millions of images and
their captions, CLIP gained a rich semantic latent representation for visual con-
tent. This expressive representation enables high quality image generation and
editing, controlled by natural language [31, 11, 10]. Even more so, this model has
shown that connecting the visual and textual worlds also benefits purely visual
tasks [44], simply by providing a well-behaved, semantically structured, latent
space.

Closer to our method are works that utilize the richness of CLIP outside
the imagery domain. In the 3D domain, CLIP’s latent space provides a useful
objective that enables semantic manipulation [40, 30, 45] where the domain gap
is closed by a neural rendering. CLIP is even adopted in temporal domains [15,
27, 9] that utilize large datasets of video sequences that are paired with text and
audio. Unlike these works that focus on classification and retrieval, we introduce
a generative approach that utilizes limited amount of human motion sequences
that are paired with text.

More recently, CLIP was used for motion applications. CLIP-Actor [49] is
using CLIP representation to query motions from BABEL. The motions in that
case are represented by their attached textual labels. AvatarCLIP [19] used CLIP
as a loss term for direct motion optimization, where the motion is represented
by rendered poses. Contrary to their claim, MotionCLIP shows that motions can
be successfully encoded-to and decoded-from CLIP space.

3 Method

Our goal is learning a semantic and disentangled motion representation that will
serve as a basis for generation and editing tasks. To this end, we need to learn
not only the mapping to this representation (encoding), but also the mapping
back to explicit motion (decoding).

Our training process is illustrated in Figure 2. We train a transformer-based
motion auto-encoder, while aligning the latent motion manifold to CLIP joint
representation. We do so using (i) a Text Loss, connecting motion representations
to the CLIP embedding of their text labels, and (ii) an Image Loss, connecting
motion representations to CLIP embedding of rendered images that depict the
motion visually.

At inference time, semantic editing applications can be performed in latent
space. For example, to perform style transfer, we find a latent vector representing
the style, and simply add it to the content motion representation and decode the
result back into motion. Similarly, to classify an action, we can simply encode
it into the latent space, and see to which of the class text embedding it is
closest. Furthermore, we use the CLIP text encoder to perform text-to-motion
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“running” “throwing the ball” “waving”“t-pose and walks forward” “grab object and place item”

Fig. 4. A sample of the rendered frames and their text description used during training.

- An input text is decoded using the text encoder then directly decoded by our
motion decoder. The implementation of these and other applications is detailed
in Section 4.

We represent motion sequences using the SMPL body model [26]. A sequence
of length T denoted p1:T such that pi ∈ R24×6 defines orientations in 6D repre-
sentation[50] for global body orientation and 23 SMPL joints, at the ith frame.
The mesh vertices locations v1:T are calculated according to SMPL specifications
with β = 0 and a neutral-gender body model following Petrovich et al. [33].

To project the motion manifold into the latent space, we learn a transformer-
based auto-encoder [43], adapted to the motion domain [33, 46, 23]. Motion-
CLIP’s architecture is detailed in Figure 3.

Transformer Encoder. E, Maps a motion sequence p1:T to its latent rep-
resentation zp. The sequence is embedded into the encoder’s dimension by ap-
plying linear projection for each frame separately, then adding standard po-
sitional embedding. The embedded sequence is the input to the transformer
encoder, together with additional learned prefix token ztk. The latent represen-
tation, zp is the first output (the rest of the sequence is dropped out). Explicitly,
zp = E(ztk, p1:T ).

Transformer Decoder. D, predicts a motion sequence p̂1:T given a la-
tent representation zp. This representation is fed to the transformer as key and
value, while the query sequence is simply the positional encoding of 1 : T . The
transformer outputs a representation for each frame, which is then mapped to
pose space using a linear projection. Explicitly, p̂1:T = D(zp). We further use a
differentiable SMPL layer to get the mesh vertices locations, v̂1:T .

Losses. This auto-encoder is trained to represent motion via reconstruction
L2 losses on joint orientations, joint velocities and vertices locations. Explicitly,

Lrecon =
1

|p|T

T∑
i=1

∥pi − p̂i∥2 +
1

|v|T

T∑
i=1

∥vi − v̂i∥2

+
1

|p|(T − 1)

T−1∑
i=1

∥(pi+1 − pi)− (p̂i+1 − p̂i)∥2
(1)
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Given text-motion and image-motion pairs, (p1:T , t), (p1:T , s) correspond-
ingly, we attach the motion representation to the text and image representations
using cosine distance,

Ltext = 1− cos(CLIPtext(t), zp) (2)

and
Limage = 1− cos(CLIPimage(s), zp) (3)

The motion-text pairs can be derived from labeled motion dataset, whereas
the images can be achieved by rendering a single pose from a motion sequence,
to a synthetic image s, in an unsupervised manner (More details in Section 4).

Overall, the loss objective of MotionCLIP is defined,

L = Lrecon + λtextLtext + λimageLimage (4)

4 Results

To evaluate MotionCLIP, we consider its two main advantages. In Section 4.2,
we inspect MotionCLIP’s ability to convert text into motion. Since the motion’s
latent space is aligned to that of CLIP, we use CLIP’s pretrained text encoder to
process input text, and convert the resulting latent embedding into motion using
MotionCLIP’s decoder. We compare our results to the state-of-the-art and report
clear preference for both seen and unseen generation. We also show comparable
performance to state-of-the-art style transfer work simply by adding the style as
a word to the text prompt. Lastly, we exploit CLIP expert lingual understanding
to convert abstract text into corresponding, and sometimes unexpected, motion.

In Sections 4.3 and 4.4 we focus on the resulting auto-encoder, and the prop-
erties of its latent-space. We inspect its smoothness and disentanglement by
(1) conducting ablation study using established quantitative evaluation, and (2)
demonstrating various applications. Smoothness is shown through well-behaved
interpolations, even between distant motion. Disentanglement is demonstrated
using latent space arithmetic; by adding and subtracting various motion em-
beddings, we achieve compositionality and semantic editing. Lastly, we leverage
our latent structure to perform action recognition over the trained encoder. The
latter setting is also used for ablation study. In the following, we first lay out
the data used, and other general settings.

4.1 General Settings

We train our model on the BABEL dataset [37]. It comprises about 40 hours of
motion capture data, represented with the SMPL body model [26]. The motions
are annotated with per-frame textual labels, and is categorized into one of 260
action classes. We down sample the data to 30 frames per-second and cut it into
sequences of length 60. We get a single textual label per sequence by listing all
actions in a given sequence, then concatenating them to a single string. Finally,
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"Squat"

"Boxing"

"Artistic Gymnastics"

In Domain
Out of Domain

"Taekwondo"

JL2P [2] - w.o. pretraining CLIP MotionCLIP (ours)

Fig. 5. In- and Out-of-domain Qualitative results for MotionCLIP with and without
CLIP pretraining. MotionCLIP (right) performs better for in-domain motions than
out-of-domain, and in any case better than JL2P and MotionCLIP ablated variant.

we choose for each motion sequence a random frame to be rendered using the
Blender software and the SMPL-X add-on [32] (See Figure 4). This process
outputs triplets of (motion, text, synthetic image) which are used for training.

We train a transformer auto-encoder with 8 layers for each encoder and
decoder as described in Section 3. We align it with the CLIP-ViT-B/32 frozen
model. Out of the data triplets, the text-motion pairs are used for the text
loss and image-motion pairs for the image loss. Both λ values are set to 0.01
throughout our experiments. 2

4.2 Text-to-Motion

Text-to-motion is performed at inference time, using the CLIP text encoder and
MotionCLIP decoder, without any further training. Even though not directly
trained for this task, MotionCLIP shows unprecedented performance in text-to-
motion, dealing with explicit descriptions, subtle nuances and abstract language.

Actions. We start by demonstrating the capabilities of MotionCLIP to gen-
erate explicit actions - both seen and unseen in training. We compare our model
to JL2P [2] trained on BABEL and two ablated variants of MotionCLIP:(1)
without CLIP pre-training (in this case, the text encoder is trained from scratch
together with MotionCLIP, as in JL2P) and (2) without CLIP image loss (i.e. us-
ing text loss only). We distinguish between in-domain and out-of-domain actions
by conducting a user study3 using two different text sets: (1) The in-domain
set comprises of BABEL-60 class names. (2) the Out-of-domain set includes
textual labels that do not appear in any of the training labels. We construct
this set from the list of Olympic sports that are disjoint to BABEL. Figure 6
shows that MotionCLIP is clearly preferred by the users over JL2P and the

2 https://github.com/GuyTevet/MotionCLIP
3 30 unique users, each was asked 12 questions.
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MotionCLIP vs.
JL2P

81.7% 85.7%

MotionCLIP vs.
- w.o. pretraining CLIP

75.4%

94.7%

MotionCLIP vs.
- w.o. image loss

69.8%
56.7%

In-domain
Out-of-domain

Fig. 6. Action generation from text - user study. The bars depict MotionCLIP’s pref-
erence score vs. each of the other models (when compared side-by-side). The dashed
line marks 50% (i.e. equally preferred models). MotionCLIP is clearly preferred by the
users over JL2P [2] and our two ablated variants.

"Walk angry"

"Walk childlike"

"Jump old"

"Jump happy”

+ Angry

+ Childlike

+ Old

+ Happy

Walk

Walk

Jump

Jump

Aberman et al. [1] MotionCLIP

Fig. 7. Style generation. Left: style transfer by Aberman et al. [1], conditioned on
action (green) and style (orange) motions. Right: MotionCLIP generating style from
plain text input.

MotionCLIP variant without pretraining CLIP. Figure 5 further demonstrates
that while MotionCLIP generates better motions for in-domain examples, for
the out-of-domain set, it is not only the highest quality model, but often the
only model that is not mode-collapsed, and generates a valid result. Figure 12
qualitatively shows the effect of text and image CLIP losses on the generation
quality. In the Supplementary Materials, we present a variety of sports generated
by MotionCLIP, as used in the user-study. Even though this is not a curated
list, the motion created according to all 30 depicted text prompts resembles the
requested actions.

Styles. We investigate MotionCLIP’s ability to represent motion style, with-
out being explicitly trained for it. We compare the results produced by Motion-
CLIP to the style transfer model by Aberman et al. [1]. The latter receives two
input motion sequences, one indicating content and the other style, and com-
bines them through a dedicated architecture, explicitly trained to disentangle
style and content from a single sequence. In contrast, we simply feed Motion-
CLIP with the action and style textual names (e.g.“walk proud”). We show to
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users4 the outputs of the two models side-by-side and ask them to choose which
one presents both style and/or action better (See Figure 7). Even though Aber-
man et al. was trained specifically for this task and gets the actual motions as
an input, rather then text, Table 1 shows comparable results for the two mod-
els, with an expected favor toward Aberman et al.. This, of course, also means
that MotionCLIP allows expressing style with free text, and does not require
an exemplar motion to describe it. Such novel free text style augmentations are
demonstrated in Figure 8.

"Run"

"Jogging"

"Run away hysterically"

"Drink tea like the queen"

"Drink like in college party"

"Drink"

Fig. 8. MotionCLIP expresses the style described as a free text.

Aberman et al. [1] MotionCLIP

Happy 31.3% 68.7%
Proud 86.4% 13.6%
Angry 43.5% 56.5%
Childlike 57.6% 42.4%
Depressed 74.2% 25.8%
Drunk 50% 50%
Old 57.7% 42.3%
Heavy 85.2% 14.8%

Average 62.1% 37.9%

Table 1. Style generation - user study (preference score side-by-side). We compare our
style + action generation from text, to those of Aberman et al. [1] which gets style
and content motions as input. Interestingly, although not trained to generate style, our
model wins twice and break even once

Abstract language. One of the most exciting capabilities of MotionCLIP
is generating motion given text that doesn’t explicitly describe motion. This
includes obvious linguistic connections, such as the act of sitting down, produced
from the input text ”couch”. Other, more surprising examples include mimicking

4 55 unique users, each was asked 4 questions.
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"Chug! Chug! Chug!"

"Couch"

"Chimpanzee" "Jordan dunks"

"Wings"

"The Karate Kid""DJ"

"Hitchhiker"

"Williams sisters"

"YMCA"

Fig. 9. Abstract language. MotionCLIP generates the signature motions of culture
figures and phrases.

the signature moves of famous real and fictional figures, like Usain Bolt and The
Karate Kid, and other cultural references like the famous ballet performance
of Swan Lake and the YMCA dance (Figures 1 and 9). These results include
motions definitely not seen during training (e.g., Spiderman in Figure 1), which
strongly indicates how well the motion manifold is aligned to CLIP space.

4.3 Motion Manifold Evaluation

Accuracy metric Following ACTOR[33] we use the accuracy metric to evaluate
MotionCLIP’s latent space. To this end, we use the UESTC action recognition
dataset [21], including 25K motion sequences annotated with 40 action classes.
This data was not seen during MotionCLIP training, hence, this is a zero-shot
evaluation for our model. We encode the validation set motions, and collect their
mean and standard deviation. Using these statistics, we sample new motions for
each class according to the class distribution found in the test set. Then, we
decode the sampled motions and feed the result to an action recognition model
(pre-trained on UESTC, as reported by ACTOR). In table 2, we use the accu-
racy metric to ablate CLIP losses, and examine 2-layered GRU [5] backbone, in
addition to our reported Transformer backbone. The results imply that although
failing in text-to-motion (Figure 12), GRU provides smoother latent space.

Interpolation As can be seen in Figure 10, the linear interpolation between
two latent codes yields semantic transitions between motions in both time and
space. This is a strong indication to the smoothness of this representation. Here,
the source and target motions (top and bottom respectively) are sampled from
the validation set, and between them three transitions are evenly sampled from
the linear trajectory between the two representations, and decoded by Motion-
CLIP.
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Dance Ballet

Jogging

Basketball long shot

Basketball free shot

Fig. 10. Latent space motion interpolation. MotionCLIP enables semantic interpola-
tion between two motions.

Transformer GRU

MotionCLIP 63.5% ± 0.7 73.3% ± 0.8
- w.o. image loss 69% ± 0.8 62.9% ± 0.9
- w.o. text loss 63.5% ± 0.7 75.6% ± 0.8
- w.o. pretraing CLIP 45.1% ± 1 66.2% ± 0.8

ACTOR [33] 99.2% ± 0.1
Real 98.8% ± 0.2

Table 2. Accuracy metric. We report the Top-5 accuracy of a pre-trained action recog-
nition model [33] trained on the UESTC dataset [21] for ablated variants of Motion-
CLIP. This dataset was not seen during training, hence, it provides zero-shot evalua-
tion for our latent space. The results surprisingly indicate that GRU backbone yields
smoother latent space, although failing in the text-to-motion task.

4.4 Motion Manifold Applications

It is already well established that the CLIP space is smooth and expressive. We
demonstrate its merits also exist in the aligned motion manifold, through the
following experiments.

Latent-Based Editing To demonstrate how disentangled and uniform Mo-
tionCLIP latent space is, we experiment with latent-space arithmetic to edit
motion (see Figure 11). As can be seen, these linear operations allow motion
compositionality - the upper body action can be decomposed from the lower
body one, and recomposed with another lower body performance. In addition,
Style can be added by simply adding the vector of the style name embedding.
These two properties potentially enable intuitive and semantic editing even for
novice users.

Action Recognition Finally, we further demonstrate how well our latent
spaces is semantically structured. We show how combined with the CLIP text
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Walk

Walk

High jump   Standing

   Standing  Drink from mug

  Basketball long shot

Jump

Sit   Standing

  Walk old

  Argue angrily
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Fig. 11. Latent space motion editing. MotionCLIP enables semantic editing in latent
space. Here we demonstrate two applications (1) upper and lower body action compo-
sitions (top two examples) and (2) style transfer (the two examples at the bottom).

Top-1 acc. Top-5 acc.

MotionCLIP 40.9 % 57.71%
- w.o. image loss 35.05% 50.26%
- w.o. text loss 4.54% 18.37%
2s-AGCN [41] 41.14% 73.18%

Table 3. Action Recognition. Using MotionCLIP together with CLIP text encoder for
classification yields performance marginally close to 2s-AGCN [41] dedicated architec-
ture on the BABEL-60 benchmark.

encoder, MotionCLIP encoder can be used for action recognition. We follow BA-
BEL 60-classes benchmark and train the model with BABEL class names instead
of the raw text. At inference, we measure the cosine distance of a given motion se-
quence to all 60 class name encodings and apply softmax, as suggested originally
for image classification [38]. In table 3, we compare Top-1 and Top-5 accuracy of
MotionCLIP classifier to 2s-AGCN classifier [41], as reported by Punnakkal et
al. [37]. As can be seen, this is another example where our framework performs
similarly to dedicated state-of-the-art methods, even though MotionCLIP was
not designed for it.

5 Conclusions

We have presented a motion generation network that leverages the knowledge
encapsulated in CLIP, allowing intuitive operations, such as text conditioned
motion generation and editing. As demonstrated, training an auto-encoder on
the available motion data alone struggles to generalize well, possibly due to data
quality or the complexity of the domain. Nonetheless, we see that the same
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"Swan lake"

"Wings"

"Jogging"

w.o. Text Loss w.o. Image Loss MotionCLIP–GRU MotionCLIP (ours)

Fig. 12. Ablation study on the loss term and backbone. By training with both losses,
CLIP text and CLIP image, MotionCLIP can better generate motions for challenging
text inputs.

auto-encoder with the same data can lead to a significantly better understand-
ing of the motion manifold and its semantics, merely by aligning it to a well-
behaved knowledge-rich latent space. We restress the fascinating fact that even
though CLIP has never seen anything from the motion domain, or any other
temporal signal, its latent structure naturally induces semantics and disentan-
glement. This succeeds even though the connection between CLIP’s latent space
and the motion manifold is through sparse and inaccurate textual labeling. In
essence, the alignment scheme transfers semantics by encouraging the encoder
to place semantically similar samples closer together. Similarly, it induces the
disentanglement built into the CLIP space, as can be seen, for example, in our
latent-space arithmetic experiments. Of course, MotionCLIP has its limitations,
opening several novel research opportunities. It struggles to understand direc-
tions, (e.g. left, right and counter-clockwise), to capture some styles (such as
heavy and proud), and is of course not consistent for out-of-domain cultural
reference exapmles (e.g, it fails to produce Cristiano Ronaldo’s goal celebration,
and Superman’s signature pose). In addition, we observe that text-to-motion
generation provide substandard global position and orientation, and leave it to
a future work. Nonetheless, we believe MotionCLIP is an important step toward
intuitive motion generation. Knowledge-rich disentangled latent spaces have al-
ready proven themselves as a flexible tool to novice users in other fields, such
as facial images. In the future, we would like to further explore how powerful
large-scale latent spaces could be leveraged to benefit additional domains.
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