1 Visualization

We show more target-relevant attention maps on the *search* images in Fig. 1. For 'Base', we replace the backbone of STARK-S with ViT-B/16. 'Ours' adopts the SimTrack framework with ViT-B/16 as the backbone. Both 'Base' and 'Ours' are trained with the same training setting as shown in the paper. While targetrelevant attention map can be obtained for 'Ours' directly in the transformer backbone, 'Base' does not have such information since *search* and *exemplar* are processed separately. To obtain the target-relevant attention map for 'Base' model, we get the *exemplar* and *search* features from the l_{th} transformer layer after training and calculate the *search* attention weight $A(s^l)$ through (refer to Equ.(6) in the paper),

$$A(s^{l}) = softmax\left(\left[a(s^{l}, e^{l}), a(s^{l}, s^{l})\right]\right),\tag{1}$$

where $s^l \in \mathbb{R}^{N_x \times D}$, $e^l \in \mathbb{R}^{N_z \times D}$, $A(s^l) \in \mathbb{R}^{N_x \times (N_z + N_x)}$. We select the targetrelevant part from $A(s^l) \in \mathbb{R}^{N_x \times N_z}$ and average it along the second dimension to get $A^*(s^l) \in \mathbb{R}^{N_x \times 1}$. Then, we reshape $A^*(s^l)$ to $\frac{H_x}{s} \times \frac{W_x}{s}$ and up-sample it to the same size $(H_x \times W_x)$ with the *search* image. After that, we get the targetrelevant attention maps as shown in Fig. 1. As we can see in Fig. 1, 'Ours' can quickly and gradually focus on a more accurate and comprehensive target area because the vital information interaction in the backbone enables the *search* feature learning to 'sense' the designated target.

2 Training Details

The whole training needs 500 epochs with 6×10^4 image pairs in each epoch. The training batch size is 256. All models are optimized with AdamW and the weight decay is 10^{-4} . The initial learning rates of the backbone and head are 10^{-5} and 10^{-4} , which will drop by a factor of 10 after 400 epochs. The loss weights λ_{iou} and λ_{L_1} are 2 and 5 in Equ.(3). For Sim-B/32, we shift the *exemplar* image by 16 pixels (half of the patch size 32) and crop a 64×64 foveal image in the centre of the shifted image. For Sim-B/16, we directly crop a 64×64 foveal image in the centre of the *exemplar* image. For Sim-L/14, to reduce computation cost, the input *exemplar* size is reduced to 84×84 . We centre crop a 42×42 image as the foveal image, where the partitioning lines are located in the centre of those on the *exemplar* image.

3 Input Resolution

In the paper, we set the input size of *search* image as 224×224 to be consistent with existing vision transformers. We also evaluate the model performance when we increase the input resolution to 320×320 (the same with STARK-S) and 384×384 . The results on LaSOT and TNL2K are shown in Table 1. A higher input resolution helps improve tracking accuracy.

Fig. 1: The images in different columns are the *exemplar* image, the *search* images, the target-relevant attention maps from the 2nd, 4th, 6th, 8th, 10th, 12th(last) layer of the transformer backbone. 'Base' denotes the baseline model. 'Ours' is our SimTrack. 'Ours' can quickly and gradually focus on a more accurate and comprehensive target area.

#Num	Input Size	LaSOT			TNL2K	
		AUC↑	$P_{norm}\uparrow$	$P\uparrow$	AUC↑	$P\uparrow$
1	224×224	69.3	78.5	74.0	54.8	53.8
2	320×320	70.0	79.2	74.8	54.8	54.2
3	384×384	70.4	79.3	75.0	55.2	55.2

Table 1: The performance of SimTrack (with ViT-B/16 as backbone) with diverse input sizes. A higher input resolution helps improve tracking accuracy.