
Backbone is All Your Need: A Simplified
Architecture for Visual Object Tracking

Boyu Chen1,∗ , Peixia Li1,∗ , Lei Bai2,† , Lei Qiao3, Qiuhong Shen3, Bo Li3,
Weihao Gan3, Wei Wu3, Wanli Ouyang2,1

1 The University of Sydney, SenseTime Computer Vision Group, Australia
2 Shanghai AI Laboratory, Shanghai, China

3 SenseTime, China
(∗) equal contribution; (†) corresponding author

bailei@pjlab.org.cn

Abstract. Exploiting a general-purpose neural architecture to replace
hand-wired designs or inductive biases has recently drawn extensive in-
terest. However, existing tracking approaches rely on customized sub-
modules and need prior knowledge for architecture selection, hinder-
ing the development of tracking in a more general system. This paper
presents a Simplified Tracking architecture (SimTrack) by leveraging a
transformer backbone for joint feature extraction and interaction. Un-
like existing Siamese trackers, we serialize the input images and concate-
nate them directly before the one-branch backbone. Feature interaction
in the backbone helps to remove well-designed interaction modules and
produce a more efficient and effective framework. To reduce the informa-
tion loss from down-sampling in vision transformers, we further propose
a foveal window strategy, providing more diverse input patches with ac-
ceptable computational costs. Our SimTrack improves the baseline with
2.5%/2.6% AUC gains on LaSOT/TNL2K and gets results competitive
with other specialized tracking algorithms without bells and whistles.
The source codes are available at https://github.com/LPXTT/SimTrack.

1 Introduction

Visual Object Tracking (VOT) [11,52,7,29] aims to localize the specified
target in a video, which is a fundamental yet challenging task in computer
vision. Siamese network is a representative paradigm in visual object track-
ing [1,27,26,51], which usually consists of a Siamese backbone for feature extrac-
tion, an interactive head (e.g., naive correlation [1]) for modeling the relationship
between the exemplar and search, and a predictor for generating the target local-
ization. Recently, transformer [9,44,51] has been introduced as a more powerful
interactive head to Siamese-based trackers for providing information interaction,
as shown in Fig. 1(a), and pushes the accuracy to a new level.

While effective, these transformer heads are highly customized and metic-
ulously designed, making it difficult to incorporate them into a more general
system or generalize to a wide variety of intelligence tasks. On the other hand,

https://orcid.org/0000-0003-2397-7669
https://orcid.org/0000-0002-8702-4149
https://orcid.org/0000-0003-3378-7201
https://orcid.org/0000-0002-9163-2761
https://github.com/LPXTT/SimTrack

2 Boyu Chen, Peixia Li et al.

Z

X Predictor

Feature learning

Feature interaction

PredictorTransformer
backbone

Joint feature learning and interaction

Transformer
head

C

Backbone

Backbone

(a) Existing pipeline (b) Our pipeline

Z

X

Fig. 1: The pipeline of existing transformer trackers (a) and ours (b). A trans-
former backbone is used to create a simple and generic framework for tracking.

transformers have recently shown an excellent capability to simplify frameworks
for computer vision tasks, like object detection [8] and object segmentation [56].
Owning to the superior model capacity of transformers, the sub-modules and
processes with task-specific prior knowledge can be removed by adequately lever-
aging transformers to a specific task. Producing a task-agnostic network can not
only get a more simplified framework but also help the community move towards
a general-purpose neural architecture, which is an appealing trend [23,58]. How-
ever, as observed in this paper, exploiting the transformer to produce a simple
and generic framework is not investigated in existing VOT approaches.

With the observation above, this paper advocates a Simplified Tracking (Sim-
Track) paradigm by leveraging a transformer backbone for joint feature learning
and interaction, shown as Fig.1(b). Specifically, we serialize the exemplar (Z)
and search (X) images as multiple tokens at the beginning and send them to-
gether to our transformer backbone. Then, the search features from the trans-
former backbone are directly used for target localization through the predictor
without any interaction module. Like existing backbones, our transformer back-
bone can also be pre-trained on other vision tasks, e.g. classification, providing
stronger initialization for VOT. Moreover, our SimTrack brings multiple new
benefits for visual object tracking. (1) Our SimTrack is a simpler and more
generic framework with fewer sub-modules and less reliance on prior knowledge
about the VOT task. The transformer backbone is a one-branch backbone in-
stead of a Siamese network, consistent with the backbones used in many vision
tasks, e.g., image classification [21,15,40,49], object detection [38], semantic seg-
mentation [20,53], depth estimation [25,43], etc. (2) The attention mechanism in
our transformer backbone facilitates a multi-level and more comprehensive in-
teraction between the exemplar and search features. In this way, the backbone
features for the search and exemplar image will be dependent on each other in
every transformer block, resulting in a designated examplar(search)-sensitive
rather than general search(examplar) feature, which is the hidden factor for
the effectiveness of the seemingly simple transformer backbone. (3) Removing
transformer head reduces training expenses. On one hand, the SimTrack can
reach the same training loss or testing accuracy with only half training epochs as
the baseline model because information interaction happens in a well-initialized
transformer backbone instead of a randomly-initialized transformer head. On

Backbone is All Your Need 3

the other hand, although adding information interaction in backbone will bring
additional computation, the additional computation is generally smaller than
that from a transformer head. (4) According to extensive experiments, Sim-
Track can get more accurate results with appropriate initialization than other
transformer-based trackers using the same transformer as Siamese backbone.

While the transformer-based backbone is capable of achieving sufficient fea-
ture learning and interaction between the exemplar and search jointly, the
down-sampling operation may cause unavoidable information loss for VOT,
which is a localization task and requires more object visual details instead of
only abstract/semantic visual concepts. To reduce the adverse effects of down-
sampling, we further present a foveal window strategy inspired by fovea centralis.
The fovea centralis is a small central region in the eyes, enabling human eyes
to capture more useful information from the central part of vision area. In our
paper, the centre area in the exemplar image contains more target-relevant
information and needs more attention accordingly. Therefore, we add a foveal
window at the central area to produce more diverse target patches, making the
patch sampling frequencies around the image centre higher than those around
the image border and improving the tracking performance.

In conclusion, our contributions are summarized as follows:

– We propose SimTrack, a Simplified Tracking architecture that feeds the se-
rialized exemplar and search into a transformer backbone for joint feature
learning and interaction. Compared with the existing Siamese tracking ar-
chitecture, SimTrack only has the one-branch backbone and removes the
existing interaction head, leading to a simpler framework with more power-
ful learning ability.

– We propose a foveal window strategy to remedy the information loss caused
by the down-sampling in SimTrack, which helps the transformer backbone
capture more details in important exemplar image areas.

– Extensive experiments on multiple datasets show the effectiveness of our
method. Our SimTrack achieves state-of-the-art performances with 70.5%
AUC on LaSOT [12], 55.6% AUC on TNL2K [48], 83.4% AUC on Track-
ingNet [35], 69.8% AO on GOT-10k [22] and 71.2% on UAV123 [34].

2 Related Work

2.1 Vision Transformer

Vaswani et.al. [42] originally proposed transformer and applied it in the ma-
chine translation task. The key character of the transformer is the self-attention
mechanism which learns the dependencies of all input tokens and captures the
global information in sequential data. Thanks to significantly more paralleliza-
tion and competitive performance, transformer becomes a prevailing architecture
in both language modeling [14,37] and vision community [15,41,6,5]. The first
convolution-free vision transformer, ViT [15], splits input images into fixed-size

4 Boyu Chen, Peixia Li et al.

patches, which are converted to multiple 1D input tokens. All these tokens are
concatenated with a class token and sent into a transformer encoder. After the
encoder, the class token is used for image classification. Later, DeiT [41] in-
troduces a distillation strategy to help transformers reduce the reliance on huge
training data. For object detection, DETR [4] treats the task as a sequential pre-
diction problem and achieves promising performance. To reduce the long training
time of DETR, deformable DETR [57] replaces the global attention to adaptive
local attention and speeds up the training process. Besides, transformer has
also shown their powerful potential in other research topics like self-supervised
learning [10,33], multi-module learning [36,24], etc.

2.2 Visual Object Tracking

Siamese networks is a widely-used two-branch architecture in a surge of track-
ing algorithms. Previous works [1,27,50,59,28,18,11,46,39] based on Siamese Net-
works [3] formulate VOT as a similarity matching problem and conduct the
interaction through cross-correlation. Concretely, SiameseFC [1] utilize the re-
sponse map from cross-correlation between the exemplar and search features
for target localization. The highest score on the response map generally indicts
the target position. In stead of directly getting the target position through the
response map, SiamRPN [27] and the follow-ups [59,18,11,52] send the response
map to Region Proposal Network (RPN) [38] to get a more accurate localization
and scale estimation. Later, GAT [16] and AutoMatch [54] tried to replace the
global cross-correlation with more effective structure to improve model perfor-
mance. Recently, there have been several notable transformer trackers [44,9,51]
which introduce the transformer to tracking framework for stronger information
interaction and achieve compelling results.

All the above-mentioned works introduce interaction between the exemplar
and search frames after the backbones. A recent work [17] adds multiple in-
teraction modellers inside the backbone through hand-designed sub-modules.
Our SimTrack also moves information interaction to the backbone but has the
following fundamental differences. First, our SimTrack is a more generic and
straightforward framework without using Siamese architecture or well-designed
interaction modules, which are both used in [17] and all above Siamese-based
methods. Second, our SimTrack utilizes pre-trained vision transformers for the
interaction instead of training the interaction module from scratch. Third, the
interaction between the exemplar and search exists in each block of our back-
bone. In contrast, the interaction modules are only added at the end of several
blocks in [17]. Fourth, there is only information flow from the exemplar feature
to the search feature in [17], while ours has bidirectional information interaction
between the exemplar and search features.

3 Proposed Method

Our SimTrack consists of a transformer backbone and a predictor, as shown
in Fig. 2 (b). The transformer backbone is used for feature extraction and in-

Backbone is All Your Need 5

formation interaction between the exemplar and search features, guiding the
network to learn a target-relevant search feature. After passing the backbone,
the output features corresponding to the search area are sent to a corner predic-
tor for target localization. For better understanding, we will first introduce our
baseline model in Sec. 3.1, which replaces the CNN backbone of STARK-S [51]
with a transformer backbone, and then show details of our SimTrack in Sec. 3.2
and the foveal window strategy for improving SimTrack in Sec. 3.3.

3.1 Baseline Model

STARK-S has no extra post-processing during inference, which is consistent
with our initial purpose to simplify the tracking framework. We replace the
backbone of STARK-S [51] from Res50 [21] to ViT [15] to get our baseline model
STARK-SV. Like other transformer-based trackers, the pipeline of STARK-SV
is shown in Fig. 1 (a). Given a video, we treat the first frame with ground truth
target box as exemplar frame. According to the target box, we crop an exemplar
Z ∈ RHz×Wz×3 from the first frame, where (Hz, Wz) is the input resolution of Z.
All following frames X ∈ RHx×Wx×3 are the search frames.

Image serialization. The two input images are serialized into input sequences
before the backbone. Specifically, similar to current vision transformers [15,41],
we reshape the images Z ∈ RHz×Wz×3 and X ∈ RHx×Wx×3 into two sequences

of flattened 2D patches Zp ∈ RNz×(P 2⋅3) and Xp ∈ RNx×(P 2⋅3), where (P,P) is
the patch resolution, Nz = HzWz/P

2 and Nx = HxWx/P
2 are patch number of

the exemplar and search images. The 2D patches are mapped to 1D tokens
with C dimensions through a linear projection. After adding the 1D tokens with
positional embedding [42], we get the input sequences of the backbone, including
the exemplar sequence e0 ∈ RNz×C and the search sequence s0 ∈ RNx×C .

Feature extraction with backbone. The transformer backbone consists of L
layers. We utilize el and sl to represent the input exemplar and search sequences
of the (l+1)th layer, l = 0, ..., L−1. The forward process of the exemplar feature
in one layer can be written as:

e∗ = el +Att(LN(el)),

el+1 = e∗ + FFN(LN(e∗)),
(1)

where FFN is a feed forward network, LN denotes Layernorm and Att is self-
attention module [42] (we remove LN in the following functions for simplify),

Att(el) = softmax(
(elWQ)(e

lWK)
T

√

d
)(elWV) , (2)

where 1/
√

d is the scaling factor, WQ ∈ RC×D, WK ∈ RC×D, WV ∈ RC×D are
project metrics to convert input sequence to query, key and value. Generally,
multi-head self-attention [42] is adopted to replace self-attention in Equ.(1). For

6 Boyu Chen, Peixia Li et al.

Predictor

Transformer-backbone

FW

search exemplar

Predictor

Backbone

Linear Projection of Flattened patch

+

search exemplar

Backbone

Transformer-head

p! p"+

(a) Baseline (b) Ours

+p! p"+

Linear Projection of Flattened patch

Fig. 2: The pipeline of the baseline model (a) and our proposed SimTrack (b).
‘FW’ in (b) denotes foveal window, ps and pe are position embedding of the
search and exemplar tokens. In (b), a transformer backbone is utilized to re-
place the Siamese backbone and transformer head in (a). Both exemplar and
search images in (b) are serialized into input sequences, which are sent to the
transformer backbone for joint feature extraction and interaction. Finally, the
target-relevant search feature is used for target localization through a predictor.

simplicity and better understanding, we use the self-attention module in our
descriptions. As we can see, the feature extraction of el only considers exemplar
information. The feed forward process of sl is the same as el. After passing
the input into the backbone, we get the output exemplar sequence eL and the
output search sequence sL.

Feature interaction with transformer head. The features eL ∈ RNz×D and
sL ∈ RNx×D interact with each other in the transformer head. We refer readers to
STARK-S [51] for more details of the transformer head in our baseline models.

Target localization with predictor. After transformer head, we get a target-
relevant search feature sL∗ ∈ RNx×D∗ , which is reshaped to Hx

s
×

Wx

s
×D∗ and

sent to a corner predictor. The corner predictor outputs two probability maps
for the top-left and bottom-right corners of the target box.

During offline training, a pair of images within a pre-defined frame range in
a video are randomly selected to serve as the exemplar and search frame. After
getting the predicted box bi on the search frame, the whole network is trained
through ℓ1 loss and generalized IoU loss [4],

L = λiouLiou(bi, b
∗
i) + λL1L1(bi, b

∗
i), (3)

where b∗i is the ground truth box, λiou and λL1 are loss weights, Liou is gener-
alized IoU loss and L1 is the ℓ1 loss.

Backbone is All Your Need 7

3.2 Simplified Tracking Framework

Our key idea is replacing the Siamese backbone and transformer head in the
baseline model with a unified transformer backbone, as shown in Fig. 2 (b). For
STARK-S, the function of the backbone is to provide a strong feature extraction.
The transformer head is responsible for information interaction between the
exemplar and search features. In our SimTrack, only a transformer backbone is
needed for joint feature and interaction learning. In the following, we show how
to apply vision transformer as a powerful backbone to VOT successfully and
create a more simplified framework. The input of our transformer backbone is
also a pair of images, the exemplar image Z ∈ RHz×Wz×3 and the search image
X ∈ RHx×Wx×3. Similarly, we first serialize the two images to input sequences
e0 ∈ RNz×C and s0 ∈ RNx×C as mentioned above.

Joint feature extraction and interaction with transformer backbone.
Different from the baseline model, we directly concatenate e0 and s0 along the
first dimension and send them to the transformer backbone together. The feed
forward process of (l + 1)th layer is:

[
e∗

s∗] = [
el

sl
] +Att([

el

sl
]) ,

[
el+1

sl+1] = [
e∗

s∗] + FFN ([
e∗

s∗]) .
(4)

The symbol of layer normalization is removed in Equ.(4) for simplify. The main
difference between Equ.(1) and Equ.(4) is the computation in Att(.),

Att([
el

sl
]) = softmax([

a(el, el), a(el, sl)
a(sl, el), a(sl, sl)

])([
elWV

slWV
]) , (5)

where a(x, y) = (xWQ)(yWK)
T
/

√

d. After converting Equ.(5), the exemplar
attention Att(el) and the search attention Att(sl) are,

Att(el) = softmax ([a(el, el), a(el, sl)]) [elWV , s
lWV]

T
,

Att(sl) = softmax ([a(sl, el), a(sl, sl)]) [elWV , s
lWV]

T
.

(6)

In the baseline model, the feature extraction of the exemplar and search
features are independent with each other as shown in Equ.(2). While, in our
transformer backbone, the feature learning of exemplar and search images in-
fluence each other through a(el, sl) and a(sl, el) in Equ.(6). Att(el) contains
information from sl and vice verse. The information interaction between the
exemplar and search features exists in every layer of our transformer backbone,
so there is no need to add additional interaction module after the backbone. We
directly send the output search feature sL to the predictor for target localization.

Distinguishable position embedding. It is a general paradigm to seam-
lessly transfer networks pre-trained from the classification task to provide a

8 Boyu Chen, Peixia Li et al.

stronger initialization for VOT. In our method, we also initialize our trans-
former backbone with pre-trained parameters. For the search image, the input
size (224 × 224) is the same with that in general vision transformers [15,41], so
the pre-trained position embedding p0 can be directly used for the search image
(ps = p0). However, the exemplar image is smaller than the search image, so
the pre-trained position embedding can not fit well for the exemplar image. Be-
sides, using the same pre-trained position embedding for both images provides
the backbone with no information to distinguish the two images. To solve the
issue, we add a learnable position embedding pe ∈ RNz×D to the exemplar fea-
ture, which is calculated by the spatial position (i, j) of the patch and the ratio
Rij of the target area in this patch (as depicted in Fig. 3 (b)),

pe = FCs(i, j,Rij), (7)

where pe denotes the position embedding of the exemplar feature, FCs are two
fully connected layers. After obtaining the position embedding pe and ps, we add
them to the embedding vectors. The resulting sequences of embedding vectors
serve as inputs to the transformer backbone.

3.3 Foveal Window Strategy

…

Z

Z*

Zp

Zp*

…

Foveal Window

i=1, j=1, Rij=1

i=0, j=2, Rij=0.5

Target Box
Patch 1
Patch 2

(a) Foveal window strategy (b) PosEmb input

Fig. 3: (a) the foveal window strategy and (b)
getting the inputs of FCs in Equ.(7).

The exemplar image con-
tains the target in the center
and a small amount of back-
ground around the target.
The down-sampling process
may divide the important tar-
get region into different parts.
To provide the transformer
backbone with more detailed
target information, we fur-
ther propose a foveal window
strategy on the exemplar im-
age to produce more diverse
target patches with accept-
able computational costs. As
shown in the second row of
Fig. 3(a), we crop a smaller

region Z∗ ∈ RHz
∗×Wz

∗×3 in
the center of the exemplar image and serialize Z∗ into image patches Z∗p ∈
RN∗z×(P 2⋅3), where N∗x = H

∗
xW

∗
x /P

2. The partitioning lines on Z∗ are located in
the center of those on the exemplar image Z, so as to ensure that the foveal
patches Z∗p contain different target information with the original patches Zp.
After getting the foveal patches Z∗p, we calculate their position embedding ac-
cording to Equ.(7). Then, we map Z∗p with the same linear projection as Zp and
add the mapped feature with the position embedding to get the foveal sequence

Backbone is All Your Need 9

e0∗. Finally, the input of transformer backbone includes the search sequence s0,
the exemplar sequence e0 and the foveal sequence e0∗. The exemplar image is
small in VOT, so the token number in e0 and e0∗ are modest as well.

4 Experiments

4.1 Implementation Details

Model. We evaluate our method on vision transformer [36] and produce
three variants of SimTrack: Sim-B/32, Sim-B/16, and Sim-L/14 with the ViT
base, base, and large model [15] as the backbone, respectively, where input im-
ages are split into 32 × 32, 16 × 16 and 14 × 14 patches, correspondingly. All
parameters in the backbone are initialized with pre-trained parameters from the
vision branch of CLIP [36]. For better comparison with other trackers, we add
another variant Sim-B/16∗ with fewer FLOPs than Sim-B/16. In Sim-B/16∗, we
remove the last four layers in the transformer backbone to reduce computation
costs. The predictor is exactly the same as that in STARK-S [51].

Training.Our SimTrack is implemented with Python 3.6.9 on PyTorch 1.8.1.
All experiments are conducted on a server with 8 16GB V100 GPUs. The same
as STARK-S, we train our models with training-splits of LaSOT [12], GOT-
10K [22], COCO2017 [30], and TrackingNet [35] for experiments on all testing
datasets except for GOT-10k Test. For GOT-10k Test, we follow the official
requirements and only use the train set of GOT-10k for model training. In Sim-
B/32, we set the input sizes of exemplar and search images as 128 × 128 and
320×320, corresponding to 22 and 52 times of the target bounding box, because
the larger stride 32 makes the output features having a smaller size. Too small
output size has a negative effect on target localization. In Sim-B/16, the input
sizes are 112× 112 and 224× 224, corresponding to 22 and 42 times of the target
bounding box. For Sim-L/14, the exemplar input size is reduced to 84×84 (1.52

times of target bounding box) to reduce computation costs. Without the special
declaration, all other experiments use the same input sizes as Sim-B/16. The size
of the cropped image for the foveal window is 64 × 64. All other training details
are the same with STARK-S [51] and shown in the supplementary materials.

Inference. Like STARK-S [51], there is no extra post-processing for all Sim-
Track models. The inference pipeline only consists of a forward pass and coordi-
nate transformation process. The input sizes of exemplar and search images are
consistent with those during offline training. Our Sim-B/16 can run in real-time
at more than 40 fps.

4.2 State-of-the-art Comparisons

We compare our SimTrack with other trackers on five datasets, including
LaSOT [12], TNL2K [48], TrackingNet [35], UAV123 [34] and GOT-10k [22].

LaSOT is a large-scale dataset with 1400 long videos in total. The test set
of LaSOT [12] consists of 280 sequences. Table 1 shows the AUC and normal-
ized precision scores (Pnorm) of all compared trackers. Our SimTrack can get a

10 Boyu Chen, Peixia Li et al.

Methods Net Size FLOPs
LaSOT TNL2K TrackingNet

AUC Pnorm AUC P AUC P

SiamFC [1] AlexNet 255 4.9G 33.6 42.0 29.5 28.6 57.1 66.3
ATOM [13] ◇ ResNet18 288 3.0G 51.5 57.6 40.1 39.2 70.3 64.8
DiMP [2] ◇ ResNet50 288 5.4G 56.9 65.0 44.7 43.4 74.0 68.7
SiamRPN++ [26] ResNet50 255 7.8G 49.6 56.9 41.3 41.2 73.3 69.4
SiamFC++ [50] GoogleNet 303 15.8G 54.4 56.9 38.6 36.9 75.4 70.5
Ocean [55] ◇ ResNet50 255 7.8G 56.0 65.0 38.4 37.7 70.3 68.8
SiamBAN [11] ResNet50 255 12.1G 51.4 52.1 41.0 41.7 - -
SiamAtt [52] ResNet50 255 7.8G 56.0 64.8 - - 75.2 -
TransT [9] ResNet50 256 29.3G 64.9 73.8 50.7 51.7 81.4 80.3
TrDiMP [45] ◇ ResNet50 352 18.2G 63.9 - - - 78.4 73.1
KeepTrack [32] ◇ ResNet50 464 28.7G 67.1 77.2 - - - -
AutoMatch [54] ResNet50 - - 58.3 - 47.2 43.5 76.0 72.6
TransInMo∗ [17] ResNet50 255 16.9G 65.7 76.0 52.0 52.7 - -
STARK-S [51] ResNet50 320 15.6G 65.8 - - - 80.3 -
STARK-ST [51] ◇ ResNet101 320 28.0G 67.1 77.0 - - 82.0 86.9

Sim-B/32 ViT-B/32 320 11.5G 66.2 76.1 51.1 48.1 79.1 83.9
Sim-B/16∗ ViT-B/16∗ 224 14.7G 68.7 77.5 53.7 52.6 81.5 86.0
Sim-B/16 ViT-B/16 224 25.0G 69.3 78.5 54.8 53.8 82.3 86.5
Sim-L/14 ViT-L/14 224 95.4G 70.5 79.7 55.6 55.7 83.4 87.4

Table 1: Performance comparisons with state-of-the-art trackers on the test set
of LaSOT [12], TNL2K [48] and TrackingNet [35]. ‘Size’ means the size of search
image, ‘FLOPs’ shows the computation costs of backbone and transformer head.
For methods without transformer head, ‘FLOPs’ shows the computation costs
from the backbone. AUC, Pnorm and P are AUC, normalized precision and
precision. Sim-B/16∗ denotes removing the last four layers of the transformer-
backbone in Sim-B/16 to reduce FLOPs. Trackers shown with ◇ have online
update modules. Red, green and blue fonts indicate the top-3 methods.

competitive or even better performance compared with state-of-the-art trackers.
Our Sim-B/16∗ outperforms all compared trackers with a simpler framework
and lower computation costs. Our Sim-B/16 achieves a new state-of-the-art re-
sult, 69.3% AUC score and 78.5% normalized precision score, with acceptable
computation costs. After using the larger model ViT-L/14, our Sim-L/14 can
get a much higher performance, 70.5% AUC score and 79.7% normalized preci-
sion score. We are the first to exploit such a large model and demonstrate its
effectiveness in visual object tracking.

TNL2K is a recently published datasets which composes of 3000 sequences.
We evaluate our SimTrack on the test set with 700 videos. From Tab. 1, Sim-
Track performs the best among all compared trackers. The model with ViT-B/16
exceeds 2.8 AUC points than the highest AUC score (52.0%) of all compared
trackers. Leveraging a larger model can further improve the AUC score to 55.6%.

TrackingNet is another large-scale dataset consists of 511 videos in the test
set. The test dataset is not publicly available, so results should be submitted to

Backbone is All Your Need 11

SiamFC SiamRPN SiamFC++ DiMP TrDiMP TransT Ours Ours
[1] [27] [50] [2] [45] [9] ViT-B/16 ViT-L/14

AUC↑ 48.5 55.7 63.1 65.4 67.5 68.1 69.8 71.2
Pre↑ 64.8 71.0 76.9 85.6 87.2 87.6 89.6 91.6

Table 2: Performance comparisons on UAV123 [34] dataset. Red, green and blue
fonts indicate the top-3 methods.

SiamFC SiamRPN SiamFC++ DiMP TrDiMP STARK-S Ours Ours
[1] [27] [50] [2] [45] [51] ViT-B/16 ViT-L/14

AO↑ 34.8 46.3 59.5 61.1 67.1 67.2 68.6 69.8
SR0.5 ↑ 35.3 40.4 69.5 71.7 77.7 76.1 78.9 78.8
SR0.75 ↑ 9.8 14.4 47.9 49.2 58.3 61.2 62.4 66.0

Table 3: Experimental results on GOT-10k Test [22] dataset.

an online server for performance evaluation. Compared with the other trackers
with complicated interaction modules, our SimTrack is a more simple and generic
framework, yet achieves competitive performance. By leveraging a larger model,
Sim-L/14 outperforms all compared trackers including those with online update.

UAV123 provides 123 aerial videos captured from a UAV platform. In Table 2,
two versions of our method both achieve better AUC scores (69.8 and 71.2) than
the highest AUC score (68.1) of all compared algorithms.

GOT-10k requires training trackers with only the train subset and testing
models through an evaluation server. We follow this policy for all experiments
on GOT-10k. As shown in Table 3, our tracker with ViT-B/16 obtains the best
performance. When leveraging a larger model ViT-L/14, our model can further
improve the performance to 69.8 AUC score.

4.3 Ablation Study and Analysis

Simplified Framework vs. STARK-SV. To remove concerns about back-
bone, we compare our method with the baseline tracker STARK-SV [51] using
the same backbone architecture. In Table 4, our design can consistently get signif-
icant performance gains with similar or even fewer computation costs. Our three
variations with ViT-B/32, ViT-B/16 and ViT-L/14 as backbone outperforms
STARK-SV for 3.7/3.1, 2.5/2.6 and 1.3/1.6 AUC points on LaSOT/TNL2K
dataset, respectively, demonstrating the effectiveness and efficiency of our method.

Training Loss & Accuracy. In Fig. 6, we show the training losses and AUC
scores of the baseline model STARK-SV and our method ‘Ours’ on the LaSOT
dataset. Both the two trackers utilize ViT-B/16 as the backbone. We can see
that ‘Ours’ uses fewer training epochs to get the same training loss with STARK-
SV. When training models for the same epochs, ‘Ours’ can get lower training
losses than STARK-SV. In terms of testing accuracy, training our model for

12 Boyu Chen, Peixia Li et al.

Backbone FLOPs
LaSOT TNL2K

AUC↑ Pnorm↑ P↑ AUC↑ P↑

STARK-SV ViT-B/32 13.3G 62.5 72.1 64.0 48.0 44.0
Ours ViT-B/32 11.5G 66.2 (+3.7) 76.1 (+4.0) 68.8 (+4.8) 51.1 (+3.1) 48.1 (+4.1)

STARK-SV ViT-B/16 25.6G 66.8 75.7 70.6 52.2 51.1
Ours ViT-B/16 23.4G 69.3 (+2.5) 78.5 (+2.8) 74.0 (+3.4) 54.8 (+2.6) 53.8 (+2.7)

STARK-SV ViT-L/14 95.6G 69.2 78.2 74.3 54.0 54.1
Ours ViT-L/14 95.4G 70.5 (+1.3) 79.7 (+1.5) 76.2 (+1.9) 55.6 (+1.6) 55.7 (+1.6)

Table 4: Ablation study about our simplified framework and the baseline model
STARK-S [51]. ‘FLOPs’ shows computation costs of different methods, AUC,
Pnorm and P respectively denote AUC, normalized precision and precision.

#Num ① ② ③ ④ ⑤

Pretrain DeiT Moco SLIP CLIP MAE

LaSOT
AUC 66.9 66.4 67.6 69.3 70.3
Prec 70.3 69.4 71.0 74.0 75.5

TNL2K
AUC 51.9 51.9 53.4 54.8 55.7
Prec 49.6 49.4 51.8 53.8 55.8

Table 5: The AUC/Pre scores of SimTrack
(with ViT-B/16 as backbone) when using
different pre-training weights.

Im
ag

eN
et

to
p-

1
ac

cu
ra

cy
 (%

)

FLOPs (G)

82

80

78

76

74

72

70

68

0 1 2 3 4 5 10 15 16 17 18 19
20

Res50

Res18

X50-
32x4d

X101-64x4d

Deit-Tiny

Deit-Small

Deit-Base

GLiT-Tiny

GLiT-Small

GliT-Base

Vit-Base

Deit

GLiT

0 400 500

Loss

0.70

0.51

200

Ours AUC

Base AUC
0.00

0 100 200 300 400 500

AUC

epoch
(a) Training loss

70.0

62.0

64.0

66.0

68.0

0.00

0.51

0.70

Loss

Ours Loss

Base Loss

Table 6: The training loss and AUC
(on LaSOT) in the Y-axis for differ-
ent training epochs (X-axis).

200 epochs is enough to get the same AUC score (66.8% vs. 66.8%) with the
baseline model trained for 500 epochs. We think the main reason is ‘Ours’ does
not have a randomly initialized transformer head. The transformer head without
pre-training needs more training epochs to get a good performance.
Results with Other Transformer Backbones. We evaluate our framework
with Swin Transformer [31] and Pyramid Vision Transformer (PVT) [47]. For
Swin Transformer, we made a necessary adaption, considering the shifted win-
dow strategy. We remove the a(el, sl) and slWV in the first function of Eq.(6),
which has less influence according to our experiments (from 69.3% to 69.1%
AUC score on LaSOT for SimTrack-ViT). The attention of each search token is
calculated with the tokens inside the local window and those from exemplar fea-
tures. During attention calculation, the exemplar features are pooled to the size
of the local window. For PVT, we reduce the reduction ratio of SRA module for
the exemplar by half, to keep a reasonable exemplar size. In the Table 7, Sim-
Track with PVT-Medium is denoted as PVT-M and SimTrack with Swin-Base
is denoted as Swin-B. PVT-M gets comparable AUC scores with fewer FLOPs,
and Swin-B has higher AUC scores with similar FLOPs to STARK-S on both
datasets, demonstrating the good generalization of our SimTrack.

Different Pre-training. We evaluate our SimTrack when using ViT-B/16 as
backbone and initializing the backbone with parameters pre-trained with several

Backbone is All Your Need 13

DiMP TrDiMP TransT STARK-S PVT-M Swin-B

FLOPs 5.4G 18.2G 29.3G 15.6G 8.9G 15.0G

LaSOT 56.9 63.9 64.9 65.8 66.6 68.3

UAV123 65.4 67.5 68.1 68.2 68.5 69.4

Table 7: The AUC scores and FLOPs of SimTrack using PVT and Swin-
Transformer as backbone on LaSOT and UAV123 dataset.

Ours

exemplar search 2nd 4th 6th 8th 10th 12th

Base

Ours

Base

Fig. 4: The images in different columns are the exemplar image, search image,
target-relevant attention maps from the 2nd,4th,6th,8th,10th,12th(last) layer
of the transformer backbone. Details can be found in supplementary materials.

recent methods, including DeiT [41], MOCO-V3 [10], SLIP [33], CLIP [36], and
MAE [19]. From Table 5, all of these versions achieve competitive performance
with state-of-the-art trackers on the two datasets. However, the pre-trained pa-
rameters from MAE show the best performance, suggesting that appropriate
parameter initialization is helpful to the training of SimTrack.

Component-wise Analysis. To prove the efficiency of our method, we perform
a component-wise analysis on the TNL2K [48] benchmark, as shown in Table 8.
The ‘Base’ means STARK-SV with ViT-B/16, which obtains an AUC score of
52.2. In ②, ‘+Sim’ indicates using our SimTrack framework without adding the
distinguishable position embedding or foveal window strategy. It brings signifi-
cant gains, i.e. 1.3/1.4 point in terms of AUC/Pre score, and verifies the effec-
tiveness of our framework. Adding our position embedding helps model performs
slightly better (③ vs. ②). Furthermore, the foveal window strategy brings an im-
provement of 0.8 point on AUC score in ④. This shows using more detailed target
patches at the beginning contributes to improving accuracy.

Decoder Number. We analyze the necessity of introducing transformer de-
coders in our SimTrack. Specifically, we add a transformer decoder at the end
of our backbone for further information interaction. In the decoder, the search
features from the backbone are used to get query values. The exemplar fea-
tures are adopt to calculate key and value. Through changing the layer number
of the decoder from 0 to 6, the performance changes less. This shows another
information interaction module is unnecessary in our framework, because our
transformer backbone can provide enough information interaction between the
search and exemplar features.

14 Boyu Chen, Peixia Li et al.

#Num Com TNL2K↑

① Base 52.2/51.1
② +Sim 53.5/52.5
③ +PosEm 54.0/53.1
④ +FW 54.8/53.8

Table 8: Component-
wise analysis. AUC/Pre
scores are reported re-
spectively. The results
demonstrate that each
component is important
in our framework.

#Num Dec TNL2K↑

① 0 54.8/53.8
② 1 54.8/54.2
③ 3 54.6/54.0
④ 6 54.7/54.3

Table 9: The influence
of introducing decoders
in SimTrack. With suf-
ficient interaction in the
transformer backbone,
decoder becomes redun-
dant for SimTrack.

#Num Ratio TNL2K↑

① 100% 54.8/53.8
② 50% 52.3/50.4
③ 25% 49.8/46.2

Table 10: Analysis of
information interaction
ratio in backbone. ① is
ours with interaction in
100% blocks. ② and ③
reduce the number of in-
teraction blocks to 50%
and 25%.

Dense or Sparse Information Interaction. The information interaction be-
tween the exemplar and search features exist in all twelve blocks in our Sim-
B/16, shown as ① in Table 10. In ②, we only enable the interaction in the
2nd,4th,6th,8th,10th and 12th block, removing half of the interaction in ①. As
we can see, using less information interaction leads to 2.5 points AUC drop.
When we further reduce half interaction in ②, the AUC score drops another 2.5
points in ③. The experiments show that comprehension information interaction
helps to improve the tracking performance in SimTrack.

Visualization. Fig. 4 shows the target-relevant area in the search region for dif-
ferent layers. Our architecture can gradually and quickly focus on the designated
target and keep following the target in the following layers. The visualization
maps show that the Siamese backbone in ‘base’ tends to learn general-object
sensitive features instead of designated-target sensitive features and no informa-
tion interaction hinders the backbone from ‘sensing’ the target during feature
learning. By contrast, ‘Ours’ can produce designated-target sensitive features
thanks to the information interaction from the first block to the last block.

5 Conclusions

This work presents SimTrack, a simple yet effective framework for visual
object tracking. By leveraging a transformer backbone for joint feature learn-
ing and information interaction, our approach streamlines the tracking pipeline
and eliminates most of the specialization in current tracking methods. While
it obtains compelling results against well-established baselines on five tracking
benchmarks, both architecture and training techniques can be optimized for
further performance improvements

Acknowledgement. This work was supported by the Australian Research Coun-
cil Grant DP200103223, Australian Medical Research Future Fund MRFAI000085,
CRC-P Smart Material Recovery Facility (SMRF) – Curby Soft Plastics, and
CRC-P ARIA - Bionic Visual-Spatial Prosthesis for the Blind.

Backbone is All Your Need 15

References

1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-
convolutional siamese networks for object tracking. In: ECCV (2016)

2. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model
prediction for tracking. In: ICCV (2019)

3. Bromley, J., Guyon, I., Lecun, Y., Säckinger, E., Shah, R.: Signature verification
using a siamese time delay neural network. In: NeurIPS. pp. 737–744 (1993)

4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J. (eds.) ECCV (2020)

5. Chen, B., Li, P., Li, B., Li, C., Bai, L., Lin, C., Sun, M., Yan, J., Ouyang, W.:
Psvit: Better vision transformer via token pooling and attention sharing. arXiv
preprint arXiv:2108.03428 (2021)

6. Chen, B., Li, P., Li, C., Li, B., Bai, L., Lin, C., Sun, M., Yan, J., Ouyang, W.:
Glit: Neural architecture search for global and local image transformer. In: ICCV
(2021)

7. Chen, B., Wang, D., Li, P., Wang, S., Lu, H.: Real-time’actor-critic’tracking. In:
ECCV (2018)

8. Chen, T., Saxena, S., Li, L., Fleet, D.J., Hinton, G.: Pix2seq: A language modeling
framework for object detection. arXiv preprint arXiv:2109.10852 (2021)

9. Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In:
CVPR (2021)

10. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision
transformers. In: ICCV (2021)

11. Chen, Z., Zhong, B., Li, G., Zhang, S., Ji, R.: Siamese box adaptive network for
visual tracking. In: CVPR (2020)

12. Choi, J., Kwon, J., Lee, K.M.: Deep meta learning for real-time visual tracking
based on target-specific feature space. CoRR abs/1712.09153 (2017)

13. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ATOM: accurate tracking by
overlap maximization. In: CVPR (2019)

14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

15. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

16. Guo, D., Shao, Y., Cui, Y., Wang, Z., Zhang, L., Shen, C.: Graph attention track-
ing. In: CVPR (2021)

17. Guo, M., Zhang, Z., Fan, H., Jing, L., Lyu, Y., Li, B., Hu, W.: Learning target-
aware representation for visual tracking via informative interactions. arXiv preprint
arXiv:2201.02526 (2022)

18. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic
siamese network for visual object tracking. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1763–1771 (2017)

19. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: CVPR (2022)

20. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV (2017)

16 Boyu Chen, Peixia Li et al.

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

22. Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for
generic object tracking in the wild. CoRR abs/1810.11981 (2018)

23. Jaegle, A., Borgeaud, S., Alayrac, J.B., Doersch, C., Ionescu, C., Ding, D., Kop-
pula, S., Zoran, D., Brock, A., Shelhamer, E., et al.: Perceiver io: A general archi-
tecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795 (2021)

24. Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., Carion, N.: Mdetr-
modulated detection for end-to-end multi-modal understanding. In: ICCV (2021)

25. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth
prediction with fully convolutional residual networks. In: 2016 Fourth international
conference on 3D vision (3DV). pp. 239–248. IEEE (2016)

26. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: Evolution of
siamese visual tracking with very deep networks. In: CVPR (2019)

27. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with
siamese region proposal network. In: CVPR (2018)

28. Li, P., Chen, B., Ouyang, W., Wang, D., Yang, X., Lu, H.: Gradnet: Gradient-
guided network for visual object tracking. In: ICCV (2019)

29. Li, P., Wang, D., Wang, L., Lu, H.: Deep visual tracking: Review and experimental
comparison. Pattern Recognition 76, 323–338 (2018)

30. Lin, T., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: ECCV (2014)

31. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

32. Mayer, C., Danelljan, M., Paudel, D.P., Van Gool, L.: Learning target candidate
association to keep track of what not to track. In: ICCV (2021)

33. Mu, N., Kirillov, A., Wagner, D., Xie, S.: Slip: Self-supervision meets language-
image pre-training. arXiv preprint arXiv:2112.12750 (2021)

34. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking.
In: ECCV (2016)

35. Müller, M., Bibi, A., Giancola, S., Al-Subaihi, S., Ghanem, B.: Trackingnet: A
large-scale dataset and benchmark for object tracking in the wild. In: ECCV (2018)

36. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021)

37. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language un-
derstanding by generative pre-training (2018)

38. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems 28 (2015)

39. Shen, Q., Qiao, L., Guo, J., Li, P., Li, X., Li, B., Feng, W., Gan, W., Wu, W.,
Ouyang, W.: Unsupervised learning of accurate siamese tracking. In: CVPR (2022)

40. Tang, S., Chen, D., Bai, L., Liu, K., Ge, Y., Ouyang, W.: Mutual crf-gnn for
few-shot learning. In: CVPR (2021)

41. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: ICML (2021)

42. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017)

43. Wang, L., Zhang, J., Wang, O., Lin, Z., Lu, H.: Sdc-depth: Semantic divide-and-
conquer network for monocular depth estimation. In: CVPR (2020)

Backbone is All Your Need 17

44. Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: Exploiting
temporal context for robust visual tracking. In: CVPR (2021)

45. Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: Exploiting
temporal context for robust visual tracking. In: ICCV (2021)

46. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.S.: Fast online object
tracking and segmentation: A unifying approach. In: CVPR (2019)

47. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In: ICCV (2021)

48. Wang, X., Shu, X., Zhang, Z., Jiang, B., Wang, Y., Tian, Y., Wu, F.: Towards
more flexible and accurate object tracking with natural language: Algorithms and
benchmark. In: CVPR (2021)

49. Wang, Y., Tang, S., Zhu, F., Bai, L., Zhao, R., Qi, D., Ouyang, W.: Revisiting the
transferability of supervised pretraining: an mlp perspective. In: CVPR (2022)

50. Xu, Y., Wang, Z., Li, Z., Ye, Y., Yu, G.: Siamfc++: Towards robust and accurate
visual tracking with target estimation guidelines. In: AAAI (2020)

51. Yan, B., Peng, H., Fu, J., Wang, D., Lu, H.: Learning spatio-temporal transformer
for visual tracking. arXiv preprint arXiv:2103.17154 (2021)

52. Yu, Y., Xiong, Y., Huang, W., Scott, M.R.: Deformable siamese attention networks
for visual object tracking. In: CVPR (2020)

53. Zhang, Z., Cui, Z., Xu, C., Jie, Z., Li, X., Yang, J.: Joint task-recursive learning
for semantic segmentation and depth estimation. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 235–251 (2018)

54. Zhang, Z., Liu, Y., Wang, X., Li, B., Hu, W.: Learn to match: Automatic matching
network design for visual tracking. In: ICCV (2021)

55. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: Object-aware anchor-free track-
ing. In: ECCV (2020)

56. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T.,
Torr, P.H., et al.: Rethinking semantic segmentation from a sequence-to-sequence
perspective with transformers. In: CVPR (2021)

57. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020)

58. Zhu, X., Zhu, J., Li, H., Wu, X., Wang, X., Li, H., Wang, X., Dai, J.: Uni-perceiver:
Pre-training unified architecture for generic perception for zero-shot and few-shot
tasks. arXiv preprint arXiv:2112.01522 (2021)

59. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese
networks for visual object tracking. In: ECCV (2018)

	Backbone is All Your Need: A Simplified Architecture for Visual Object Tracking

