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Abstract. The historical trajectories previously passing through a lo-
cation may help infer the future trajectory of an agent currently at this
location. Despite great improvements in trajectory forecasting with the
guidance of high-definition maps, only a few works have explored such
local historical information. In this work, we re-introduce this informa-
tion as a new type of input data for trajectory forecasting systems: the
local behavior data, which we conceptualize as a collection of location-
specific historical trajectories. Local behavior data helps the systems em-
phasize the prediction locality and better understand the impact of static
map objects on moving agents. We propose a novel local-behavior-aware
(LBA) prediction framework that improves forecasting accuracy by fus-
ing information from observed trajectories, HD maps, and local behavior
data. Also, where such historical data is insufficient or unavailable, we
employ a local-behavior-free (LBF) prediction framework, which adopts
a knowledge-distillation-based architecture to infer the impact of missing
data. Extensive experiments demonstrate that upgrading existing meth-
ods with these two frameworks significantly improves their performances.
Especially, the LBA framework boosts the SOTA methods’ performance
on the nuScenes dataset by at least 14% for the K = 1 metrics. 3
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1 Introduction

Trajectory forecasting aims to predict an agent’s future trajectory based on its
past trajectory and surrounding scene information. This task is essential in a
variety of applications, including self-driving cars [27], surveillance systems [8],
robotics [2], and human behavior analysis [36]. Prior prediction systems pri-
marily use deep-learning-based models (e.g., LSTM, temporal convolutions) to
exploit limited information such as past trajectories [1,21,30]. Recent efforts
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Fig. 1: A) Compared to previous works that mostly rely on HD maps and agents’
past trajectories, we additionally input the local behavior data to the prediction
framework. B) For agents to be predicted in the scene, we follow these steps to
retrieve their local behavior data for the framework input composition.

also reveal that forecasting ability will improve as more scene information is
introduced into the input. One type of scene information, for example, is the
past trajectories of a target agent’s neighboring agents. To date, many graph-
neural-network-based methods have explored the potential of agents’ motion
features and interactive motion relations to improve predictions [20,35,42]. Re-
cently, high-definition (HD) maps are incorporated as an additional type of scene
information [9,11,13,23,41] to provide geometric priors.

Besides the widely used HD maps and agents’ past trajectories, we propose a
novel Local-Behavior-Aware (LBA) prediction framework that takes a new type
of scene information as the input, which we term as local behavior data. The lo-
cal behavior data is defined as a collection of historical trajectories at an agent’s
current location. Fig. 1 (A) shows the three components of the LBA framework
input. Taking local behavior data as the input brings two benefits to the task.
First, the data provides location-specific motion patterns, which helps the model
effectively narrow down the search space for future trajectories. Most of the ex-
isting prediction models solely rely on the features learned from the static HD
map to infer such information [15,10,13]. In comparison, taking local behavior
data as the input immediately equips the model with this information, making
the model more tractable and robust. Second, local behavior data provides com-
plementary information to augment static maps into dynamic behavioral maps.
The map prior in the current literature is limited to static geometric informa-
tion. The rich dynamic information brought by this new input would help the
model better understand the impact of map objects on moving agents.

Many car companies and navigation apps are collecting such local behavior
data. Yet, sometimes this data is insufficient or is yet to be gathered (e.g. when
a self-driving car explores new areas). Therefore, we further propose a Local-
Behavior-Free (LBF) prediction framework that only takes the current agents’
observed trajectories and HD maps as the input, when the local behavior data
is unavailable. Inspired by recent development in knowledge distillation, we use
our pre-trained LBA prediction framework as the teacher network during the
training phase. This teacher network guides the LBF student network in inferring
the features of the absent local behavior data. The intuition behind this design is
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that a traffic agent’s movement at a particular location is confined to a limited
number of possibilities. The teacher network essentially provides the ground
truth of the movement pattern, making it plausible for the student network to
learn the inference of the pattern given the current scene information.

LBA and LBF frameworks both have strong generalizability to be adopted
by a wide range of existing trajectory forecasting methods. In Sec. 4.2 and Sec.
5.2, we showcase the implementation methodology on how to upgrade existing
systems to the LBA/LBF framework respectively. We then implement and val-
idate the two frameworks based on three state-of-the-art trajectory forecasting
methods, P2T [9], LaneGCN [23], and DenseTNT [15].

In summary, this work has three major contributions to the literature:

– We propose a Local-Behavior-Aware prediction framework. It enables most
of the existing methods to incorporate the local behavior data, a new type
of system input which contains the local historical information.

– We further introduce a Local-Behavior-Free prediction framework, which
adopts a knowledge-distillation-based architecture to infer local behavioral
information when it is temporarily unavailable.

– We conduct extensive experiments on published benchmarks (Argoverse [6],
nuScenes [3]), and validate that upgrading the SOTA methods to LBA/LBF
frameworks consistently improves their performances by significant mar-
gins on various metrics. Especially, the LBA framework improves the SOTA
methods on the nuScenes dataset by at least 14% on the K=1 metrics.

2 Related Work

2.1 Historical Behaviors in Trajectory Forecasting

Historical behaviors are very helpful to trajectory forecasting since they reveal
the motion pattern of agents. Several previous works have made significant
progress in this direction by adopting memory-based designs. MANTRA [28]
uses the observed past trajectories and the map as the key to query the pos-
sible hidden features of future trajectories. Similarly, Zhao et al. [45] build an
expert repository to retrieve the possible destinations by matching the current
trajectory with the ones in the repository. MemoNet [40] also considers memo-
rizing the destinations of each agent and first applies the memory mechanism to
multi-agent trajectory forecasting. Compared to those memory-based methods,
our work: i) regards the historical behaviors as system inputs to benefit the task
from the perspective of enriching scene information; ii) directly uses geometric
coordinates to query related historical information which emphasizes the data
locality and is more interpretable and robust.

2.2 Scene Representation in Trajectory Forecasting

To use a new type of scene information in systems requires fusing it with existing
scene information sources. After reviewing how scene information is encoded in
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previous methods, we see two main types of scene representations: 1) rasterized-
image-based representations [5,20], 2) graph-based representations [11,12,23,39].
Rasterized-image-based representations render static HD maps and motion data
into a birds’ eye view (BEV) image, using various colors to represent different
objects. Systems with this scene representation tend to use standard convolu-
tional neural networks (CNNs) backbones to extract scene features [5,9,13,20,31].
These methods transform scenes into image coordinates systems.

Graph-based scene representations become popular with the recent develop-
ment of graph learning [34] and attention mechanism [37]. These methods build
a graph that can be either directional or non-directional, and use techniques
such as graph neural network (GNN) [34] or attention-based operations [37] to
enable the interaction among map objects and agents. The nodes are the se-
mantic map objects, e.g., lane segments and agents. The edges are defined by
heuristics, which can be the spatial distances between the two nodes or the
semantic labels of the two nodes. Systems using graph-based scene representa-
tions [11,12,15,23,44] independently encode each map object to make the graph
more informative. Graph-based scene representations have an outstanding infor-
mation fusion capability and are substantially explored recently.

Other methods that do not strictly fall into the above two categories can
share some properties with one or both of them. For example, TPCN [41] uses
point cloud representations for the scene and does not manually specify the in-
teraction structures. Yet, by using PointNet++ [32] to aggregate each point’s
neighborhood information, TPCN still technically defines local complete sub-
graphs for the scene where each point is a node connected with its neighbors.

To show the generalizability of the proposed frameworks, in this work we
introduce an implementation methodology for upgrading forecasting systems
that use either rasterized-image-based or graph-based scene representations to
the LBA and LBF frameworks in Sec 4.2 and 5.2 respectively.

2.3 Knowledge Distillation

Our LBF framework is inspired by the recent study of knowledge distillation
(KD). Knowledge distillation is a technique that compresses a larger teacher net-
work to a smaller student network by urging the student to mimic the teacher
at the intermediate feature or output level [19]. KD is widely used for vari-
ous tasks, including object detection [7,16], semantic segmentation [18,25] and
tracking [26]. Its usage is still being explored. For example, researchers start to
use KD for collaborative perception tasks [22]. In our work, the proposed LBF
framework uses KD in the trajectory forecasting task. Compared to previous
works that pay more attention to model compression, we seek to compress the
volume of input data. We use the offline framework as the teacher network, which
takes each agent’s local behavior data as the input along with HD maps and the
agents’ observed trajectories, while the student network (i.e., the online frame-
work) only uses the later two data modalities as the input without requiring local
behavior data. Our experiments show that KD-based information compression
significantly boosts the performance of trajectory forecasting.
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3 Formulation of Local Behavior

In trajectory forecasting, the observed trajectories of the agents previously pass-
ing through a location may help infer the future trajectory of an agent currently
at the location. In this work, we collect such historical information and reformu-
late it to make it become one of the inputs for the trajectory forecasting system.
We name this new type of scene information as the local behavior data. In this
section, we introduce its formulation and the methodology about how to retrieve
such data from existing datasets.

Consider a trajectory forecasting dataset with S scenes and the pth scene has
Kp agents. The observed trajectory and ground truth future trajectory of agent i

in scene p are denoted respectively asX(i,p) andY(i,p), whereX(i,p)∈RT−×2 and
Y(i,p)∈RT+×2. Each X(i,p) or Y(i,p) consists of two-dimensional coordinates at
T− or T+ timestamps. Note that the coordinate system used for the trajectories
is the global coordinate system aligned with the global geometric map. In this

work, we specifically denote two special items in X(i,p). We use X
(i,p)
1 ∈ R2

to represent the location of agent i in scene s at the first timestamp, i.e., the

first observed location of the agent. Accordingly, we use X
(i,p)
T− ∈ R2 to denote

the agent location at timestamp T−, i.e., its current location. By gathering
all the observed trajectories in this dataset, we build a behavior database DB =
{X(i,p), p ∈ {1, 2, · · · , S}, i ∈ {1, 2, · · · ,Kp}}i,p. We can query the local behavior
from DB; namely, the local behavior data of agent i in scene p is

B(i,p)
ϵ = {X(j,q)|

∥∥∥X(i,p)
T− −X

(j,q)
1

∥∥∥
2
< ϵ,X(j,q) ∈ DB}, (1)

where ϵ is an adjustable hyper-parameter defining the radius of the neighboring

area of a location. The size of B(i,p)
ϵ refers to the number of observed trajectories

in B(i,p)
ϵ . Fig. 1 (B) shows the steps to query local behavior data from DB.

Fig. 2: General pipelines of: (a) the baseline model that uses HD map data and
observed trajectory data, which is typical for SOTA trajectory forecasting sys-
tems; (b) the LBA framework that takes local behavior data as an extra input;
(c) the LBF framework that uses estimated local behavior features during the
inference phase. (c) has fewer constraints in the use cases compared to (b).
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4 Local-Behavior-Aware Prediction

In real life, local behavior data has been widely collected by navigation apps and
car companies. To use such data to benefit the trajectory forecasting task, we
propose a Local-Behavior-Aware (LBA) prediction framework. In this section,
we first demonstrate the generic pipeline of the LBA prediction framework and
its major components. Then, we introduce the implementation strategy of the
framework which especially emphasizes the representation of local behavior data
and its corresponding scene encoder design.

4.1 Framework Pipeline

Like a typical prediction framework pipeline adopted by previous works [11,20,31]
(see Figure 2 (a)), our LBA framework follows an encoder-decoder structure (see
Figure 2 (b)). The encoder Θ extracts features from multiple scene information
sources. Then, the subsequent decoder Φ generates the predicted future trajec-
tories Ŷ based on the scene features.

The main difference between LBA and previous frameworks is the design of
the encoder Θ. Our scene encoder involves two steps: 1) scene modeling, which
assembles data from all three sources to generate a comprehensive representa-
tion of the current scene, and 2) scene feature extraction, which extracts the
high-dimensional features from the generated scene representation. The way to
represent a scene would largely determine the inner structure of a scene encoder.

In the current literature, the two most frequently used scene representations
are graph-based and rasterized-image-based representations. To show that
most of the existing forecasting systems can be upgraded to fit the proposed
LBA prediction framework, we will describe the implementation strategies for
the graph-based and rasterized-image-based systems.

4.2 Implementation

Graph-based Systems. The existing graph-based systems represent the whole
scene information into a scene graph G(V,E), where V is the node set that con-
tains both the map object node set VM and the agent node sets VX , and E is
the edge set that reflects the internal interactions between nodes. For each map
object node, its associated node attributes include the geometric coordinates,
reflecting the static physical location of the map object. For each agent node, its
associated node attributes include the two-dimensional coordinates across vari-
ous time-stamps, reflecting the movement information of the agent. The charac-
teristics of the graph-based representation are that i) it is compact and effective,
leading to an efficient system; ii) it enables effective modeling of the interactions
among objects (both map objects and agents) in the scene, which is crucial for
understanding complicated dynamic relations in traffic scenarios.

To implement the graph-based LBA prediction system, we emphasize the
strategy of incorporating local behavior data into the scene graph and enabling
the feature interaction between local behavior data and other nodes.
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Representation of Local Behavior Data. Given the ith agent in the

pth scene, we can query its specific local behavior data B(i,p)
ϵ from the behavior

database DB. For each individual observed trajectory in B(i,p)
ϵ , we create a local

behavior node. This step results in a local behavior node set VB, which has the
same size as the local behavior data.

Scene Encoder. As demonstrated in Fig. 3, the scene encoder of the LBA
graph-based systems includes the scene graph initialization, individual node fea-
ture extraction, and interactive node feature extraction. To initialize the local-
behavior-aware scene graph G′(V ′, E), we add the local behavior node set to the
original graph G(V,E), where the updated node set is V ′ = V ∪ VB and the up-
dated edge set is E′ = E∪{(vm, vn)|vm ∈ V ′, vn ∈ VB}m,n. With this graph, the
local behavior data will participate in the feature interaction procedure (some
methods may further update the edge set based on the node distance [22,43,15]).
The output of the scene encoder fS will also be local-behavior-aware. We use
three feature encoders (ΘM, ΘX , ΘB) to extract the features of map objects fM,
agents’ observed trajectories fX , and the local behavior data fB, respectively.
Here each scene node will obtain its corresponding node features individually.
To capture internal interactions, we use an interaction module I, which is either
GNN-based or attention-based, depending on the design of the original system.
The interaction module aggregates information from all three scene components.

The architecture of ΘM, ΘX and I can remain unchanged from the origi-
nal system structure for our implementation. As for ΘB, since each independent
behavior data is essentially an observed trajectory, we can directly adopt the
structure of the trajectory encoder ΘX in the system as our behavior encoder
structure. We can also use simple encoder structures, such as multi-layer per-
ceptrons (MLPs), to keep the system light-weight.

Fig. 3: Scene encoder implementation
for graph-based systems. In (c): i)
VB, VX , VM ⊆ V ′ are respectively the
behavior node set, motion node set, and
map node set; ii) NB is the size of the
local behavior data; iii) C is the feature
channel; iv) each trajectory in the local
behavior data is encoded independently.

Fig. 4: Scene encoder implementa-
tion for rasterized-image-based sys-
tems. (a) is generated with P2T’s [9]
official code. In (c): features of the
rasterized scene image and the local
behavior are concatenated channel-
wise to generate the final output fea-
tures.
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Rasterized-image-based Systems. Rasterized-image-based systems repre-
sent the whole scene information as a rasterized scene image (see an example in
Fig. 4). The rasterized scene image reflects the HD map objects (junctions, lanes)
and the agent trajectory information as BEV images with various colors accord-
ing to their semantic labels. This representation method essentially transforms a
global coordinate system into an image coordinate system, where each location
on the map can be represented by a pixel coordinate. The main characteristic
of rasterization-based representations is that they can leverage established CNN
backbones, such as ResNet [17], to extract image features.

To implement the rasterized-image-based LBA prediction system, we need
to render local behavior data to an image that has the same coordinate system
with the original scene image, which ensures consistency and compatibility.

Representation of Local Behavior Data. We seek to render local be-
havior data into a behavior probability map PB. It is an image whose pixel value
reflects an agent’s moving probability from the current pixel to another pixel in

the image. For the ith agent at the pth scene, P(i,p)
B is formulated as a single

channel image of size (H,W, 1) that shares the same coordinate system with the
rasterized scene image, where W,H are the width and the height of PB. To gen-
erate such a behavior probability map, we initialize each pixel value in the image

P(i,p)
B (x, y) to be 0. We then enumerate each trajectory fX ∈ B(i,p)

ϵ and add the

corresponding information into P(i,p)
B (x, y) by adding 1 to the pixel value once

each trajectory covers that pixel. In the end, we normalize P(i,p)
B by dividing

every pixel by the maximum value of the pixels, specifically

P(i,p)
B (x, y) =

P(i,p)
B (x, y)

max(P(i,p)
B (x, y))

, (2)

where 0 ≤ x < W, 0 ≤ y < H. Fig. 4 (b) illustrates the local behavior data of
the agent represented as a red rectangle in Fig. 4 (a). Since the configuration of
the rasterized scene image and the behavior probability map are the same, this
probability map indicates how likely, according to local behavior data, the agent
at the current pixel will pass a certain pixel on the scene image.

Scene Encoder. As shown in Fig. 4, the scene encoder of the rasterized
image-based LBA systems includes image rendering, image feature extraction,
and concatenation-based aggregation. To achieve scene modeling, we render both
the rasterized scene image and the behavior probability map. To comprehensively
extract scene features, we use two separate encoders, ΘS , which extracts features
from the rasterized scene image S, and ΘB, which extracts features from the
behavior probability map PB. The architecture of ΘS can remain identical with
the one in the original systems. To implement ΘB, we can adopt any established
images’ feature extraction networks, such as ResNet [17]. Afterwards, the output
of the two encoders will be concatenated channel-wise to build the output of the
scene encoder, which is now local-behavior-aware.
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5 Local-Behavior-Free Prediction

As mentioned in Sec 1, there will be scenarios where the local behavior data is
yet to be gathered or insufficient. To handle such situations, we propose a Local-
Behavior-Free (LBF) prediction framework based on knowledge distillation.

The training of the LBF prediction framework follows a teacher-student
structure. The teacher network is implemented using the LBA framework in-
troduced in Sec 4, which uses local behavior data as the third input; while the
student network only takes static HD map information and the agents’ observed
trajectories as the input. The knowledge-distillation-based training strategy en-
hances the training of the LBF prediction framework by urging the student
network to imitate the teacher network in the intermediate feature levels when
processing the same data samples.

The intuition behind this design is that given a specific location, the number
of possible movement patterns of an traffic agent is limited. With the guidance
from the teacher network that is trained on local behavior data, it is feasible for
the student network to learn the reasoning of the movement pattern based on
the static map objects and agents’ observed trajectories.

5.1 Framework Pipeline

The LBF framework includes a teacher network and a student network. See Fig.
2 (b), (c). The teacher network follows the LBA framework. For the student net-
work, we remove the input stream of local behavior data in the LBA framework
and add a behavior estimator ΩB to the pipeline. ΩB takes the intermediate scene
features f ′

S from the scene encoder Θ as the input, and outputs the estimated

local behavior features f̂B. Note that f ′
S is not involved with local behavioral

information. Next, we let f̂B join the scene encoder along with f ′
S for the final

feature generation. The scene encoder outputs the updated fS , which contains
the estimated local behavioral information, to the decoder Φ. The decoder then
processes fS and generates the predicted future trajectories Ŷ. The core step of
the LBF student network is to link the behavior estimator and the scene encoder.

5.2 Implementation

Like Sec 4.2, this section introduces the implementation of the student networks
in the LBF prediction framework based on two scene representations.

Graph-based Systems. In the teacher network (the LBA prediction system),
the local behavior data goes through an encoder to obtain behavior features fB.
In the student network (the LBF version), we use a behavior estimator ΩB to
estimate the behavior features even when the original local behavior data is not
available. We implement the behavior estimator ΩB by a graph neural network.
Its input includes the features of the map objects fM and the features of the
agents’ observed trajectories fX , which include all scene information in hand. It
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outputs the estimated behavior features f̂B. After fM and fX are interacted in
the interaction module, we aggregate its output f̂ ′

S and the estimated behavior

features f̂B in a fusion module Ψ to form the final scene feature fS . We implement
Ψ by an attention-based network. The pipeline of this procedure is shown in Fig.
5. During training, the estimated behavior features f̂B in the student network
can be supervised by the behavior features fB in the teacher network through a
knowledge-distillation loss.

Fig. 5: Local-Behavior-Free implementation
for graph-based systems. During training, f̂B
and fS can be supervised by the correspond-
ing features from the teacher network.

Fig. 6: Local-Behavior-Free im-
plementation for rasterization-
based systems.

Rasterized-image-based Systems. In the teacher network (the LBA predic-
tion system), the behavior probability map leads to behavior features fB. In the
student network (the LBF version), we use a behavior estimator ΩB to estimate
such behavior features even the behavior probability map is not available. We
implement the behavior estimator ΩB by a CNN-based network. Its input is the
output of the scene encoder ΘS , which is the intermediate scene feature f ′

S . Its

output is the estimated behavior features f̂B. We then concatenate f̂B and f ′
S to

form the final scene feature fS . The pipeline of this procedure is shown in Fig.
6. During training, the estimated behavior features f̂B in the student network
can be supervised by the behavior features fB in the teacher network through a
knowledge-distillation loss.

Note that both graph-based and rasterized-image-based LBF systems follow
the same design rationale: estimating local behavior data based on the other
known scene information. The difference between the two types of systems is in
the fusion step. In the graph-based system, we use a trainable fusion module;
and in the rasterized-image-based system, since the scene image and the behavior
probability map share the same coordinate system, we simply concatenate them.

5.3 Training with Knowledge Distillation

To train such a teacher-student framework, we pre-train an LBA prediction
network as the teacher network, and then use the intermediate features from the
teacher network as the supervision signals to guide the training of the student
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network. We consider features from the teacher network that are leveraged to
guide the student network training as Ft and the corresponding features from
the student network as Fs. Note that Fs may include but are not limited to the
reconstructed local behavior features and the the scene encoder’s outputs .

The training loss thereafter contains the trajectory forecasting loss Lpred,
which is defined by the original system and identical with the training loss of
the teacher network as well as a KD loss. In this work, we use ℓ2 loss as the
KD loss and set λkd as the adjustable weight of the KD loss. The overall loss
function aggregates the loss over all the samples; that is,

L = Σi

(
λkd

∥∥∥Fi
s − F̂i

t

∥∥∥
2
+ Li

pred

)
. (3)

6 Experiments

6.1 Experimental Setup

Datasets. We consider two widely used trajectory forecasting benchmarks,
nuScenes [3] and Argoverse [6]. nuScenes collected 1000 scenes. Each scene is
20s long with a sampling rate of 2 Hz. The instances for trajectory forecasting
tasks were split into train, validation and test splits, which respectively entail
32186, 8560 and 9041 instances. Each agent in the instances had 2s’ observed
trajectories and the ground truth of 6s’ future trajectories. Argoverse collected
over 30K scenarios. Each scenario is sampled at 10 Hz. The train/ val/ test splits
had 205942/ 39472/ 78143 sequences respectively. Each agent in the scene had
2s’ observed trajectories and the ground-truth of 3s’ future trajectories.

Database Construction. To evaluate local-behavior-aware (LBA) frame-
work without ground-truth data leakage, we only use the 2s’ observed trajec-
tories of all agents in each data split to build the behavior database DB for
each corresponding phase (e.g. testing phase only uses the test split). For the
local-behavior-free (LBF) framework, we only use the observed trajectories from
the training split during the training phase. Please see appendix for detailed
information of behavior database construction.

Metrics. We adopt three widely used metrics for quantitative evaluation:
minimum average displacement error among K predictions (minADEK), mini-
mum final displacement error among K predictions (minFDEK) and the miss-
ing rate (MR). minADE evaluates the minimum average prediction error of all
timestamps among the predicted K trajectories; minFDE is the minimum error
of the final position among the K predictions; MRK is the ratio of agents whose
minFDEK is larger than 2.0 meters.

6.2 Implementation Details

We pick three SOTA trajectory forecasting methods: LaneGCN [23], DenseTNT [15]
and P2T [9], and adapt them to our behavior-aware framework. We use their of-
ficial code packages as the implementation start code. The baseline performances
in Table 1 and 2 are reproduced by ourselves for variables controlling.
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LaneGCN and DenseTNT are graph-based methods. We use stacked linear
residual blocks mentioned in [23] as our behavior encoder EB for both methods.
In the LBF prediction, we use attention based architecture to implement the
behavior estimator ΩB as well as the auxiliary fusion module Ψ .

P2T is a rasterization-based method. We use behavioral probability map to
represent the local behavior data, and ResNet [17] as the encoder backbone to
extract features from the behavioral probability map. For the LBF prediction,
we use three 1D Convolutional Layers to implement the behavior estimator ΩB.

To train the network, we adopt the hyper-parameter configuration from each
method’s official instructions. More implementation details are in the appendix.

6.3 Evaluation

We evaluate LaneGCN and P2T on nuScenes (see the quantitative results in
Table 1). For Argoverse, we evaluate LaneGCN and DenseTNT (see Table 2).
We also show the qualitative evaluation in Fig. 7.

In all experiments, when upgraded to either the LBA or LBF framework, the
baseline methods significantly improve in performance. Unconventionally, our
proposed frameworks bring consistent improvements to various models (P2T,
LaneGCN, DenseTNT) across all metrics. This is a substantive progress com-
pared to previous methods, because SOTA methods [12,14,41,43] usually only
show improvements in one or some metrics but not all metrics. Furthermore, on
both datasets, the gains brought by local behavior data are consistently larger
on K = 1 metrics than on other metrics. This may result from the raise of aver-
age performance of the worst prediction among K predictions, as local behavior
data efficiently narrows down the solution search space (explained in Sec 1).

Table 1: Evaluation results on nuScenes [3] dataset test split.
Method Framework minADE1 minFDE1 minADE10 minFDE10

P2T [9]
Baseline 4.60 10.80 1.17 2.15

LBA 3.78 ↓ 18% 9.25 ↓ 14% 1.08 ↓ 8% 2.04 ↓ 5%
LBF 4.04 ↓ 12% 9.54 ↓ 12% 1.15 ↓ 2% 2.11 ↓ 2%

LaneGCN [23]
Baseline 6.17 12.34 1.82 2.98

LBA 2.72 ↓ 56% 6.78 ↓ 45% 0.95 ↓ 48% 1.85 ↓ 38%
LBF 5.58 ↓ 10% 11.47 ↓ 7% 1.67 ↓ 8% 2.66 ↓ 11%

Interestingly, the prediction performance of the LBF framework occasionally
surpasses that of the LBA framework, even though the LBF framework lacks
local behavior data input. Table 2 shows an example of this case, with the
LaneGCN results on Argoverse. Our educated conjecture is that sometimes the
LBF framework enjoys more data representativeness thanks to the reconstructed
behavioral features; whereas, in the meantime, the LBA framework may be using
pre-gathered local behavior data of a small size in its testing phase.

Besides the comparison with the baselines, we also show the comparison with
the other published works on the benchmarks; see Tables 3 and 4.
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Table 2: Evaluation results on Argoverse [6] dataset test split.
Method Framework minADE1 minFDE1 minADE6 minFDE6

LaneGCN [23]
Baseline 1.74 3.89 0.87 1.37

LBA 1.64 ↓ 6% 3.61 ↓ 7% 0.84 ↓ 3% 1.30 ↓ 5%
LBF 1.61 ↓ 7% 3.54 ↓ 9% 0.85 ↓ 2% 1.31 ↓ 4%

DenseTNT [15]
Baseline 1.70 3.72 0.90 1.33

LBA 1.65 ↓ 3% 3.57 ↓ 4% 0.88 ↓ 2% 1.26 ↓ 5%
LBF 1.67 ↓ 2% 3.63 ↓ 2% 0.89 ↓ 2% 1.29 ↓ 3%

Table 3: nuScenes benchmark compari-
son.

Method minADE10 MR5 MR10 minFDE1

P2T[9] 1.16 64% 46% 10.50
MHA-JAM[29] 1.24 59% 46% 8.57

SGNet[38] 1.40 67% 52% 9.25
Trajectron++[33] 1.51 70% 57% 9.52

M-SCOUT[4] 1.92 78% 78% 9.29
GOHOME[12] 1.15 57% 47% 6.99

P2T-LBA 1.08 57% 41% 9.25
P2T-LBF 1.15 61% 46% 9.37

LaneGCN-LBA 0.95 49% 36% 6.78
LaneGCN-LBF 1.67 75% 68% 11.47

Table 4: Argoverse benchmark
comparison.

Method minADE1 minADE6 Brier-FDE6

LaneRCNN[43] 1.69 0.90 2.15
DenseTNT[15] 1.68 0.88 1.98
GOHOME[12] 1.69 0.94 1.98

MMTransformer[24] 1.77 0.84 2.03
LaneGCN[23] 1.71 0.87 2.06

LaneGCN-LBA 1.64 0.84 2.00
LaneGCN-LBF 1.61 0.85 2.00
DenseTNT-LBA 1.65 0.88 1.93
DenseTNT-LBF 1.67 0.89 1.96

Fig. 7: LaneGCN qualitative results on
Argoverse val split.

Table 5: minFDE1 of LaneGCN
on Argoverse val split among
agents having different sizes of
local behavior data.

Size % of agents Baseline LBA

[0, 4) 24% 3.33 3.36 ↑ 1%
[4, 8) 14% 3.25 3.19 ↓ 2%
[8, 12) 10% 3.22 3.13 ↓ 3%
[12, 16) 9% 3.00 2.87 ↓ 4%
[16,∞) 43% 2.66 2.60 ↓ 2%

6.4 Ablation Study

We conduct the ablation study on the hyper-parameters regarding local behavior
data generation and our prediction frameworks.

Local Behavior Data Size. Regarding the relationship between prediction
performance and the local behavior data size of each agent, Table 5 shows: when
there is few local behavior data, prediction is not as accurate as the baseline;
but, even a small size of local behavior data can improve the prediction.

Local Range ϵ. The adjustable parameter ϵ defines the local radius (see Sec
3). See Table 6 for the impact of ϵ on LaneGCN performance with Argoverse test
split. When ϵ increases, the performance of the LBA framework first go up but
later go down. It matches our intuition that a large ϵ will introduce distractions.
The LBF framework, however, shows less confusion brought by the pre-trained
LBA network, demonstrating stronger robustness to ϵ.
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Knowledge Distillation Parameters. We study the impact of knowledge-
distillation-related parameters, i.e., the loss weight λkd and the number of times
that intermediate features are involved in the KD loss (denoted as KD times).
See the results in Table 7. Detailed information about the choices of interme-
diate features is in the appendix. We see that firstly, the knowledge distillation
structure does help the framework infer the impact of local behavior data. The
framework, across all parameter settings in Table 7, outperforms the baseline
method (in Table 2, row 1) and the model without KD loss (in Table 7, row 1).
Secondly, the comparatively similar results across all the settings show that the
LBF framework is relatively robust to the KD hyper-parameters.

Table 6: Impact of the behavioral data’s
local range. A larger ϵ brings a larger
size of local behavior data, but when ϵ is
too large, it can also introduce confusion
due to the loss of the data locality.

Framework ϵ minADE1 minFDE1

LBA
0.5m 1.64 3.61
1.0m 1.62 3.58
1.5m 1.71 3.86

LBF
0.5m 1.61 3.54
1.0m 1.62 3.57
1.5m 1.63 3.59

Table 7: Impact of the num-
ber of times that KD su-
pervision gets applied in
the training phase and the
weight of the KD loss.

KD times λkd minADE1 minFDE1

N/A 0 1.68 3.72
2 1 1.62 3.57
2 1.5 1.61 3.54
2 2 1.62 3.56
1 1.5 1.64 3.61
3 1.5 1.61 3.56

7 Conclusion

In this work, we re-introduce the local historical trajectories as a new type of
data input to the trajectory forecasting task, referred as local behavior data. To
adapt to this new data input and fully exploit its value, we propose a behavior-
aware framework and a behavior-free framework for trajectory forecasting. The
behavior-free framework, especially, adopts a knowledge-distillation architecture
to estimate the impact of local behavior data. Extensive experiments on pub-
lished benchmarks validate that the proposed frameworks significantly improve
the performances of SOTA methods on prevalent metrics.

Limitations. Local historical information reveals local motion patterns with
high fidelity, but there are always outliers. For use cases of great safety concerns
(e.g. autonomous driving), historical data may provide good reference but should
not be the only reference. Also, the motion patterns of a certain location can
vary over time. To optimize the benefits of the LBA and LBF framework, future
research should explore the historical data gathering strategies.
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