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Abstract. Supervised training of optical flow predictors generally yields
better accuracy than unsupervised training. However, the improved per-
formance comes at an often high annotation cost. Semi-supervised train-
ing trades off accuracy against annotation cost. We use a simple yet effec-
tive semi-supervised training method to show that even a small fraction
of labels can improve flow accuracy by a significant margin over unsu-
pervised training. In addition, we propose active learning methods based
on simple heuristics to further reduce the number of labels required to
achieve the same target accuracy. Our experiments on both synthetic
and real optical flow datasets show that our semi-supervised networks
generally need around 50% of the labels to achieve close to full-label ac-
curacy, and only around 20% with active learning on Sintel. We also an-
alyze and show insights on the factors that may influence active learning
performance. Code is available at https://github.com/duke-vision/

optical-flow-active-learning-release.
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1 Introduction

The estimation of optical flow is a very important but challenging task in com-
puter vision with broad applications including video understanding [7], video
editing [9], object tracking [1], and autonomous driving [34].

Inspired by the successes of deep CNNs in various computer vision tasks [23,12],
much recent work has modeled optical flow estimation in the framework of su-
pervised learning, and has proposed several networks of increasingly high perfor-
mance on benchmark datasets [5,38,47,14,15,49,60]. Ground-truth labels provide
a strong supervision signal when training these networks. However, ground-truth
optical flow annotations are especially hard and expensive to obtain. Thus, many
methods use synthetic data in training, since ground-truth labels can be gener-
ated as part of data synthesis. Nevertheless, it is still an open question whether
synthetic data are an adequate proxy for real data.

Another way to circumvent label scarcity is unsupervised training, which
does not require any labels at all. Instead, it relies on unsupervised loss mea-
sures that enforce exact or approximate constraints that correct outputs should
satisfy. Common losses used in unsupervised optical flow estimation are the
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Fig. 1. Overview of our active learning framework for the semi-supervised training.

photometric loss, which penalizes large color differences between corresponding
points, and the smoothness loss, which penalizes abrupt spatial changes in the
flow field [18,40,33,17,29,28]. While unsupervised methods allow training on large
datasets from the application domain, their performance is still far from ideal
because the assumed constraints do not always hold. For instance, the photomet-
ric loss works poorly with non-Lambertian surfaces or in occlusion regions [52],
while the smoothness loss fails near motion discontinuities [21].

Semi-supervised training can be a way to combine the advantages of both
supervised and unsupervised training for optical flow models. The idea is simple,
and amounts to training the network with a mix of labeled and unlabeled data.
This is possible because we can charge different losses (supervised or unsuper-
vised) to different samples depending on whether they are labeled or not.

The trade-off between performance and labeling cost is of interest in real
practice, since it describes the marginal benefit that can be accrued at the price of
a unit of labeling effort. However, little work has focused on the semi-supervised
training of optical flow. Existing methods have tried to improve flow estimates
given an available, partially labeled dataset [57,24,45]. Other work uses semi-
supervised training to address specific problem conditions, e.g., foggy scenes [56].

In contrast, we are particularly interested in label efficiency, that is, in the
performance improvement gained as the fraction of labeled samples increases
from 0 (“unsupervised”) to 1 (“supervised”). Specifically, we use a simple yet
effective semi-supervised algorithm and show that the model error drops signifi-
cantly as soon as a small fraction of the samples are labeled. This suggests that
even a modest labeling budget can lead to a significant performance boost.

Given a specific labeling budget, an important related question is how to
determine which part of the dataset to label. A simple method is random sam-
pling, but it is possible to do better. Specifically, we propose and evaluate criteria
that suggest whose labels bring larger benefits in training. This brings us to the
concept of active learning.

Active Learning (AL) has been shown to be effective in reducing annotation
costs while maintaining good performance in many vision tasks including image
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classification [27,2], object detection [42,4], semantic segmentation [31,44], and
instance segmentation [51]. The general idea is to allow the training algorithm to
select valuable unlabeled samples for which to query labels for further training.
This selection is especially important for optical flow estimation, since generating
labels for additional samples incurs high costs in terms of computation, curation,
and sometimes even hand annotations.

While annotating individual flow vectors by hand is effectively impossible in
practice, annotation can be and often is done by hand at a higher level and, even
so, is costly. For instance, in KITTI 2015 [34], correspondences between points
on CAD models of moving cars are annotated by hand so that dense optical flow
can be inferred for these cars. In addition, nonrigid objects such as pedestrians
or bicyclists are manually masked out, and so are errors in the flow and dispar-
ity masks inferred from LiDAR and GPS/IMU measurements and from stereo
depth estimation. This is still manual annotation and curation, painstaking and
expensive. Some amount of curation, at the very least, is necessary for most
high-quality training sets with real imagery, and the methods we propose aim
to reduce the need for this type of work, and to make the products of whatever
manual work is left more effective. To the best of our knowledge, we are the
first to study active learning as a way to moderate the high annotation costs for
optical flow estimation.

As illustrated in Fig. 1, our training pipeline (top part of the diagram) in-
cludes an unsupervised first stage and a semi-supervised second stage. We split
our unlabeled dataset to two sets, one (D1) used to pre-train an unsupervised
model M1 and the other (D2) used as the candidate set, from which samples
are selected to query labels from expert annotators. After training model M1

on D1 in Stage 1, we estimate flow for all the samples in D2 and score each of
them based on our active learning criteria. We query for labels for top-scoring
samples and add these to D2 for further semi-supervised training in Stage 2. In
this paper, we show that using active learning to query labels can help further
reduce the number of labels required to achieve a given performance target in
semi-supervised training.

In summary, our contributions are as follows.

– We show on several synthetic and real-life datasets that the performance
from unsupervised training of optical flow estimators can be improved sig-
nificantly as soon as a relatively small fraction of labels are added for semi-
supervised training.

– To the best of our knowledge, we are the first to explore active learning
as a way to save annotation cost for optical flow estimation, and our novel
pipeline can be used directly in real practice.

– We set up the new problem of semi-supervised training of optical flow under
certain label ratio constraints. We anticipate follow-up research to propose
better methods for this problem.
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2 Related Work

Supervised Optical Flow Supervised methods use deep networks to learn
the mapping from image pairs to the corresponding optical flow by minimizing
the supervised loss, namely, some distance measure between computed and true
flow. FlowNet [5] used a multi-scale encoder-decoder structure with skip con-
nections between same-scale layers. Following this framework, many networks
have been proposed to decrease both model size and error. Traditional ideas or
heuristics have been introduced into the network, including image pyramid in
SPyNet [38], feature pyramid, warping, and cost volume in PWC-Net [47] and
LiteFlowNet [14]. Iterative decoder modules have also been explored as a way
to reduce model size while retaining accuracy in IRR-PWC [15] and RAFT [49].
The latter built the network based on full-pair correlations and has led to many
follow-up models that have achieved the state-of-the-art performance [60].

Unsupervised Optical Flow Recent research has focused on the unsu-
pervised learning of optical flow as a compromise between label availability and
model performance. Initial work on this topic proposed to train FlowNet-like
networks using surrogate loss terms, namely photometric loss and smoothness
loss [18,40]. As found by many papers, flow at occlusion region is especially
challenging for unsupervised networks [52]. Thus, much research focused on
solving the occlusion problem via occlusion masks [52], bi-directional consis-
tency [33], multi-frame consistency [17,41], and self-supervised teacher-student
models [29,59]. ARFlow [28] integrated a second forward pass using transformed
inputs for augmentation and has achieved the state-of-the-art unsupervised per-
formance. Multi-frame unsupervised models have also been investigated [17,46].

Semi-supervised Training in Vision Semi-supervised training targets
applications where partial labels are available. Early approaches in image classi-
fication [25,43,35,11] utilize label propagation with regularization and augmen-
tation based on the belief that nearby data points tend to have similar class
labels. A more recent class of methods train on unlabeled samples with pseudo-
labels [26,55] predicted by a supervised trained network trained with labeled
samples. Similar teacher-student models have also been explored [30,48].

Although widely explored in many other vision tasks, there is little work on
semi-supervised optical flow. Some early work utilized semi-supervised learning
to achieve comparable flow accuracy to the supervised methods [24,45,57,24].
Others applied semi-supervised methods to tackle specific cases of optical flow,
such as dense foggy scenes[56] and ultrasound elastography[50]. In contrast, we
focus on label efficiency for optical flow estimation: Instead of proposing semi-
supervised networks that focus on improving benchmark performances by adding
external unlabeled data, we are more focused on the trade-off between perfor-
mance and label ratio given a fixed dataset.

Active Learning in Vision Active Learning (AL) aims to maximize model
performance with the least amount of labeled data by keeping a human in the
training loop. The general idea is to make the model actively select the most
valuable unlabeled samples and query the human for labels which are used in the
next stage of training. There are two main categories, namely, uncertainty-based
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(select samples based on some pre-defined uncertainty metric) [20,13,8,6], and
distribution-based (query representative samples of sufficient diversity) [37,54].

Active learning has achieved extensive success in various fields in computer
vision, including image classification [27,2], object detection [42,4], semantic seg-
mentation [31,44], and instance segmentation [51]. However, the concept has
received little attention in optical flow estimation where acquiring labels is es-
pecially difficult. To the best of our knowledge, we are the first to apply active
learning to optical flow estimation to reduce annotation cost.

3 Method

As we are among the first to explore active learning as a way to tackle the
high annotation costs in optical flow training, we start from simple yet effective
methods to implement our ideas. This section describes our semi-supervised
training method (Sec. 3.1), active learning heuristics (Sec. 3.2), and network
structure and loss functions (Sec. 3.3).

3.1 Semi-supervised Training

Given a partially labeled data set, we implement the semi-supervised training
by charging a supervised loss to the labeled samples and an unsupervised loss to
the unlabeled ones. Specifically, the semi-supervised loss for each sample x is

ℓsemi(x) =

{
ℓunsup(x), if x is unlabeled,
αℓsup(x), otherwise

(1)

where α > 0 is a balancing weight. We do not include the unsupervised loss for
labeled samples (although in principle this is also an option) to avoid any conflict
between the two losses, especially on occlusion and motion boundary regions.

Thus, the final loss of the data set D = Du ∪ Dl is

Lsemi =
∑
x∈D

ℓsemi(x) =
∑

x∈Du

ℓunsup(x) + α
∑
x∈Dl

ℓsup(x), (2)

where Du and Dl are the unlabeled and labeled sets. We define the label ratio
as r = |Dl|/|D|. During training, we randomly shuffle the training set D, so that
each batch of data has a mix of labeled and unlabeled samples.

3.2 Active Learning Heuristics

Figure 1 shows a general overview of our active learning framework. After pre-
training our model on unlabeled data (Stage 1), we invoke an active learning
algorithm to determine samples to be labeled for further training. Specifically,
we first use the pre-trained model to infer flow on the samples of another disjoint
unlabeled data set (the candidate set) and select a fraction of the samples to be
labeled, based on some criterion. After obtaining those labels, we continue to
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train the model on the partially labeled candidate set using the semi-supervised
loss (Stage 2). Note that in this second stage, we do not include the unlabeled
data used in pre-training (see ablation study in Sec. 4.5). By allowing the model
to actively select samples to query labels, we expect the model to achieve the best
possible performance under a fixed ratio of label queries (the “label budget”).

So, what criteria should be used for selecting samples to be labeled? Many
so-called uncertainty-based methods for active learning algorithms for image
classification or segmentation use the soft-max scores to compute how confident
the model is about a particular output. However, optical flow estimation is a
regression problem, not a classification problem, so soft-max scores are typically
not available, and would be in any case difficult to calibrate.

Instead, we select samples for labeling based on heuristics specific to the op-
tical flow problem. For example, the photometric loss is low for good predictions.
In addition, unsupervised flow estimation performs poorly at occlusion regions
and motion discontinuities. These considerations suggest the following heuristic
metrics to flag points for which unsupervised estimates of flow are poor:

– Photo loss: the photometric loss used in training.
– Occ ratio: the ratio of occlusion pixels in the frame, with occlusion estimated

by consistency check of forward and backward flows [33].
– Flow grad norm: the magnitude of gradients of the estimated flow field as

in [16] averaged across the frame, used to indicate the presence of motion
boundaries.

We experiment with three active learning methods, each using one of the metrics
above. When querying labels for a given label ratio r, we first compute the metric
for each sample in the candidate set, and then sort and pick the samples with
largest uncertainties as our queries.

3.3 Network Structure and Loss Functions

Network Structure We adopt the unsupervised state-of-the-art, ARFlow [28],
as our base network, which is basically a lightweight variant of PWC-Net [47].
PWC-Net-based structures have been shown to be successful in both supervised
and unsupervised settings, so it is a good fit for our hybrid semi-supervised
training. We do not choose RAFT because it has been mostly proven to work
well in the supervised setting, while our setting (Sec. 4.4) is much closer to the
unsupervised one (see appendix for details).

Each sample is a triple x = (I1, I2, U12) where I1, I2 ∈ Rh×w×3 are the
two input frames and U12 is the true optical flow (set as “None” for unlabeled
samples). The network estimates a multi-scale forward flow field f(I1, I2) =

{Û (2)
12 , Û

(3)
12 , · · · , Û (6)

12 }, where the output Û (l)
12 at scale l has dimension h

2l
× w

2l
×2.

The finest estimated scale is Û
(2)
12 , which is up-sampled to yield the final output.

Unsupervised Loss For unsupervised loss ℓunsup(x) we follow ARFlow[28],
which includes a photometric loss ℓph(x), a smoothness loss ℓsm(x), and an
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augmentation loss ℓaug(x):

ℓunsup(x) = ℓph(x) + λsmℓsm(x) + λaugℓaug(x). (3)

Specifically, given the sample x, we first estimate both forward and backward

flow, Û
(l)
12 and Û

(l)
21 , and then apply forward-backward consistency check [33] to

estimate their corresponding occlusion masks, Ô
(l)
12 and Ô

(l)
21 .

To compute the photometric loss, we first warp the frames by Î
(l)
1 (p) =

I
(l)
2 (p+ Û

(l)
12 (p)), where I

(l)
2 is I2 down-sampled to the l-th scale and p denotes

pixel coordinates at that scale. The occlusion-aware photometric loss at each
scale can be then defined as

ℓ
(l)
ph(x) =

3∑
i=1

ci ρi(Î
(l)
1 , I

(l)
1 , Ô

(l)
12 ) (4)

where ρ1, ρ2, ρ3 are three distance measures with the estimated occlusion region
filtered out in computation. As proposed in [28], these three measures are the
L1-norm, structural similarity (SSIM) [53], and the ternary census loss [33],
respectively, weighted by ci.

The edge-aware smoothness loss of each scale l is computed using the second-
order derivatives:

ℓ(l)sm(x) =
1

2|Ω(l)|
∑

z∈{x,y}

∑
p∈Ω(l)

∥∥∥∥∥∂2Û
(l)
12 (p)

∂z2

∥∥∥∥∥
1

e
−δ

∥∥∥ ∂I1(p)
∂z

∥∥∥
1 , (5)

where δ = 10 is a scaling parameter, and Ω(l) denotes the set of pixel coordinates
on the l-th scale.

We combine the losses of each scale linearly using weights w
(l)
ph and w

(l)
sm by

ℓph(x) =

6∑
l=2

w
(l)
phℓ

(l)
ph(x), ℓsm(x) =

6∑
l=2

w(l)
smℓ

(l)
sm(x). (6)

We also include the photometric and smoothness loss for the backward temporal
direction, which is not shown here for conciseness.

After the first forward pass of the network, ARFlow also conducts an ad-
ditional forward pass on input images transformed with random spatial, ap-
pearance, and occlusion transformations to mimic online augmentation. The
augmentation loss ℓaug(x) is then computed based on the consistency between
outputs before and after the transformation. See [28] for details.

Supervised Loss For supervised loss ℓsup(x), we apply the multi-scale robust
L1-norm

ℓsup(x) =

6∑
l=2

w
(l)
sup

|Ω(l)|
∑

p∈Ω(l)

(∥Û (l)
12 (p)− U

(l)
12 (p)∥1 + ϵ)q, (7)

where U
(l)
12 is the down-sampled true flow to the l-th scale. A small ϵ and q < 1

is included to penalize less on outliers. We set ϵ = 0.01 and q = 0.4 as in [47].
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Semi-supervised Loss The semi-supervised loss is computed by Eq. (1).

4 Experimental Results

4.1 Datasets

As most optical flow methods, we train and evaluate our method on FlyingChairs [5],
FlyingThings3D [32], Sintel [3], and KITTI [10,34] datasets. Apart from the la-
beled datasets, raw Sintel and KITTI frames with no labels are also available
and often used in recent unsupervised work [29,28,39,58]. As common practice,
we have excluded the labeled samples from the raw Sintel and KITTI datasets.

In our experiments, we also split our own train and validation set on Sintel
and KITTI. We split Sintel clean and final passes by scenes to 1,082 training
samples and 1,000 validation samples. For KITTI, we put the first 150 samples
in each of 2015 and 2012 set as our training set, yielding 300 training samples
and 94 validation samples. A summary of our data splits is in the appendix.

4.2 Implementation Details

We implement the model in PyTorch [36], and all experiments share the same
hyper-parameters as follows. Training uses the Adam optimizer [22] with β1 =
0.9, β2 = 0.999 and batch size 8. The balancing weight α in Eq. (1) is set as 1.
The weights of each unsupervised loss term in Eq. (3) are λsm = 50 for Sintel
and λsm = 75 otherwise; and λaug = 0.2 unless otherwise stated. The weights
of different distance measures in Eq. (4) are set as (c1, c2, c3) = (0.15, 0.85, 0) in
the first 50k iterations and (c1, c2, c3) = (0, 0, 1) in the rest as in ARFlow [28].

The supervised weights w
(l)
sup for scales l = 2, 3, · · · , 6 in Eq. (7) are 0.32, 0.08,

0.02, 0.01, 0.005 as in PWC-Net[47]. The photometric weights w
(l)
ph in Eq. (6)

are 1, 1, 1, 1, 0, and the smoothness weights w
(l)
sm in Eq. (6) are 1, 0, 0, 0, 0.

For data augmentation, we include random cropping, random rescaling, hor-
izontal flipping, and appearance transformations (brightness, contrast, satura-
tion, hue, Gaussian blur). Please refer to the appendix for more details.

4.3 Semi-supervised Training Settings

The goal of this first experiment is to see how the validation error changes as we
gradually increase the label ratio r from 0 (unsupervised) to 1 (supervised). We
are specifically interested in the changing error rate, which reflects the marginal
gain of a unit of labeling effort.

We ensure that all experiments on the same dataset have exactly the same
setting except the label ratio r for fair comparison. For each experiment, the la-
beled set is sampled uniformly. We experiment on all four datasets independently
using label ratio r ∈ {0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1} with settings below.
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FlyingChairs and FlyingThings3D As a simple toy experiment, we split the
labeled and unlabeled sets randomly and train using the semi-supervised loss.
We train for 1,000k iterations with a fixed learning rate η = 0.0001.

Sintel Unlike the two large datasets above, Sintel only has ground-truth la-
bels for 2,082 clean and final samples, which is too small to train a flow model
effectively on its own. Thus, the single-stage schedule above may not apply well.

Instead, as is common practice in many unsupervised methods, we first pre-
train the network using the large Sintel raw movie set in an unsupervised way.
Subsequently, as the second stage, we apply semi-supervised training with dif-
ferent label ratios on our training split of clean and final samples. Note that we
compute the label ratio r as the ratio of labeled samples only in our second-stage
train split, which does not include the unlabeled raw data samples in the first
stage. This is because the label ratio would otherwise become too small (thus
less informative) since the number of raw data far exceeds clean and final data.

We train the first stage using learning rate η = 0.0001 for 500k iterations,
while the second stage starts with η = 0.0001, which is cut by half at 400, 600,
and 800 epochs, and ends at 1,000 epochs. Following ARFlow [28], we turn off
the augmentation loss by assigning λaug = 0 in the first stage.

KITTI We apply a similar two-stage schedule to KITTI. We first pre-train
the network using KITTI raw sequences with unsupervised loss. Subsequently,
we assign labels to our train split of the KITTI 2015/2012 set with a given
label ratio by random sampling and then run the semi-supervised training. The
learning rate schedule is the same as that for Sintel above.

4.4 Active Learning Settings

The second part of experiments is on active learning, where we show that allow-
ing the model to select which samples to label can help reduce the error.

We mainly experiment on Sintel and KITTI since they are close to real data.
Since active learning is a multi-stage process (which needs a pre-trained model to
query labels for the next stages), it fits well with the two-stage semi-supervised
settings described in Sec. 4.3. Thus, we use those settings with labels queried
totally at random as our baseline. In comparison, we show that using the three
active learning heuristics described in Sec. 3.2 to query labels can yield better
results than random sampling. We try small label ratios r ∈ {0.05, 0.1, 0.2} since
the semi-supervised training performance starts to saturate at larger label ratios.

4.5 Main Results

Semi-supervised Training We first experiment with the semi-supervised train-
ing with different label ratios across four commonly used flow datasets. As shown
in Fig. 2, the model validation error drops significantly at low label ratios and
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Fig. 2. Model validation errors of the semi-supervised training with different label
ratios. ‘EPE’: End-Point Error, ‘Fl’: Flow error percentage.

tends to saturate once an adequate amount of labels are used. This supports our
hypothesis that even a few labels can help improve performance significantly.

Another observation is that the errors for FlyingChairs, FlyingThings3D,
and Sintel saturate at around 50% labeling, whereas KITTI keeps improving
slowly at high label ratios. One explanation for this discrepancy may involve the
amount of repetitive information in the dataset: Sintel consists of video sequences
with 20-50 frames that are very similar to each other, while KITTI consists of
individually-selected frame pairs independent from the other pairs.

Active Learning Our active learning results are shown in Fig. 3. We compare
the validation errors for our three active learning criteria against the baseline
setting, in which the labeled samples are selected randomly. To better illustrate
the scale of the differences, we add two horizontal lines to indicate totally unsu-
pervised and supervised errors as the “upper” and “lower” bound, respectively.

The Sintel results (Fig. 3(a)) show that all our three active learning algo-
rithms can improve the baseline errors by large margins. Notably, our active
learning algorithms can achieve close to supervised performance with only 20%
labeling. This number is around 50% without active learning.

The KITTI results (Fig. 3(b)) show slight improvements with active learning.
Among our three algorithms, “occ ratio” works consistently better than random
sampling, especially at a very small label ratio r = 0.05. We discuss the reason
why our active learning methods help less on KITTI at the end of this chapter.

Among our three active learning heuristics, “occ ratio” has the best per-
formance overall and is therefore selected as our final criterion. Note that the
occlusion ratio is computed via a forward-backward consistency check, so it cap-
tures not only real occlusions but also inconsistent flow estimates.

Benchmark Testing We also show results on the official benchmark test sets.
Qualitative examples are also included in the appendix. As is shown in Tab. 1,
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Fig. 3. Validation errors of different active learning algorithms compared with random
sampling (baseline); pseudo error bars obtained by taking the standard deviations in
the last 50 epoches

compared with the backbone ARFlow [28] and two other top unsupervised esti-
mators [19,29], our Sintel test EPEs improve significantly even when we utilize
a very small fraction (5-20%) of labels in training. This holds true for both
clean and final passes, as well as occluded and non-occluded pixels. To indicate
the scale of improvements, our semi-supervised results are even comparable to
the supervised IRR-PWC [15], which has a similar PWC-Net-based structure,
even if we only use 20% of the Sintel labels. We also include the state-of-the-art
RAFT [15] results to get a sense of the overall picture.

In addition, Tab. 1 also shows that our active learning method works favor-
ably against the baseline (“rand”). We found that our active learning method
(“occ”) may overly sample the same scenes (e.g., “ambush”), so we also test an
alternative (“occ-2x”) to balance the queried samples. Specifically, we select a
double number of samples with top uncertainties and then randomly sample a
half from them to query labels. This helps diversify our selected samples when
the label ratio is very small. Our active learning methods perform comparably
or better than the baseline, especially on the realistic final pass.

Table 2 shows our benchmark testing results on KITTI. Consistent with our
findings on Sintel, our semi-supervised methods are significantly better than the
compared unsupervised state-of-the-art methods, and close to the supervised
IRR-PWC [15], even if we only use a very small fraction (5-20%) of labels. In
addition, our active learning method also works consistently better than the
baseline for all tested label ratios, especially on the harder KITTI-2015 set.

Ablation Study on Settings of Stage 2 We try different active learning
schedules in Stage 2 and show our current setting works the best. We report
the Sintel final EPE for different Stage 2 settings with label ratio r = 0.1. In
Tab. 3, the first row is our current Stage 2 setting, i.e., semi-supervised training
on the partial labeled train set. The second row refers to supervised training
only on the labeled part of train set, without the unsupervised samples. The
third row considers also including the unlabeled raw data (used in Stage 1) in
the Stage 2 semi-supervised training. We can see that our current setting works
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Table 1. Sintel benchmark results (EPE/px). Metrics evaluated at ‘all’ (all pixels),
‘noc’ (non-occlusions), and ‘occ’ (occlusions). The key metrics (used to sort on the
official website) are underlined. Parenthesis means evaluation data used in training.
For all metrics, lower is better.

Label ratio r Method
Train Test

Clean Final Clean Final
all all all noc occ all noc occ

u
n
su
p

r = 0
SelFlow [29] (2.88) (3.87) 6.56 2.67 38.30 6.57 3.12 34.72
UFlow [19] (2.50) (3.39) 5.21 2.04 31.06 6.50 3.08 34.40
ARFlow [28] (2.79) (3.73) 4.78 1.91 28.26 5.89 2.73 31.60

se
m
i-
su
p

r = 0.05
Ours(rand) (2.09) (2.99) 4.04 1.52 24.65 5.49 2.62 28.86
Ours(occ) (1.95) (2.38) 4.11 1.63 24.39 5.28 2.49 28.03
Ours(occ-2x) (1.94) (2.55) 3.96 1.45 24.42 5.35 2.50 28.58

r = 0.1
Ours(rand) (2.36) (3.18) 3.91 1.47 23.82 5.21 2.46 27.66
Ours(occ) (1.64) (1.98) 4.28 1.68 25.49 5.31 2.44 28.68
Ours(occ-2x) (1.75) (2.30) 4.06 1.63 23.94 5.09 2.49 26.31

r = 0.2
Ours(rand) (2.17) (2.93) 3.89 1.56 22.86 5.20 2.50 27.19
Ours(occ) (1.35) (1.63) 4.36 1.86 24.76 5.09 2.45 26.69
Ours(occ-2x) (1.57) (2.05) 3.79 1.44 23.02 4.62 2.07 25.38

su
p r = 1

PWC-Net [47] (2.02) (2.08) 4.39 1.72 26.17 5.04 2.45 26.22
IRR-PWC [15] (1.92) (2.51) 3.84 1.47 23.22 4.58 2.15 24.36
RAFT [49] (0.77) (1.27) 1.61 0.62 9.65 2.86 1.41 14.68

Table 2. KITTI benchmark results (EPE/px and Fl/%). Metrics evaluated at ‘all’
(all pixels, default for EPE), ‘noc’ (non-occlusions), ‘bg’ (background), and ‘fg’ (fore-
ground). Key metrics (used to sort on the official website) are underlined. ‘()’ means
evaluation data used in training. ‘-’ means unavailable. For all metrics, lower is better.

Label ratio r Method
Train Test

2012 2015 2012 2015
EPE EPE Fl-noc EPE Fl-all Fl-noc Fl-bg Fl-fg

u
n
su
p

r = 0
SelFlow [29] (1.69) (4.84) 4.31 2.2 14.19 9.65 12.68 21.74
UFlow [19] (1.68) (2.71) 4.26 1.9 11.13 8.41 9.78 17.87
ARFlow [28] (1.44) (2.85) - 1.8 11.80 - - -

se
m
i-
su
p

r = 0.05
Ours(rand) (1.25) (2.61) 3.90 1.6 9.77 6.99 8.33 17.02
Ours(occ) (1.22) (2.29) 3.90 1.5 9.65 6.94 8.20 16.91

r = 0.1
Ours(rand) (1.21) (2.56) 3.75 1.5 9.51 6.69 8.01 17.01
Ours(occ) (1.21) (1.98) 3.74 1.5 8.96 6.28 7.74 15.04

r = 0.2
Ours(rand) (1.16) (2.10) 3.50 1.5 8.38 5.68 7.37 13.44
Ours(occ) (1.13) (1.73) 3.49 1.5 8.30 5.69 7.25 13.53

su
p r = 1

PWC-Net [47] (1.45) (2.16) 4.22 1.7 9.60 6.12 9.66 9.31
IRR-PWC [15] - (1.63) 3.21 1.6 7.65 4.86 7.68 7.52
RAFT [49] - (0.63) - - 5.10 3.07 4.74 6.87
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Table 3. Ablation study: different Stage 2 settings. Sintel final validation EPE, label
ratio r = 0.1. Standard deviations from the last 50 epoches. * denotes current setting.

Data split [Loss]
Method

random photo loss occ ratio flow grad norm

train [semi-sup]* 2.71(±0.02) 2.54(±0.02) 2.52(±0.02) 2.54(±0.02)
train [sup] 2.82(±0.01) 2.82(±0.01) 2.59(±0.01) 2.77(±0.01)

raw+train [semi-sup] 3.13(±0.04) 3.09(±0.05) 3.15(±0.06) 3.07(±0.05)

(a) Selected samples in Sintel

EP
E Fl

ph
ot
o l
os
s

oc
c r
at
io

flo
w
gr
ad

no
rm

EPE

Fl

photo loss

occ ratio

flow grad norm

1.00 0.84 0.67 0.86 0.78

0.84 1.00 0.78 0.97 0.94

0.67 0.78 1.00 0.76 0.78

0.86 0.97 0.76 1.00 0.94

0.78 0.94 0.78 0.94 1.00

0.0

0.2

0.4

0.6

0.8

1.0

(b) Sintel

EP
E Fl

ph
ot
o l
os
s

oc
c r
at
io

flo
w
gr
ad

no
rm

1.00 0.87 0.28 0.56 0.43

0.87 1.00 0.42 0.72 0.65

0.28 0.42 1.00 0.62 0.62

0.56 0.72 0.62 1.00 0.87

0.43 0.65 0.62 0.87 1.00

0.0

0.2

0.4

0.6

0.8

1.0
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Fig. 4. (a) Sintel samples selected by different methods (r = 0.2), grouped by scenes;
and correlation matrices with sample errors for Sintel (b) and KITTI (c).

significantly better than the two alternatives. The second setting works poorly
due to overfitting on the very small labeled set, which means that the unlabeled
part of the train split helps prevent overfitting. The third setting also fails due
to the excessive amount of unlabeled data used in Stage 2, which overwhelms
the small portion of supervised signal from queried labels.

Model Analysis and Visualization Figure 4(a) shows which Sintel samples
are selected by different active learning methods. As shown in the left-most
column, the pre-trained model after Stage 1 generally has high EPEs (top 20%
shown in the figure) on four scenes, namely “ambush”, “cave”, “market”, and
“temple”. The random baseline tends to select a bit of every scene, whereas
all our three active learning algorithms query scenes with high EPEs for labels.
This confirms that our active learning criteria capture samples that are especially
challenging to the current model, which explains the success of active learning.

We also analyze the relationships between our criteria and model errors
through correlation matrices visualized by heat maps in Figs. 4(b) and 4(c).
We can see that the sample errors in Sintel generally have high correlations with
all three score values, whereas in KITTI the correlations are much smaller. Also,
the “occ ratio” score generally has the highest correlation with sample errors
among the three proposed methods. All these observations are consistent with
our active learning validation results. Thus, we posit that the correlation be-
tween uncertainty values and sample errors can be a good indicator in designing
effective active learning criteria.
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Fig. 5. An example for the information mismatch problem. Data from KITTI-2015,
frame 79 (Fl=19.35%), with the third largest “occ ratio” score: (a) superposed input
images; (b) estimated occlusion map; (c) flow prediction; (d) flow ground truth.

Discussion on Factors That May Influence Active Learning

– Pattern Homogeneity: Based on our validation results in Fig. 3, active
learning seems more effective on Sintel than on KITTI. This may be because
KITTI samples are relatively more homogeneous in terms of motion patterns.
Unlike the Sintel movie sequences, which contain arbitrary motions of various
scales, driving scenes in KITTI exhibit a clear looming motion caused by the
dominant forward motion of the vehicle that carries the camera. Specifically,
Sintel has extremely hard scenes like “ambush” as well as extremely easy
scenes like “sleeping”. This large variation of difficulty makes it possible to
select outstandingly helpful samples and labels. In contrast, since KITTI
motions are more patterned and homogeneous, any selection tends to make
little difference with respect to random sampling.

– Label Region Mismatch: KITTI only has sparse labels, i.e., only a part
of the image pixels have labels. This is crucial because our active learning
criteria are computed over the whole frame, so there is a mismatch between
the support of our criteria and the KITTI labels. Specifically, the sparse
labels may not cover the problematic regions found by our criteria. One
example is shown in Fig. 5. The sky region has bad predictions due to lack
of texture, and the “occ ratio” method captures the inconsistent flow there
by highlighting the sky region. However, the ground-truth labels do not cover
the sky region, so having this sample labeled does not help much in training.

5 Conclusion

In this paper, we first analyzed the trade-off between model performance and
label ratio using a simple yet effective semi-supervised optical flow network and
found that the unsupervised performance can be significantly improved even
with a small fraction of labels. We then explored active learning as a way to fur-
ther improve the performance and reduce annotation costs. Our active learning
method works consistently better than baseline on Sintel and KITTI datasets.

For potential future work, it may be interesting to explore how to deal with
sparse labels in the active learning framework or how to query labels by region
rather than full frame.
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for active learning in image classification. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 9368–9377 (2018) 3, 5

3. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: Proceedings of the European Conference on Com-
puter Vision. pp. 611–625. Part IV, LNCS 7577, Springer-Verlag (2012) 8

4. Choi, J., Elezi, I., Lee, H.J., Farabet, C., Alvarez, J.M.: Active learning for deep
object detection via probabilistic modeling. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision (2021) 3, 5

5. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van
Der Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convo-
lutional networks. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 2758–2766 (2015) 1, 4, 8

6. Ebrahimi, S., Elhoseiny, M., Darrell, T., Rohrbach, M.: Uncertainty-guided contin-
ual learning with bayesian neural networks. International Conference on Learning
Representations (2020) 5

7. Fan, L., Huang, W., Gan, C., Ermon, S., Gong, B., Huang, J.: End-to-end learning
of motion representation for video understanding. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 6016–6025 (2018) 1

8. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image
data. In: Proceedings of the International Conference on Machine Learning. pp.
1183–1192. PMLR (2017) 5

9. Gao, C., Saraf, A., Huang, J.B., Kopf, J.: Flow-edge guided video completion.
In: Proceedings of the European Conference on Computer Vision. pp. 713–729.
Springer (2020) 1

10. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research 32(11), 1231–1237 (2013)
8

11. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In:
Advances in Neural Information Processing Systems. vol. 17. MIT Press (2005) 4

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016) 1

13. Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for
classification and preference learning. arXiv preprint arXiv:1112.5745 (2011) 5

14. Hui, T.W., Tang, X., Change Loy, C.: Liteflownet: A lightweight convolutional
neural network for optical flow estimation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 8981–8989 (2018) 1, 4

15. Hur, J., Roth, S.: Iterative residual refinement for joint optical flow and occlu-
sion estimation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 5754–5763 (2019) 1, 4, 11, 12

16. Ilg, E., Saikia, T., Keuper, M., Brox, T.: Occlusions, motion and depth boundaries
with a generic network for disparity, optical flow or scene flow estimation. In:
Proceedings of the European Conference on Computer Vision. pp. 614–630 (2018)
6



16 S. Yuan et al.

17. Janai, J., Guney, F., Ranjan, A., Black, M., Geiger, A.: Unsupervised learning of
multi-frame optical flow with occlusions. In: Proceedings of the European Confer-
ence on Computer Vision. pp. 690–706 (2018) 2, 4

18. Jason, J.Y., Harley, A.W., Derpanis, K.G.: Back to basics: Unsupervised learning
of optical flow via brightness constancy and motion smoothness. In: Proceedings
of the European Conference on Computer Vision. pp. 3–10. Springer (2016) 2, 4

19. Jonschkowski, R., Stone, A., Barron, J.T., Gordon, A., Konolige, K., Angelova, A.:
What matters in unsupervised optical flow. In: European Conference on Computer
Vision. pp. 557–572. Springer (2020) 11, 12

20. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Active learning with gaus-
sian processes for object categorization. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 1–8. IEEE (2007) 5

21. Kim, H.H., Yu, S., Tomasi, C.: Joint detection of motion boundaries and occlusions.
In: British Machine Vision Conference (2021) 2

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (2014) 8

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems. pp. 1097–1105 (2012) 1

24. Lai, W.S., Huang, J.B., Yang, M.H.: Semi-supervised learning for optical flow with
generative adversarial networks. In: Advances in Neural Information Processing
Systems. pp. 353–363 (2017) 2, 4

25. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. International
Conference on Learning Representations (2017) 4

26. Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In: Workshop on challenges in representation
learning, ICML. vol. 3, p. 896 (2013) 4

27. Li, X., Guo, Y.: Adaptive active learning for image classification. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 859–866
(2013) 3, 5

28. Liu, L., Zhang, J., He, R., Liu, Y., Wang, Y., Tai, Y., Luo, D., Wang, C., Li,
J., Huang, F.: Learning by analogy: Reliable supervision from transformations for
unsupervised optical flow estimation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 6489–6498 (2020) 2, 4, 6, 7, 8, 9,
11, 12

29. Liu, P., Lyu, M., King, I., Xu, J.: Selflow: Self-supervised learning of optical flow. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 4571–4580 (2019) 2, 4, 8, 11, 12

30. Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J.: Structured knowledge dis-
tillation for semantic segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 2604–2613 (2019) 4

31. Mackowiak, R., Lenz, P., Ghori, O., Diego, F., Lange, O., Rother, C.: Cereals-
cost-effective region-based active learning for semantic segmentation. In: British
Machine Vision Conference (2018) 3, 5
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