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Abstract. Features extracted by existing tracking methods may con-
tain instance- and category-level information. However, it usually occurs
that either instance- or category-level information uncontrollably dom-
inates the feature embeddings depending on the training data distribu-
tion, since the two types of information are not explicitly modeled. A
more favorable way is to produce features that emphasize both types of
information in visual tracking. To achieve this, we propose a hierarchi-
cal feature embedding model which separately learns the instance and
category information, and progressively embeds them.
We develop the instance-aware and category-aware modules that collab-
orate from different semantic levels to produce discriminative and robust
feature embeddings. The instance-aware module concentrates on the in-
stance level in which the inter-video contrastive learning mechanism is
adopted to facilitate inter-instance separability and intra-instance com-
pactness. However, it is challenging to force the intra-instance compact-
ness by using instance-level information alone because of the prevailing
appearance changes of the instance in visual tracking. To tackle this
problem, the category-aware module is employed to summarize high-
level category information which remains robust despite instance-level
appearance changes. As such, intra-instance compactness can be effec-
tively improved by jointly leveraging the instance- and category-aware
modules. Experimental results on various benchmarks demonstrate the
proposed method performs favorably against the state-of-the-arts. The
code is available on https://github.com/zxgravity/CIA.
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1 Introduction

Visual object tracking is a fundamental computer vision task, which is widely
used in surveillance, automatic drive, and video analysis, to name a few. With
the initial target location annotated, the visual tracking algorithms attempt to
identify and localize the target object continuously in a video sequence.
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Fig. 1. Illustration of the instance-level and category-level awareness. (a)
The model learns the feature embedding that pushes away different instances through
contrastive learning. (b) In order to maintain intra-category compactness, the model
is trained to produce features from a handful of known categories and generalize to
cluster the unknown ones.

Benefiting from the powerful deep neural network, Siamese networks [1,19,18,12]
and discriminative modules [6,2,7] have improved the performance significantly.
Among these methods, robust target representation learning plays an impor-
tant role in boosting tracking performance. However, existing tracking methods
mainly have two limitations, i.e., the absence of category awareness and the
uncontrollable dominance of either instance or category information.

In visual tracking, it is crucial to learn feature embeddings that not only
have inter-instance distinction but also have intra-category consistency. Existing
tracking methods focus on modeling the discriminative instance features while
ignoring the category information modeling. A typical idea of such methods
is to learn the instance-specific features by forcing the model to increase the
response on the foreground and suppressing that on the background in each
frame. However, suppressing the background response may not be effective since
many background features are semantically meaningless. Other existing trackers,
like DaSiamRPN [43], focus on the distractors by using the hard negative mining
method. Similarly, DiMP [2] suppresses the influence of the easy negative samples
by masking out the loss from the areas with low response. We argue that it can
stabilize target features and improve tracking performance further by modeling
category information properly. A simple manner to encode category information
in the backbone features is to introduce an additional category loss, leading to the
multi-task learning problem. However, there are numerous categories in visual
tracking. Explicit category information learning via straightforward multi-task
training is sub-optimal, as learned category information is difficult to generalize
to the unknown categories with limited annotated categories in the training set.

According to the experimental analysis in current Siamese trackers [19,2],
though the category factor is not explicitly considered, the learned features do
contain a certain amount of category information. However, the importance of
the instance and category information is not properly regularized, which is sus-
ceptible to the training data distribution. For example, more category cues are
learned when the training data has fewer intra-category distractions, and vice
versa. The unconstrained feature learning process increases the overfitting risk
making the model to highlight either the instance or the category information.

To overcome these difficulties, we propose to hierarchically embed the in-
stance and category information by explicitly modeling the instance and category
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cues in a progressive manner during the feature learning process. We propose
the instance-aware and category-aware modules that contribute to producing dis-
criminative and robust feature embeddings from different semantic levels. The
instance-aware module, which concentrates on a fine-grained semantic level, em-
ploys the proposed video-level contrastive learning mechanism exploiting rich
inter-video cues to facilitate inter-instance separability and intra-instance com-
pactness. In this module, we extend the InfoNCE [27] loss to learn an instance
feature extractor. Then the instance-level information is effectively embedded
into the backbone features through a novel angle modulation strategy which
modulates the vectorial angles in the feature space, producing the instance-aware
features. To improve intra-instance compactness in spite of instance appearance
changes in the sequence, the category-aware module is employed to summarize
high-level category information which remains robust although the instance-
level appearance can change dramatically. Furthermore, the proposed method
can generalize to unknown categories by incorporating a transformer-based dic-
tionary learning approach. We summarize our contributions as follows:

– We propose a novel cross-video training paradigm based on the video-level
contrastive learning. The positive and negative training pairs are constructed
across videos, which can sufficiently mine the potential of instance distinction
of the tracker. Furthermore, we introduce an auxiliary task in visual tracking
which employs the momentum contrast to improve the performance.

– We propose the instance-aware module and category-aware module to ex-
tract the features with better inter-instance separability and intra-instance
compactness. We achieve more understandable feature learning by explicitly
encoding the instance and category information with supervision signals.

– We conduct the experiments based on both the ResNet18 and ResNet50
backbones. The ablation studies demonstrate the effectiveness of both the
instance- and category-aware modules. The proposed tracker performs fa-
vorably against the state-of-the-arts.

2 Related Work

Generic visual object tracking algorithms have achieved remarkable improvement
in recent years. Because of its high accuracy and efficiency , the Siamese network
based trackers [1,19,18,12,35,29,13] have gained widespread attention. SINT [28]
firstly introduces the Siamese network in the visual tracking task. Hereafter,
many siamese based trackers are proposed. For locating targets more precisely,
The bounding box regression head is integrated in SiamRPN [19], adapting to
the scale and ratio changes. SiamMask [35] further improves the localization pre-
cision by predicting the target mask. Another way of boosting performance is to
exploit the potential of the deep network for the tracking task. With the random
shifting augmentation, trackers with very deep networks [18,40] are successfully
proposed. In spite of the remarkable improvement brought by the better output
formats and the deep backbones, the lack of online updating prevents the track-
ers from adapting to the target appearance changes, especially in the long-term
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sequences. To improve the tracking robustness, ATOM [6] designs a fast online
updating method in the inference process to overcome the appearance changes.
Then, the online updating method is improved by a meta-learning based updat-
ing module [2]. Considering the case of very confusing distractors, the appearance
model is unreliable sometimes. To this end, KYS [3] and KeepTrack [24] extract
the context information to suppress the confusing distractors. Recently, benefit-
ing from the transformer, the visual tracking accuracy rises significantly. Some
trackers integrate the transformer modules into the siamese network to mine the
spatial and temporal context information [33,39] or promote the power of the
matching head [5].

Despite the competitive performance of the existing trackers, it remains chal-
lenging to learn the reliable instance-specific features. Zhu et al. [43] improve the
instance representation by adding positive and hard negative pairs with data
augmentation and using hard negative mining. Wang et al. [32] use forward-
backward tracking to construct sample pairs and train the tracker with the
consistency loss. However, these methods still cannot exploit the instance infor-
mation sufficiently. Different from them, we follow the idea from He et al. [14],
that more negative sample pairs can improve the contrastive learning. We con-
struct the sample pairs between the images in the same mini-batch, where the
images from the different video sequences. We can construct negative and pos-
itive pairs between the different sequences and inside the same sequence. The
negative pairs are much more than the positive pairs. Then, we train the tracker
via the momentum contrastive learning.

Generic visual tracking needs recognizing and localizing the target annotated
in the initial frame without the category information. We observe that the cate-
gory information, if provided, can stabilize the tracking process. To the best of
our knowledge, there are barely any previous works discussing the influence of
the category information in generic visual tracking. SA-Siam [13] combines the
responses from the semantic network and the appearance network to improve
the tracking precision. The semantic network is pretrained on the ImageNet [8]
dataset, and the parameters are then fixed, which can be viewed as a model
with the category awareness. However, the pretrained semantic network in the
SA-Siam model is optimized for the ImageNet classification task, which leads
to suboptimal performance in the generic visual tracking task. In contrast, the
proposed category-aware module is jointly optimized with the other parts of
the tracker for the generic visual tracking task. We demonstrate experimentally
that the proposed category-aware module can effectively improve intra-category
compactness and stabilize the features of the target instance.

3 Our Approach

In this section, we first briefly summarize the proposed algorithm considering hi-
erarchical feature embeddings. Then, we introduce the details about the instance-
aware module which exploits the proposed video-level momentum contrastive
learning algorithm to highlight the instance separability ability. Last but not
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Fig. 2. The pipeline of our approach. The inputs are the frames sampled from video
sequences. The features extracted from different sequences are colored with orange and
blue, respectively. ’corr’ represents the correlation operator. We encode the instance
and category information in a progressive manner. The instance encoder integrates
instance-aware information into the backbone features. The category encoder then
integrates category-aware information into preceding instance-aware features.

least, the category-aware module, which models the stable category information
in the feature embedding, is detailed.

3.1 Overview

The pipeline of our algorithm is illustrated in Fig. 2. Inspired by MoCo [14],
we introduce a momentum key update mechanism for the contrastive learning
formula. Thus, our architecture contains both the prototype and momentum
backbones, wherein both backbones share the same architectures containing the
template and the search region branches. In each training iteration, we randomly
obtain samples from several sequences, and equally split the samples in each se-
quence as the template and search region samples. The samples are processed
by both the prototype and momentum backbones to obtain the intermediate
feature representations. Then they are fed into the IoU predictor, as well as
the instance-aware module for further computation. As is defined in the previ-
ous Siamese trackers [19,43], the feature maps corresponding to the template
and search region are named as the template and search region features, respec-
tively. The IoU predictor is implemented following DiMP [2], and it is used to
predict the IoU values between the groundtruth and the bounding boxes sampled
around.

For the instance-aware module, we crop the intermediate features correspond-
ing to the object regions and generate a group of sample pairs based on the
cropped feature maps. In each sequence, we sample three template and three
target features. Thus we have 6 × 6 = 36 positive sample pairs. Sample pairs
from any two different sequences are regarded as negative pairs. These sample
pairs are utilized as the inputs of the contrastive learning module which produces
the instance-specific features. The instance encoder takes the instance-specific
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Fig. 3. Our instance-aware module. The module consists of the contrastive learning
and the instance encoder. The detail of the angle modulation in the instance encoder is
also illustrated at the right of this figure. The orange dash arrows annotate the gradient
flows of the contrastive learning. The green and purple dash lines represent the two
samples of a sample pair are from the same or the different sequences, respectively.

features and the prototype backbone features as the inputs, and produces the
features with instance-level discrimination.

The category-aware module, which takes the computed instance-aware fea-
tures as inputs, consists of two sub-modules, i.e., the category encoder module
and category classification module. Trained from the samples annotated with a
handful of known categories, the weight parameters in the category classification
module contain rich category encoding information. These weight parameters
are regarded as the dictionary atoms and fed into the category encoder module.
Then the instance-aware features are modulated with the dictionary, generating
the instance- and category-aware target representations. The generated features
are then fed into the model optimizer and correlation module following [2]. As
shown in Fig. 2, altogether 4 losses are used to optimize the proposed model,
including the IoU prediction loss, the category classification loss, the contrastive
loss, and the discriminative loss. Among these losses, the definitions of the IoU
prediction loss and the discriminative loss are the same as those in DiMP [2].
We employ the cross entropy loss as the category classification loss and extend
the InfoNCE [27] loss to make it more suitable for the video-level contrast.

3.2 Instance-Aware Module

In this paper, we explicitly model the instance-level discrimination informa-
tion considering both the intra- and inter-sequence training samples. A novel
instance-aware module is proposed, which consists of the video-level contrastive
learning module and the instance encoder. The brief pipeline of the instance-
aware module is illustrated in Fig. 3, which will be detailed in this section.

Video-Level Contrastive Learning In the existing tracking algorithms, the
positive and negative samples are generated from the same video sequence,
wherein the annotated objects are consistently regarded as positive samples. In
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such methods, the rich inter-video instance level discrimination information is
ignored. Different from the previous implementations, we propose the video-level
contrastive learning algorithm, where the annotated object in one video sequence
can be regarded as a positive or negative sample in the training pipeline.

The constrasive learning algorithm [14] is a self-supervised method, which
learns the feature representations without the need for annotated samples. Given
a set of keys {k0, k1, ..., ki, ..., kI} of a dictionary and a query encoder q, we use
kd to denote the matched key of q. The constrasive learning algorithm tries to
increase similarity between q and kd, whilst suppressing the similarity between
q and ki (i ̸= d). InfoNCE loss is exploited to achieve this goal:

Lcon = −log exp(q⊤kd/τ)∑
i exp(q

⊤ki/τ)
, (1)

where τ is the temperature hyper-parameter.
The original implementation regards samples from the same image as posi-

tive training pairs, and regards samples from different images as negative pairs.
We extend the contrasive learning method considering the temporal consistency
in the video sequence. In our method, we use qji and kji to denote the query and
key features for contrastive learning, respectively, where i ∈ [1, ...,M ] denotes
sequence index, j ∈ [1, ..., N ] is sample index within each sequence. As is illus-
trated in Fig. 3, the cropped features in both the upper and lower branches are
fed into two multi-layer perceptions (denoted as mlpq and mlpk in the figure),
each of which consists of two convolutional layers interleaved with a ReLU ac-
tivation. The outputs of the multi-layer perceptions are normalized to generate
qji and kji respectively. Similar to the MOCO method, we also incorporate the
momentum update mechanism for the momentum backbone and multi-layer per-
ception mlpk to ensure the consistent encoders for the keys. Let Bq, Bk,Mq and
Mk denote the parameters of the backbone, the momentum backbone, mlpq,
and mlpk , respectively. The momentum update formulas are therefore

Bk ← ηBk + (1− η)Bq
Mk ← ηMk + (1− η)Mq, (2)

where η is the momentum factor.
Based on our extended constrasive learning method, the extended InfoNCE

(named as InfoNCE-V in this paper) loss can be rewriten as

Lcon = −log
∑

i

∑
j,f exp(q

j
i k

f
i /τ)∑i ̸=l

i,l

∑
j,f exp(q

j
i k

f
l /τ)

, (3)

which tries to increase the similarity between targets in the same video, whilst
suppressing the similarity between targets in different videos. This simple imple-
mentation enables our method to simultaneously exploit the cross-video instance
training pairs, facilitating the learning of more discriminative features. Com-
pared with InfoNCE, InfoNCE-V allows the positive pair generation between
the identical target from different frames in a sequence, supervising our model
to cluster samples of the same instance and pushes the different instances away.
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Instance Encoder Directly exploiting the features output by mlpq for tar-
get/background classification is suboptimal, as it contains limited category in-
formation. The features are susceptible to the drastic appearance changes of
the target object. As is described in many recognition papers [9,21], the angle
between two feature vectors is crucial to perform instance level discrimination.
Inspired by this, we propose the novel angle modulation module to properly
embed the instance discrimination information into the backbone features. As
illustrated in Fig. 3, the model parameters of mlpq is copied to mlp, which out-
puts the instance discriminative convolution feature map sharing the same size
with the input feature (feature padding is considered). We use X to denote the
backbone feature, then the output feature Y is computed as Y = mlp(X). Let
xi and yi denote the feature vector extracted in the i-th position of X and Y
respectively, the modulated feature vector zi is computed as

x̂i =
α ∗ xi

|xi|
, ŷi =

yi
|yi|

(4)

zi = |xi| ∗
x̂i + ŷi
|x̂i + ŷi|

, (5)

where |.| represents the norm of a vector. The learned parameter α controls the
modulation strength. More instance discriminative information will be embedded
into zi with a smaller α. By modulating all the elements of the backbone features,
we obtain the instance-aware features.

3.3 Category-aware Module

The aforementioned instance-aware features concentrate on the instance discrim-
ination information, which are less robust to the target appearance changes. Fur-
ther improvement can be achieved by exploiting the categorical information of
the instances. Motivated by this, we propose a novel category-aware module on
top of the instance-aware module to achieve hierarchical feature embedding. The
category-aware module consists of the category classification and the category
encoder, the details of which are illustrated in Fig. 4.

Category Classification In the visual tracking task, the so-called classifica-
tion process means distinguishing the foreground target from the background
distractors. To avoid confusion, we define the recognition of the target category
as the category classification in this paper. In several visual tracking datasets
(e.g., LaSOT [10]), each sequence is annotated with one category label. The
straightforward way to utilize the category information is to add another branch
for category classification, introducing the multi-task training strategy. In our
work, we introduce one convolutional block in the category classification module
to extract the features, which are then flattened and fed into a fully connected
layer for category classification. As is shown in Fig. 4, we adopt the cross entropy
loss as the category classification loss Lcls. The parameters of the fully connected
layer construct the classifier weights. Assuming there are C known categories,
the classifier weights W can be decomposed into C vectors [w1, ..., wc], each of
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Fig. 4. Our category-aware module. The classifier weights serve as the category
descriptors to represent the input features.

which can be viewed as the stable central representation for the corresponding
category. During training, the tracker learns to classify the target into these
known categories. In the experiments, we further discuss the extreme case where
the number of known category C is 0. It is worth noting that directly exploit-
ing multi-task learning mechanism cannot ensure satisfactory performance, as
the learned features can hardly be generated to other categories. We further
introduce the category encoder module to address this issue.

Category Encoder The category encoder is essentially the concatenated N
transformer encoders, which takes the previous computed instance-aware fea-
ture as the query feature. The key and value features are both set as W , which
is the weight matrix of the category classifier. For an arbitrary instance with
known/unknown categories, the transformer encoder outputs target representa-
tions encoded via key W , which implicitly performs the dictionary learning pro-
cess with its column vectors w1, ..., wC as the dictionary atoms. Since w1, ..., wC

are the stable central category representations, the output representations are
also stable representations with category information. The instance-aware and
category-aware features are combined (via the residual module in the transformer
encoder) to obtain the ultimate features for tracking.

3.4 Visualization

We visualize the instance-aware and category-aware features of some targets
with the t-SNE [23] algorithm in Fig. 5. The baseline features are extracted by
DiMP18. The instance-aware features and the ultimate features are from our
CIA18. The instance-aware module produces the instance-aware features which
are then enriched by the category-aware module to obtain the ultimate fea-
tures. The distributions of the baseline, instance-aware, and ultimate features
are shown in subfigures (a), (b), and (c) of Fig. 5, respectively. Despite the com-
petitive performance, the instance discrimination of DiMP [2] is unsatisfactory.
As subfigure (a) shows, it is hard to split the features of different instances.
In contrast, the instance-aware module mines the instance discrimination effec-
tively. After integrating the instance-aware module, the features can be split
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(a) baseline features (b) instance-aware features (c) ultimate features

Fig. 5. Visualization results of (a) baseline, (b) instance-aware, and (c) ultimate fea-
tures with t-SNE [23]. Compared with the baseline features, the instance-aware features
have better inter-instance separability. In the ultimate features, the intra-instance com-
pactness is further strengthened.

as subfigure (b) illustrates. The category-aware module can stabilize the target
features. As shown in subfigure (c), the intra-instance compactness is further
strengthened in the ultimate features, compared to the instance-aware features.

4 Experimental Results

4.1 Implementation Details

Network Architecture. We conduct experiments with the DiMP [2] being the
baseline. Our modules are integrated into the baseline trackers DiMP18 [2] and
SuperDiMP [2] to obtain our Category- and Instance-Aware (CIA) trackers
CIA18 and CIA50. The size of the template image is the same as the search
region image. For CIA18 and CIA50, the area of the input image is 5 times and
6 times that of the corresponding target box, respectively. The architecture of
the momentum backbone is the same as the feature extraction backbone (i.e.,
the prototype backbone). The mlp in the instance-aware module consists of a
3 × 3 convolutional layer, a ReLU activation, and a 1 × 1 convolutional layer.
The projector (’proj’ in Fig. 3) in the angle modulation is composed of two 1 ×
1 convolutional layers with a ReLU activation between them. In the category-
aware module, the number of the transformer encoder is N = 3. The CNN block
of the category classification has the same architecture as the layer4 of ResNet.
Training stratagy. The parameters of the proposed instance-aware and category-
aware modules are randomly initialized. Then, we train the whole model in an
end-to-end manner. The training datasets are GOT-10K [15], TrackingNet [26],
COCO [20], and LaSOT [10]. Labeled 70 categories of the LaSOT [10] are the
known categories. The samples without category labels are ignored by the cate-
gory classification. The model is trained on the training video sequences for 50
epochs with an Adam solver with a learning rate decay of 0.2 every 15 epochs.
Each epoch includes 2000 iterations. In one batch, we sample images from 64
sequences with 6 random frames in each. There are 4 losses in total, including
the contrastive loss Lcon, the category classification loss Lcls, the discriminative
loss Ldis, and the IoU prediction loss Liou. The final loss is:

Lall = Lcon + Lcls + Ldis + Liou. (6)

Ldis and Liou are from [2]. We refer the readers to [2] for mor details. Lcon is our
InfoNCE-V loss defined in Eq. 3. Lcls is the cross entropy loss. The parameters of
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the momentum backbone and the mlpk are not updated based on the gradients.
Instead, they are initialized by the parameters of the backbone and the mlpq,
and updated via the momentum updating as the Formula 2 lists.
Testing. During the testing phase, we do not need the contrastive learning and
category classification parts. The backbone is used to extract the features of the
template and the search regions. The template is cropped from the initial frame.
We use data augmentation to expand the template, and initialize the template
filter according to these augmented images. The template filter is updated during
the testing process, like [2] does. For encoding the instance-aware information,
we copy the parameters of the mlpq as those of the mlp in the instance encoder.
The padding operation is used for the convolutional layers in the mlp to keep
the feature resolution unchanged. The category descriptors remain fixed during
the testing phase for encoding the category-aware information. We evaluate our
method on various public benchmarks. Our CIA18 and CIA50 run about 43 and
30 fps on one TITAN X GPU, which achieves real-time tracking.

4.2 Ablation Study

We conduct the ablation studies on the OTB100 [37] and the LaSOT [10]
datasets. The results of the ablation studies are reported in Table 1. The no-
tations ’CC’, ‘CE’, ‘CL’, and ‘IE’ represent category classification, category en-
coder, contrastive learning, and instance encoder, respectively. If we add the cat-
egory classification (CC) alone, we obtain minor improvement based on either
DiMP18 [2] or SuperDiMP [2] baseline. To utilize the known category informa-
tion better, we further integrate the category encoder (CE) into the baselines.
When adding the category classification (CC) together with the category encoder
(CE), we observe a significant improvement. The performance of DiMP18 [2] and
SuperDiMP [2] are improved by 3.3% and 1.7% on the LaSOT dataset, respec-
tively. To demonstrate the effectiveness of the instance-aware module, we evalu-
ate the performance of integrating the contrastive learning (CL) and the instance
encoder (IE). The contrastive learning (CL) can enrich the instance information,
which improves the performance of DiMP18 from 66.0% and 53.5% to 68.4% and
57% AUC scores on the OTB100 and the LaSOT datasets, respectively. Based
on the DiMP18 [2] with the contrastive learning, the instance encoder (IE) can

Table 1. The AUC scores (%) of the ablation studies on OTB100 and LaSOT datasets.

baseline +CC +CE +CL +IE AUC on OTB100 AUC on LaSOT

DiMP18

- - - - 66.0 53.5
✓ - - - 66.7 54.0
✓ ✓ - - 68.1 56.8
- - ✓ - 68.4 57.0
- - ✓ ✓ 68.6 57.8
✓ ✓ ✓ ✓ 70.1 59.2

SuperDiMP

- - - - 70.1 63.1
✓ - - - 69.7 63.8
✓ ✓ - - 70.4 64.8
- - ✓ - 70.5 64.3
- - ✓ ✓ 70.8 65.1
✓ ✓ ✓ ✓ 71.3 66.2
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Fig. 6. Contrastive loss and discriminative loss of using momentum update or not.

further improve the AUC scores. The best performance is achieved by using both
the complete category-aware module and the instance-aware module. By inte-
grating the proposed modules into DiMP18 [2] and SuperDiMP [2], we obtain
the CIA18 and CIA50 trackers, respectively. CIA18 achieves 70.1% and 59.2%
AUC scores on the OTB100 and the LaSOT datasets. CIA50 obtains 71.3% and
66.2% AUC scores on the OTB100 and LaSOT datasets, respectively.

We also compare the training strategies of using momentum contrast or not
based on our CIA18. Without momentum contrast, we use the same backbone
to extract the features of the sample pairs for the contrastive learning. Fig. 6
illustrates the losses of the two training strategies, which validates that momen-
tum contrast facilitates better convergence. Without the momentum contrast,
the tracking performance degrades to 65.8%(4.3%↓)/57.4%(1.8%↓) in terms of
AUC scores on OTB100/LaSOT datasets. The momentum backbone stabilizes
features of queue, prevents from training vibration and leads a better conver-
gence. It is worth noting that we adopt the momentum contrast as an auxiliary
task in the supervised learning process. This is the reason why it can work well
with relatively small batch size.

Table 2. Influence of the category information.

CIA18 w/ CIA18 w/o CIA50 w/ CIA50 w/o
category category category category

AUC on OTB100 70.1 69.7 71.3 71.2
AUC on LaSOT 59.2 58.5 66.2 65.7

For exploring the influences of the category information, we train our trackers
without any known categories, and compare with the performance in Table 2.
In this case, the dictionary of the category encoder is initialized randomly and
trained with only the discriminative loss. Without any known category, our track-
ers can also achieve remarkable performance. The known category information
can further stabilize the feature extraction and improve the performance.

4.3 State-of-the-art Comparisons

Results on LaSOT [10]. Fig. 7 illustrates the tracking results of the top-
performing trackers. On the LaSOT, our CIA50 performs favorably against the
state-of-the-arts. After integrating the target candidate matching (tcm) post-
processing, like KeepTrack, our CIA50-tcm achieves a 67.6% AUC score, setting
a new state-of-the-art record.
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Fig. 7. Precision and overlap success plots on LaSOT dataset.

Table 3. State-of-the-art comparison on TrackingNet test set. The color red and blue
notate the best and the second best result, respectively.

C-RPN ATOM D3S SiamRPN DiMP KYS SiamFC PrDiMP TrDiMP TransT CIA CIA
[11] [6] [22] ++ [18] 50 [2] [3] ++ [38] 50 [7] [34] [5] 18 50

Success 66.9 70.3 72.8 73.3 74.0 74.0 75.4 75.8 78.4 81.4 74.5 79.2
N.Prec. 74.6 77.1 76.8 80.0 80.1 80.0 80.0 81.6 83.3 86.7 80.7 84.5
Prec. 61.9 64.8 66.4 69.4 68.7 68.8 70.5 70.4 73.1 80.3 69.5 75.1

Results on TrackingNet [26]. We evaluate the trackers on the TrackingNet
dataset with the online evaluation server. The tracking performance are shown in
Table 3. Our CIA50 achieves a success score of 79.2% and a normalized precision
score of 84.5%. Our CIA18 performs better than the ResNet18 based tracker
ATOM with 4.2% success score.

Results on OTB100 [37], UAV123 [25], and NFS [16]. The results on
the OTB100, UAV123 and NFS datasets are shown in Table 4. On the OTB100
and NFS datasets, our tracker CIA50 performs the best, surpassing the recent
methods KeepTrack, STARK and TrDiMP. Compared with the ResNet18 based
trackers like DiMP18, our CIA18 outperforms it on all 3 datasets.

Table 4. State-of-the-art comparisons on OTB100, UAV123, and NFS. The color red
and blue notate the best and the second best result.

DiMP TransT PrDiMP SiamRPN Super TrSiam TrDiMP STARK Keep CIA CIA
18 [2] [5] 50 [7] ++ [18] DiMP [2] [34] [34] [39] Track [24] 18 50

OTB [37] 66.0 69.4 69.6 69.6 70.1 70.3 70.8 68.1 70.9 70.1 71.3
UAV [25] 64.3 69.1 68.0 61.3 67.7 67.4 67.5 68.2 69.7 66.0 68.9
NFS [16] 61.0 65.7 63.5 50.2 64.8 65.8 66.5 66.2 66.4 63.2 66.7

Results on GOT-10K [15]. The performance is evaluated on the 180 test video
sequences. Table 5 shows the state-of-the-arts comparison results. Our tracker
CIA50 achieves a 67.9% AO score, which is 1.8% higher than SuperDiMP.

Results on VOT2020 [17]. The state-of-the-art comparisons on the VOT2020
dataset are shown in Table 6. We compare the bounding box prediction results.
Our trackers can achieve competitive performance.



14 Z. Pi et al.

Table 5. State-of-the-art comparison on GOT-10K test set. The color red and blue
notate the best and the second best result, respectively.

SPM DiMP SiamFC D3S Ocean DCFST Siam Super TrDiMP TransT CIA CIA
[31] 18 [2] ++ [38] [22] [41] [42] RCNN[30] DiMP[2] [34] [5] 18 50

AO 51.3 57.9 59.5 59.7 61.1 63.8 64.9 66.1 67.1 67.1 60.4 67.9
SR0.50 59.3 67.2 69.5 67.6 72.1 75.3 72.8 77.2 77.7 76.8 71.4 79.0
SR0.75 35.9 44.6 47.9 46.2 47.3 49.8 59.7 58.7 58.3 60.9 48.3 60.3

Table 6. State-of-the-art comparisons on VOT2020. The color red and blue notate
the best and the second best results.

SiamFC ATOM DiMP50 UPDT SuperDiMP STARK CIA18 CIA50
[1] [6] [2] [4] [2] [39]

EAO(↑) 0.179 0.271 0.274 0.278 0.305 0.308 0.278 0.309
A(↑) 0.418 0.462 0.457 0.465 0.477 0.478 0.462 0.481
R(↑) 0.502 0.734 0.740 0.755 0.786 0.799 0.739 0.782

Results on TNL2K [36]. We evaluate the trackers on the recently proposed
TNL2K dataset containing 700 challenging test videos. The comparison results
are shown in Fig. 8. Our tracker CIA50 achieves the best performance.
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Fig. 8. Normalized precision plots and overlap success plots on TNL2K dataset.

5 Conclusions

In this paper, we propose a novel framework for visual tracking based on instance-
level and category-level hierarchical feature embedding. The proposed model ex-
tracts deep features by exploiting both intra and inter-video sequences, exploit-
ing richer information for instance discrimination and category generalization.
The proposed instance-aware module improves instance discrimination by intro-
ducing the contrastive learning method and a novel angel modulation approach
to embed the instance information. The category-aware module is developed to
generalize the categorical information to unknown categories and enhance cat-
egorical consistency, producing stable category descriptors. The instance-aware
and category-aware modules are jointly optimized through end-to-end training,
achieving the feature embedding that highlights inter-instance separability and
intra-instance compactness. Extensive experiments on various benchmarks verify
that the proposed method performs favourably against the state-of-the-arts.
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