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A Interactive Demo

AMD: 0.78 || AMV: 1.0000 || Average AMD/AMV: 0.8896 ” B-o-N ADE: 0.94 || B-o-N FDE: 2.00
Shift X Predictions (min = -3, max = 3):

Shift Y Predictions (min = -3, max = 3):

Change Standard Deviation (min = 0, max = 5), this will generate new samples:

Fig. 1: Social-Implicit Interactive Demo. This demos shows the changes in the
metrics in regards of the generated distribution.

We introduce an interactive demo that shows the change of ADE, FDE, AMD
and AMV when the generated distribution changes or shifts. The demo URL:
https://www.abduallahmohamed.com/social-implicit-amdamv-adefde-demo.
By using this demo, one can see the direct effect of changing the distribution and
how the ADE/FDE metrics are inadequate to evaluate the predicted quality. For
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example, when the shift is huge in one of the x or y directions, the ADE/FDE
will stay constant.

B Qualitative Analysis

Figures 4 and 5 show cases where our model performs well or where it might
be under-performing. Starting from Figures 4, in the first row and the second
row, we see a pedestrian turning left in the past and going straight in the fu-
ture. S-GAN in the first case and S-GAN, S-STGCNN, ExpertTraj in the second
case think confidently that the pedestrian will turn right in the future. But the
pedestrian actually goes straightly, which is correctly predicted by our method
and Trajectron++. In the third case, SSGAN and S-STGCNN give us a too slow
prediction and ExpertTraj gives us a too fast and overturning prediction. In
contrast, the predicted distribution of our method and Trajectron++ covers the
ground truth well. In the last case, ExpertTraj performs well by placing the pre-
dicted concentration on the ground truth. Ours has a wrong prediction following
the original trend of the observed motion. In the first row and second row of the
second Figure 5, the pedestrian has a sudden turn in the middle of the future.
Although all the methods fail to predict this turning, the predicted distribution
generated by our method covers the ground truth the best. The third row shows
a pedestrian not moving. All the methods give us a close-to-no-movement pre-
diction here. Among them, the movement of ExpertTraj is the smallest. Ours are
second-smallest. The last row shows a pedestrian going straight but switching the
lane in the middle of the future. Our method and Trajectron++ cover the ground
truth trajectory well, while S-STGCNN misses the new lane and ExpertTraj
generates a no-existing turn. Overall, though ADE/FDE metrics were stating
that Trajectron++ and ExpertTraj are state of art methods, we showed several
cases that show the density away from the ground truth. Thus, the ADE/FDE
gives an inadequate sense of models’ accuracy, unlike the AMD/AMYV metrics,
which quantifies the whole generated distribution. This correlates with the re-
sults in Table[1] and our analysis of the experiments section where our model
was performing the best on the ADM/AMYV metrics. We also show multi-agent
interaction in Fig 3. ExpertTraj is over-confident missing the ground-truth, S-
STGCNN have wide variance with collision, Trajectron+-+ have ground-truth
close to predicted distribution tail, while ours have the right balance.

C Evaluation of Deterministic Models

We trained Social-STGCNN [5] as a deterministic model on the ETH/UCY
datasets. Instead of predicting a Gaussian distribution, it predicts the trajec-
tory directory. The training used MSE as a loss function. We wanted to test
two assumptions for evaluating a deterministic model. The first one is to train
it multiple times and use ensemble to find the mean and variance per predicted
trajectory. The other one adds up on the previous one by calculating the mean
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and variance but fits a GMM and then samples from this GMM. In this experi-
ment, we trained Social-STGCNN 3 times using different random seeds. Table 1
shows the results. The AMD and AMYV of the first setting was reported. The
KDE was not because there is no method to compute it from a mean and vari-
ance without sampling, unlike our metric AMD which has this ability by directly
plugging in the mean and variance into the Mahalanobis distance equation. For
the second setting, AMD, AMV and KDE were reported as we fitted the samples
into a GMM fit then we sampled multiple samples. We only used 3 ensembles of
Social-STGCNN to simulate a real-life situation, aka it is not feasible to train
it 1000 times and create an ensemble out of it. We notice in Table 1 that the
second settings exhibit a very large AMD and KDE, this is an indicator that
the GMM fit did not converge because we only have 3 samples. Usually, we use
1000 samples to guarantee the GMM converges and thus the second settings is
not feasible to be used as we need that many samples to fit the GMM model
well. We notice in both first and second settings that the AMV values are the
same. This was expected, as the AMV metric is an indicator of the spread. For
the first setting, the AMD value seems reasonable for a deterministic model, as
the work of [4] showed that most of motion predictions problem can be solved
using a linear Kalman filter. This also supported by the enormous values of the
AMYV metric as a deterministic model does not have that much of a spread. We
connect this with the results in the main paper on the ExpertTraj where the
AMYV values was on the same order of magnitude as the deterministic model we
trained. In other terms, the ExpertTraj indeed behaves as a deterministic model
because of the tight spread. We can notice this in some of the visual cases re-
ported in Figures 4 and 5. For further analysis, we plot some samples generated
from the ensemble of the deterministic model alongside the spread in Figure 2.
We notice sometimes the spread of the predictions might be close to the ground
truth as in the sample in the top left corner. Also, it can be completely off, as
in the other samples. So we think that using an ensemble of a few versions of
a deterministic model is a good approach to evaluate its performance using the
AMD/AMYV metric. Also, with the AMV metric as a target to optimize for, one
can train the ensemble using methods that help encourage diversity [3].

Datasot Ensemble GMM Fit General
atasel IAND AMV KDE|[AMD AMV KDE||[ADE FDE
cth 1.45 35.7 - |[|27.80 35.7 12.89||L.71 2.97

hotel 0.36 19.6
univ 0.62 170.1
zaral 1.18 28.0
zara2 1.03 96.9

|[Average|0.93 70.06 - ||27.65 70.0 11.94||1.43 2.59 |
Table 1: Deterministic case experiment. We trained Social-STGCNN [5] as a
deterministic model using different random seeds. The first setting reports the
AMD/AMYV using the mean and variance of the ensemble. The second setting
reports the AMD/AMV /KDE using a GMM fit on the mean and variance of the
ensemble. The ADE/FDE are the average through the ensembles.

44.26 19.5 11.27(|1.41 2.56
24.62 169.9 13.30(|1.17 2.13
28.0 13.86(|1.71 3.18
12.54 96.8 8.36 ||1.16 2.10
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Fig. 2: Social-STGCNN deterministic version predictions.

D Evaluation on Stanford Drone Dataset (SDD)

Here, we test our model and metric on SDD [7] given our limited time. We follow
the setting of a SOTA model DAG-Net [6]. Experimental results in Tab 2 show
that our model outperforms DAG-Net.

E Social-Implicit Implementation Details

Social-Implicit comprises four zones, as discussed before. Table 3 shows more
details about the zones. We notice each zone uses a different configuration of
the random noise used to generate the samples. The slow zones use noise which
has much lower variance than the faster zones. We also show the layer details of
the Social-Cell in Table 4. Both local and global streams share the same design,
except that the local stream uses ConvlD and the global stream uses Conv2D.
We initialize the noise, global and local weights to zero. The noise weight is being
multiplied by the sample generated from the random distribution and then added
to the input tensor. The models were trained for 50 epochs with a learning rate
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|ADE FDE AMD AMV KDE

STGAT [2] 058 111 - - -
Social-Ways [1] 0.62 1.16 - - -
DAG-Net [6] 0.53 1.04 3.17 0.247 1.76

Social-Implicit (0urs)‘0.47 0.89 2.83 0.077 3.89
Table 2: Results on SDD dataset.

= 1, then the learning rate drops to 0.1 after 45 epochs. The batch size was set to
128. We used SGD as an optimizer. We also used an augmentation technique for
the trajectories similar to [3] to fight some imbalance in the datasets. We used
random rotation by several degrees, reverse the trajectory, flip the x,y locations,
jitter the location by a small value, increase the number of the nodes in the scene
by combining it with another scene and changing the speed of the pedestrians.
Implementation of the model and augmentation is available in the attached code.

Zone|Speed range |Noise

1 ]0-0.01 m/s |N(0,0.05%), if eth A(0,0.175%)
2 ]0.01-0.1 m/s|N(0,1?) if eth A/(1.5%)

3 |0.1-1.2 m/s |N(0,4?)

4 [1.2ms- N(0,8%)

Table 3: Social-Zones configurations. The speed range determines if an observed
trajectory will be withing the zone or not. The random noise exhibits different
variances depending on the zone.
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Local Stream

Section Layer Name Configuration
Spatial CNN ConvlD[P,P,3,1]
Spatial Activation |ReLU

Spatial ResCNN
Temporal CNN
Temproal ResCNN

Conv1D[P,P,1,0]
ConvlD[T,,Tp,3,1]
Conv1D[T,,T},1,0]

Global Stream

Noise Weight
Spatial CNN
Spatial Activation
Spatial ResCNN
Temporal CNN
Temproal ResCNN
Global Weight
Local Weight

1 Parameter
Conv2D[P,P,31]
ReLU
Conv2D[P,P,1,0]
Conv2DI[T,,T},3,1]
Conv2D[T,,T},1,0]
1 Parameter

1 Parameter

Table 4: Social-Cell configuration. A ConvlD or Conv2D with [x,x,x,x] = [input
features, output features, kernel size, padding size]. The Res = Residual connec-

tion being added to the previous layer output. P is the dimension of the observed

location. T, and T}, is the number of observed and predicted time steps.
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Fig.3: Multi-pedestrian interaction cases on the ETH/UCY datasets.
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Fig.4: Visualization of the predicted trajectories by several models on the

ETH/UCY datasets.
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Fig.
ETH/UCY datasets.

5: Visualization of the predicted trajectories by several

models on the
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