
TEMOS: Generating diverse human motions from
textual descriptions

Supplementary Material

Mathis Petrovich1,2, Michael J. Black2, and Gül Varol1

1 LIGM, École des Ponts, Univ Gustave Eiffel, CNRS, France
2 Max Planck Institute for Intelligent Systems, Tübingen, Germany

{mathis.petrovich,gul.varol}@enpc.fr, black@tue.mpg.de

https://mathis.petrovich.fr/temos/

This appendix provides additional experiments (Section A), description of the
motion representations (Section B), details on evaluation metrics (Section C),
implementation details (Section D), and dataset statistics (Section E).

Video. Additionally, we provide a supplemental video, available on our web-
site [10], which we encourage the reader to watch since motion is critical in our
results, and this is hard to convey in a static document. In the video, we illus-
trate: (i) comparison with previous work, (ii) training with skeleton versus SMPL
data, (iii) diversity of our model, (iv) generation of variable size sequences, (v)
interpolation between two texts in our latent space, and (vi) failure cases.

Code. We also share our code base on the project page [10], which reproduces
our training and evaluation metrics. Explanations on how to configure the data
and launch the training can be found in the file README.md.

A Additional experiments

We conduct several experiments to explore the sensitivity of our model to cer-
tain hyperparameters. Our final set of hyperparameters was chosen using the
validation set (starting from a set of hyperparameters similar to ACTOR [11]).
Note that these hyperparameters did not always appear optimal on the test set.
The following ablations provide a sense of robustness to different parameters. In
particular, we show the effects of the batch size (Section A.1), {λKL, λE} loss
weighting parameters (Section A.2) and the architecture parameters of Trans-
formers (Section A.3). All other parameters, such as the learning rate (10−4),
the optimizer (AdamW) and the number of epochs (1000) are fixed. For all these
experiments we use the skeleton-based MMM representation.

We also experiment with various pretrained language models (Section A.4).
Note that the evaluation is based on a single random sample. All results can

be improved by taking the best sample closest to the ground truth out of multiple
generations (as next explained in Section A.5). We also experiment with taking
the sample farthest from the ground truth.

Finally, in Section A.6, we report quantitative results for our model trained
with SMPL rotations.

https://mathis.petrovich.fr/temos/

2 M. Petrovich et al.

A.1 Batch size

In Table A.1, we present results with batch sizes of 8, 16, 24 and 32. To han-
dle variable-length training, we use padding and masking in the encoders and
the decoder. To maintain reasonable memory consumption, we discard training
samples that have more than 500 frames (after sub-sampling to 12.5 Hz): this
corresponds to about 2.3% of the training data. We show that we obtain the
best results by setting the batch size to 8 or 32. We set it to 32 in all other
experiments as it takes less time to train.

A.2 Weight of the KL losses and the embedding loss

In Table A.2, we report results by varying both λKL and λE parameters (de-
scribed in Section 3.3 from 10−3 to 10−8. We show that overall the results are
similar when λE is fixed. A too high value of 10−3 deteriorates the performance.
We fix both of them to 10−5.

Fig. A.1: Best APE root when sampling multiple generations: Given a textual
description, we generate multiple different motions, and select the motion that matches
best to the ground truth sequence. We show that by sampling more generated sequences
per text, we can reduce the APE root metric error.

Table A.1: Batch size: We see that the performance is the best for either a small
batch size (=8) or a bigger batch size (=32). We were unable to use a higher batch size
due to the GPU memory limit.

Batch size
Average Positional Error ↓ Average Variance Error ↓

root joint global traj. mean local mean global root joint global traj. mean local mean global

bs = 8 0.950 0.941 0.105 0.965 0.449 0.448 0.005 0.451
bs = 16 1.115 1.106 0.105 1.128 0.513 0.512 0.005 0.515
bs = 24 1.260 1.250 0.106 1.273 0.542 0.542 0.005 0.545
bs = 32 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448

TEMOS 3

Table A.2: Weight of the KL losses (λKL) and the embedding loss (λE): The
results are influenced more by changes in λE than in λKL, but otherwise if the values are
not too low, the performances are similar. Note that the control row λKL = 10−5, λE =
10−5 is repeated in each block.

Losses weight
Average Positional Error ↓ Average Variance Error ↓

root joint global traj. mean local mean global root joint global traj. mean local mean global

λKL = λE = 10−3 1.219 1.210 0.111 1.230 0.555 0.554 0.006 0.556
λKL = λE = 10−4 1.110 1.101 0.106 1.122 0.476 0.475 0.005 0.479
λKL = λE = 10−5 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448
λKL = λE = 10−6 1.242 1.233 0.105 1.254 0.586 0.585 0.005 0.589
λKL = λE = 10−7 1.034 1.025 0.108 1.049 0.488 0.487 0.005 0.491
λKL = λE = 10−8 1.085 1.075 0.107 1.099 0.490 0.489 0.005 0.493

λKL = 10−5, λE = 10−3 1.293 1.284 0.107 1.305 0.631 0.631 0.005 0.635
λKL = 10−5, λE = 10−4 1.039 1.029 0.104 1.052 0.449 0.448 0.005 0.452
λKL = 10−5, λE = 10−5 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448
λKL = 10−5, λE = 10−6 1.082 1.072 0.107 1.095 0.456 0.455 0.005 0.459
λKL = 10−5, λE = 10−7 1.018 1.008 0.106 1.031 0.464 0.463 0.005 0.467
λKL = 10−5, λE = 10−8 1.076 1.067 0.105 1.089 0.477 0.476 0.005 0.480

λKL = 10−3, λE = 10−5 1.145 1.135 0.111 1.157 0.507 0.506 0.006 0.509
λKL = 10−4, λE = 10−5 1.070 1.061 0.106 1.083 0.471 0.470 0.005 0.474
λKL = 10−5, λE = 10−5 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448
λKL = 10−6, λE = 10−5 0.971 0.962 0.105 0.986 0.455 0.454 0.005 0.457
λKL = 10−7, λE = 10−5 1.140 1.132 0.106 1.154 0.513 0.512 0.005 0.517
λKL = 10−8, λE = 10−5 1.025 1.015 0.107 1.039 0.461 0.460 0.005 0.464

Table A.3: Number of layers and heads in all Transformers: While our results are
slightly better for larger models, we observe that the performance is not very sensitive
to changes in the number of layers and heads in Transformers.

Transformers parameters
Average Positional Error ↓ Average Variance Error ↓

root joint global traj. mean local mean global root joint global traj. mean local mean global

nheads = nlayers = 2 1.194 1.185 0.107 1.205 0.546 0.545 0.006 0.547
nheads = nlayers = 4 1.189 1.181 0.104 1.201 0.500 0.499 0.005 0.502
nheads = nlayers = 6 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448

A.3 Number of Transformer layers

Here, we present two different experiments. The first experiment is to change
globally the number of layers and the number of heads of all our Transformers.
In Table A.3, we see that the results are optimal when they are both fixed at 6,
which is used in all other experiments.

Next, in Table A.4, we experiment with a lighter model on top of the Distil-
BERT text encoder, by adding fewer layers and heads than 6. We see that 1 or
2 layers are not sufficient, but beginning with 4, the results are satisfactory. We
use 6 layers in our model.

A.4 Pretrained language models

We experiment with replacing DistilBERT [14] with a larger pretrained language
model. We compare with the original BERT [2] model as well as the more recent
RoBERTa [7] model. The results are similar and suggest that DistilBERT is
sufficient for this task, while having fewer parameters.

4 M. Petrovich et al.

Table A.4: Number of layers and heads in the Transformer of the text encoder
only: We fix the Transformer layers and heads of the motion encoder and motion
decoder to 6 (as in the other experiments), but we only change the number of layers
and heads of the text encoder (the one on top of DistilBert). The results suggest that
training a light model on top of the language model still gives descent results, but
adding more layers helps.

Transformers parameters
Average Positional Error ↓ Average Variance Error ↓

root joint global traj. mean local mean global root joint global traj. mean local mean global

nheads = nlayers = 1 1.163 1.151 0.110 1.175 0.529 0.528 0.006 0.531
nheads = nlayers = 2 1.170 1.161 0.107 1.182 0.452 0.451 0.005 0.454
nheads = nlayers = 3 1.094 1.085 0.105 1.106 0.474 0.473 0.005 0.476
nheads = nlayers = 4 0.916 0.908 0.104 0.930 0.440 0.440 0.005 0.444
nheads = nlayers = 6 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448

Table A.5: Language model: We experiment with language models larger than Dis-
tilBERT and do not observe significant changes in the performance.

Language model
Average Positional Error ↓ Average Variance Error ↓

root joint global traj. mean local mean global root joint global traj. mean local mean global

DistilBERT [14] 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448
BERT [2] 0.986 0.977 0.105 1.000 0.441 0.441 0.005 0.444
RoBERTa [7] 1.066 1.056 0.107 1.079 0.492 0.491 0.005 0.494

A.5 Sampling multiple motions

Given a text input, instead of generating a single motion as in previous methods
[1, 4, 6], we can generate multiple motions. As demonstrated in Table 2 of the
main paper, we can improve the evaluation metrics by picking the best out of a
set of motion generations, that is closest to the ground truth. In Figure A.1, we
plot the reduction in APE root error as we increase the number of generations
per text from 1 to 10, and observe a monotonic decrease as expected.

Furthermore, we measure the worst case scenario, where we generate 10
motions per text and record the error between the ground truth motion and
the most different generated motion out of the 10. We obtain an APE of 1.24
(instead of 0.78 in the best case scenario, and 0.96 in the random scenario). Note
that calling this worst case may not be accurate since the single ground truth
motion does not represent the only possible motion, i.e., our generations may
correspond well to the text without being close to the ground truth joints.

A.6 Quantitative results with the SMPL model

To evaluate quantitatively our SMPL-based model, and obtaining results com-
parable with the MMM framework, we extract the most similar skeleton subset
from the SMPL-H joints (provided by AMASS). The correspondence can be
found in Table A.6.

Both in SMPL-H and MMM, the bodies are canonicalized with a standard
body shape (robot-style for MMM, and average neutral body for SMPL-H). We
further rescale the SMPL joints with a factor of 0.64, to match them with MMM
joints. We evaluate the model with and without this rescaling. The performance

TEMOS 5

Table A.6: Correspondence between the SMPL-H joints and the MMM framework
joints.

Type Joints

MMM root BP BT BLN BUN LS LE LW RS RE RW
SMPL-H pelvis spine1 spine3 neck head left shoulder left elbow left wrist right shoulder right elbow right wrist

MMM LH LK LA LMrot LF RH RK RA RMrot RF
SMPL-H left hip left knee left ankle left heel left foot right hip right knee right ankle right heel right foot

Table A.7: Our results with SMPL model: We evaluate our model trained on the
SMPL data against the ground truth of the test set of KITSMPL (joints extracted from
the AMASS dataset). The first row shows results after a rescaling (to get skeletons
closer to MMM processed joints). The second row shows results with the same set of
joints but without the final rescaling. Both results are in meters.

Average Positional Error ↓ Average Variance Error ↓
root glob. mean mean root glob. mean mean

Dataset rescaled joint traj. loc. glob. joint traj. loc. glob.

KITSMPL 3 0.698 0.689 0.091 0.712 0.157 0.157 0.004 0.161
KITSMPL 7 1.097 1.077 0.169 1.118 0.384 0.383 0.009 0.393

metrics on KITSMPL test set can be found in Table A.7. Performance is compa-
rable to that of MMM-based training when evaluating with rescaled joints. We
expect future work to compare against the non-rescaled version when employing
the SMPL model to interpret the metrics with respect to real human sizes.

B Motion representation

Here, we describe in detail the two motion representations employed in this work:
skeleton-based (Section B.1) and SMPL-based (Section B.2). We standardize
both of them by subtracting the mean and dividing with the standard deviation
across the training data.

B.1 Skeleton-based representation

We employ the representation introduced by Holden et. al. [5]. As input, we
use the 21 joints from the Master Motor Map (MMM) framework [15]. For each
frame, we encode:

i) the 3D human joints in a coordinate system local to the body (the defi-
nition of the 3 axes and the origin is explained in Figure A.2) without the
root joint (20x3=60-dimensional features),

ii) the angles between the local X-axis and the global X-axis (by storing them
as differences between two frames) (1-dimensional feature),

iii) the translation, as the velocity of the root joint in the body’s local coordi-
nate system for X and Y axes, and the position of the root joint for the Z
axis (3-dimensional features).

6 M. Petrovich et al.

Fig. A.2: Body’s local coordinate system: The origin is defined as the projection
of the root joint into the ground. The X-axis direction is computed by taking the cross
product between the average of the two yellow vectors: (left hip (LH) - right hip (RH))
and (left shoulder (LS) - right shoulder (RS)). The Z-axis (gravity axis) remains the
same, and the Y-axis is the cross product of Z and X.

Then, we concatenate this into a feature vector in R64. For a motion sequence
of duration F , the data sample will be in RF×64.

Note that, as we store the difference of angles for ii), when we integrate the
angles, we assume that the first angle is 0 (which means that the body’s local
coordinate system is aligned with the global one). This is a way of canonicalizing
the data so that each sequence starts with the body oriented in the same way.

B.2 SMPL-based representation

To construct the feature vector for SMPL data, we store:

i) the SMPL local rotations [8] (parent-relative joint rotation according to
the kinematic tree) in the 6D continuous [18] representation (we load the
AMASS data processed with SMPL-H [13], but we remove all rotations on
the hands, resulting in 21 rotations) (21x6=126-dimensional features),

ii) the global rotation in the 6D continuous [18] representation (6-dimensional
features),

iii) the translation, as the velocity of the root joint in the global coordinate
system for the X and Y axes, and the position of the root joint for the Z axis
(3-dimensional features).

Then, we concatenate this into a feature vector in R135. For a motion sequence
of duration F , the data sample will be in RF×135.

To help the network learn the global rotation, we canonicalize the global
orientation (by rotating all bodies and trajectories) so that the first frame is
oriented in the same direction for all sequences.

TEMOS 7

C Evaluation details

In this section, we give details on the evaluation metrics and explain our imple-
mentation. We further provide details on our human study.
Metrics definitions. As explained in Section 4.1 of the main paper, the metrics
are not computed with the original 3D joint coordinates. All motions are first
canonicalized (so that the forward direction of the body faces the same direction
for all methods and the ground truth). Except for the root joint, all the other
joints are expressed in the body’s local coordinate system (see Figure A.2).
Then, the APE and AVE metrics are computed separately on these transformed
coordinates.

As in JL2P [1] and Ghosh et al. [4], we define the evaluation metrics as follows,
and compute them on the test set. The Average Position Error (APE) for a joint
j is the average of the L2 distances between the generated and ground-truth joint
positions over the time frames (F) and test samples (N):

APE[j] =
1

NF

∑
n∈N

∑
f∈F

∥∥∥Hf [j]− Ĥf [j]
∥∥∥
2
. (1)

We omit denoting the iterator n (over the test set) from the pose H for simplicity.
The Average Variance Error (AVE), introduced in Ghosh et al. [4] captures the
difference of variations. It is defined as the average of the L2 distances between
the generated and ground truth variances for the joint j:

AVE[j] =
1

N

∑
n∈N
‖σ[j]− σ̂[j]‖2 (2)

where,

σ[j] =
1

F − 1

∑
f∈F

(
Hf [j]− H̃f [j]

)2
∈ R3 (3)

denotes the variance of the joint j. H̃[j] is the mean of the joint throughout the
motion.

We report in the tables:
i) the root joint errors by taking the 3 coordinates of the root joint,
ii) the global trajectory errors by taking only the X and Y coordinates of the

root joint (it is the white trajectory on the ground in the visualizations),
iii) the mean local errors by averaging the joint errors in the body’s local coor-

dinate system,
iv) the mean global errors by averaging the joint errors in the global coordinate

system.
Metrics implementation. We were unable to reuse the evaluation code of
Ghosh et al [4] for two reasons: (i) the code did not reproduce the results in
[1, 4], (ii) there is a bug in the evaluation script src/eval APE.py line 249, the
slicing for the trajectory loss is wrong (notably y[:, 0] instead of y[:, :, 0];
this issue was confirmed by the authors).

https://github.com/anindita127/Complextext2animation/blob/94c53c504062d970e891dfee4b3e5e76a7e3f079/src/eval_APE.py#L249

8 M. Petrovich et al.

Furthermore, the function fke2rifke might also have slicing bugs (the im-
plementation is the same in the codes of JL2P and Ghosh et al.) and is used
indirectly for evaluation metrics.

Finally, the JL2P [1] code release does not include the evaluation. We there-
fore chose to reimplement our evaluation which we compute directly on 3D co-
ordinates, rather than the standardized (mean subtraction, division by standard
deviation) version as explained in Section 4.1 of the main paper.

Perceptual study details. The results of the pairwise comparisons in Figure 3
of the main paper are obtained as follows. We randomly sample 100 test descrip-
tions and generate motion visualizations (as in the supplemental video [10]) from
all the three previous methods [1, 4, 6], our method, and the ground truth (500
videos). From these visualizations, we create pairs of videos for each comparison,
randomly swapping the left-right order of the video in each question (also 500
videos). For the semantic study, we display the text as well as the pair of videos
simultaneously to Amazon Mechanical Turker (AMT) workers. The workers are
asked to answer the question: “Which motion corresponds better to the tex-
tual description?”. For the realism study, we use the same set of motion pairs
and display them to other AMT workers but without showing the text descrip-
tion. They are asked to answer the question: “Which motion is more realistic?”.
For both studies, each worker answers a batch of questions, where the first 3
questions are discarded and used as a ‘warmup’ for the task. We further added
2 ‘catch trials’ to detect unqualified workers, whose batch we discarded in our
evaluation. We detected exactly 20 such workers out of 100 in both studies. Each
pair of videos is shown to multiple workers between 2 and 5 (4 in average), from
which we compute a majority vote to determine which generation is better than
the other. If there is a tie, we assign a 0.5 equal score to both methods. The
resulting percentage is computed over the 100 test descriptions.

For the semantic study, posing the question as a pairwise comparison can
lead to a bias towards a more realistic motion (although the semantic correspon-
dence to the text may be worse). To disentangle such realism bias in pairwise
comparisons, we repeat the semantic perceptual study with one video at a time:
workers on AMT were asked to rate how much they agree with the following
statement: “The body motion correctly represents the textual description” by
choosing between (1) Strongly disagree, (2) Disagree, (3) Neither agree nor dis-
agree, (4) Agree, or (5) Strongly agree. Using a 20-sequence test set, we generated
4 batches with our method and 1 batch with Ghosh et al. [4]. At the beginning,
we added 2 examples along with instructions to explain what we expect from
‘correctness’ and to disentangle from the realism: (i) a realistic motion (from
ground truth) that does not correspond to the text, and (ii) a relatively less
realistic motion (from generations) that does correspond to the text. We added
4 warm-up examples after them, and 3 catch trials at random locations. We ran
the study with 24 AMT workers but half of them failed the catch trials (and the
remaining results were not very consistent). So we repeated this experiment with
naive lab members. Again we used all the examples at the beginning and catch
trials. With this setup, we obtained 21 completed batches. The users rated an
average of 3.50 correctness score out of 5 likert scale for our generations versus

https://github.com/chahuja/language2pose/blob/a65d6857d504b5c7cc154260ee946224d387da9d/src/data/data.py#L145
https://github.com/anindita127/Complextext2animation/blob/d89730c17580c5b9ccb767d55257f6781eec062a/src/data.py#L161

TEMOS 9

3.04 for Ghosh et al. [4]. To further assess the quality of the diverse generations,
we generated 5 samples per test description for TEMOS and obtained an aver-
age of 3.54 ± 0.1 score, showing that we preserve correctness within diverse
generations as well.

D Implementation details

Architectural details. For all the encoders and the decoder of TEMOS, we set
the embedding dimensionality to 256, the number of layers to 6, the number of
heads in multi-head attention to 6, the dropout rate to 0.1, and the dimension
of the intermediate feedforward network to 1024 in the Transformers.
Library credits. Our models are implemented with PyTorch [9] and PyTorch
Lightning [3]. We use Hydra [17] to handle configurations. For the text models,
we use the Transformers library [16].
Runtime. Training our TEMOS model takes about 4.5 hours for 1K epochs, with
a batch size of 32, on a single Tesla V100 GPU (16GB) using about 15GB GPU
memory for training (i.e., 16 seconds per epoch). In comparison, according to
their paper, Ghosh et al. [4] trained their model for 350 epochs on a single Tesla
V100 GPU in about 15 hours (i.e., 154 seconds per epoch). While the rest of the
hardware specifications or implementation efficiency may vary, given the same
type of GPU for both methods, we can expect that our model trains an order of
magnitude faster. This may be because our model generates the full motion with
only one decoder pass. Previous work produces one frame at a time iteratively
(i.e., the next frame has to wait for the previous one to be generated).

E KIT Motion-Language text statistics

In the KIT Motion-Language [12] dataset, there are 3911 motions and a total of
6352 text sequences (in which 900 motions are not annotated). Using a natural
language processing parser, we extract “action phrases” from each sentence,
based on verbs. For example, given the sentence “A human walks slowly”, we
automatically detect and lemmatize the verb, and attach complements to it, such
that it becomes “walk slowly”. With this procedure, we group sequences that
correspond to the same action phrase and detect 4153 such action clusters out
of 6352 sequences. The distribution of these clusters is very unbalanced: “walk
forward” appears 596 times while there are 4030 actions that appear less than
10 times (3226 of them appear only once). On average, an action phrase appears
2.25 times. This information shows that the calculation of distribution-based
metrics, such as FID, is not relevant for this dataset.

Bibliography

[1] Ahuja, C., Morency, L.P.: Language2Pose: Natural language grounded pose
forecasting. In: International Conference on 3D Vision (3DV) (2019) 4, 7, 8

[2] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training
of deep bidirectional transformers for language understanding. In: North
American Chapter of the Association for Computational Linguistics
(NAACL) (2019) 3, 4

[3] Falcon et al., W.: Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning (2019) 9

[4] Ghosh, A., Cheema, N., Oguz, C., Theobalt, C., Slusallek, P.: Synthesis of
compositional animations from textual descriptions. In: International Con-
ference on Computer Vision (ICCV) (2021) 4, 7, 8, 9

[5] Holden, D., Saito, J., Komura, T.: A deep learning framework for character
motion synthesis and editing. ACM Transactions on Graphics (TOG) (2016)
5

[6] Lin, A.S., Wu, L., Corona, R., Tai, K., Huang, Q., Mooney, R.J.: Generating
animated videos of human activities from natural language descriptions.
Visually Grounded Interaction and Language (ViGIL) NeurIPS Workshop
(2018) 4, 8

[7] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,
M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized BERT
pretraining approach. arXiv preprint arXiv:1907.11692 (2019) 3, 4

[8] Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: A
skinned multi-person linear model. ACM Transactions on Graphics (TOG)
(2015) 6

[9] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A.,
Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., Chintala, S.: PyTorch: An imperative style, high-
performance deep learning library. In: Neural Information Processing Sys-
tems (NeurIPS) (2019) 9

[10] Petrovich, M., Black, M.J., Varol, G.: TEMOS project page: Generat-
ing diverse human motions from textual descriptions. https://mathis.

petrovich.fr/temos/ 1, 8

[11] Petrovich, M., Black, M.J., Varol, G.: Action-conditioned 3D human motion
synthesis with transformer VAE. In: International Conference on Computer
Vision (ICCV) (2021) 1

[12] Plappert, M., Mandery, C., Asfour, T.: The KIT motion-language dataset.
Big Data (2016) 9

[13] Romero, J., Tzionas, D., Black, M.J.: Embodied hands: Modeling and cap-
turing hands and bodies together. ACM Transactions on Graphics (TOG)
(2017) 6

https://mathis.petrovich.fr/temos/
https://mathis.petrovich.fr/temos/

TEMOS 11

[14] Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108 (2019) 3, 4

[15] Terlemez, O., Ulbrich, S., Mandery, C., Do, M., Vahrenkamp, N., Asfour,
T.: Master motor map (MMM) — framework and toolkit for capturing,
representing, and reproducing human motion on humanoid robots. In: In-
ternational Conference on Humanoid Robots (2014) 5

[16] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac,
P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen,
P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S., Drame, M.,
Lhoest, Q., Rush, A.M.: Transformers: State-of-the-art natural language
processing. In: Empirical Methods in Natural Language Processing: System
Demonstrations (2020) 9

[17] Yadan, O.: Hydra - a framework for elegantly configuring complex applica-
tions (2019), https://github.com/facebookresearch/hydra 9

[18] Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rota-
tion representations in neural networks. In: Computer Vision and Pattern
Recognition (CVPR) (2019) 6

https://github.com/facebookresearch/hydra

	TEMOS: Generating diverse human motions from textual descriptions Supplementary Material

