
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#4933

ECCV
#4933

Supplementary Material for Tracking Every
Thing in the Wild

Anonymous ECCV submission

Paper ID 4933

This document gives more details on the ablation study regarding our Tracking-
Every-Thing Accuracy (TETA) metric and our Tracking-Every-Thing tracker
(TETer) and provides additional evaluation training and implementation de-
tails.

A BDD100K Per-class Evaluation Results

We provide per-class evaluation results using CLEARMOT [1] and TETA met-
rics on the BDD100K [11] validation set in Table 1. Data distribution in BDD100k
is long-tailed. The Car category consists of most of the tracks in the dataset.
The rest of the categories are rare compared to the dominant ones. Thus, we
characterized them as rare classes. TETer can achieve significant improvements
across all rare classes on both established MOTA, IDF1, and our TETA metrics
compared to the previous state-of-the-art QDtrack. In particular, TETer boosts
MOTA of buses by over 7 points on the validation set and TETA by over 6 points.
We also compare our TETer results with CEM with its class agnostic counter-
part, where the model only uses the AET strategy without CEM. The result
shows that our model gains significant improvements over rare classes where the
class agnostic instance association cannot be well trained due to lacking anno-
tations. For instance, we gain +3.8 MOTA on buses and +4.7 MOTA on riders.
Further, we can observe improvements on the TETA score, where we gain +2 on
train and +1.5 on motorcycle. This demonstrates that TETer can better handle
tracking rare classes. With CEM, we exploit the semantic annotations offered by
large-scale object detection datasets. It can integrate fine-grained cues required
for classification (e.g . the difference between a big red bus and a red truck),
which are difficult to learn effectively with class-agnostic appearance training on
the long-tailed datasets.

B TAO Per Frequency Group Evaluation Results

We provide evaluation results per frequency group on the TAO validation set
using TETA in Table 3. We first observe that TETA can effectively evaluate
methods across different frequency groups, despite difficulties introduced by clas-
sification errors. Although ClsA drops significantly for both QDTrack [8] and
TETer as categories become more rare, LocA and AssocA are relatively stable.
This enables us to compare different methods even in large-scale, long-tailed
settings where classification is the bottleneck.

Compared to QDTrack, TETer can obtain consistent improvements in TETA,
LocA, and AssocA across all frequency groups, at the cost of a small degradation
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Table 1: Per-class evaluation results on the BDD100K validation set using CLEAR-
MOT and TETA metrics. Rare classes are highlighted in gray

Method Category MOTA MOTP IDF1 TETA LocA AssocA ClsA

QDTrack [8]

Pedestrian 49.3 78.4 59.9 52.1 50.9 46.8 58.7
Rider 35.0 77.5 51.5 45.1 47.3 39.6 48.5
Car 69.8 84.6 75.0 69.1 62.2 65.6 79.5
Truck 39.2 85.4 58.2 55.5 57.0 55.6 53.9
Bus 40.8 86.2 62.3 57.9 58.1 57.5 58.1
Train 0.0 - 0.0 12.1 15.6 20.7 0.0
Motorcycle 28.8 76.9 56.0 46.4 41.6 54.0 43.5
Bicycle 30.0 76.2 50.1 44.6 34.2 48.0 51.4
Average 36.6 70.7 51.6 47.8 45.9 48.5 49.2

AET
(Class-agnostic)

Pedestrian 47.8 79.1 59.3 53.0 52.7 47.0 59.4
Rider 35.9 76.4 53.2 48.2 51.6 48.1 45.0
Car 69.6 85.4 75.0 70.5 64.1 66.5 80.8
Truck 41.7 85.2 59.8 59.5 59.0 63.2 56.1
Bus 44.4 86.1 66.2 61.8 61.1 65.4 58.8
Train -2.6 - 0.0 12.4 15.7 21.4 0.0
Motorcycle 31.6 76.8 57.8 47.0 42.8 55.3 42.8
Bicycle 29.8 76.9 49.7 45.5 35.2 48.7 52.4
Average 37.3 70.7 52.6 49.7 47.8 52.0 49.4

TETer (CEM)

Pedestrian 49.7 79.1 59.9 54.1 52.3 47.9 62.2
Rider 40.5 76.5 56.6 49.9 50.4 49.3 50.1
Car 69.7 85.4 74.2 70.5 63.8 65.6 82.1
Truck 43.3 85.5 59.7 59.1 58.2 60.1 59.2
Bus 48.2 86.2 67.6 63.7 60.0 65.8 65.3
Train 0.0 - 0.0 14.4 15.2 28.1 0.0
Motorcycle 31.6 77.0 58.2 48.5 42.8 56.3 46.6
Bicycle 30.1 77.1 50.1 46.3 34.7 50.0 54.2
Average 39.1 70.8 53.3 50.8 47.2 52.9 52.4

in ClsA. The improvements are more prominent on common and rare categories,
where TETer can achieve over 3 points improvement in TETA. For rare cat-
egories, TETer achieves 1.8 points improvement in LocA and over 7 points in
AssocA. Even on frequency categories, TETer can still improve AssocA by over
6 points. Table 3 also shows that the major differences between frequent and
rare categories lies in classification. The localization and association capabilities
of both trackers already generalize very well on rare categories.

C Exemplar-based Classification

Given an example object, exemplar-based classification means classifying objects
by comparing with the given example to determine whether they belong to the
same class. Given two neighboring frames t1 and t2 in a video sequence, all
objects in t1 will be treated as exemplars. For each exemplar, we find all target
objects in t2 that belong to the same class as the exemplar.

In this experiment, we compare our Class Exemplar Matching (CEM) with a
hard prior baseline that matches objects with the same predicted class label. We
evaluate both methods on the TAO validation set and compute precision-recall
(PR) curves for comparison. A true positive (TP) match is a match between two
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Table 2: Changing the margin r with a fixed α
Method r TETA LocA AssocA ClsA LocRe LocPr

QDTrack
50 30.0 50.5 27.4 12.1 53.1 75.8
75 30.6 52.4 27.4 12.1 53.1 84.7
90 30.8 53.0 27.4 12.1 53.1 91.1

TETer (ours)
50 33.2 51.6 35.0 13.2 54.3 75.3
75 33.9 53.6 35.0 13.2 54.3 84.3
90 34.1 54.1 35.0 13.2 54.3 90.5

Category prediction

CEM

Fig. 1: Precision-Recall (PR) curves of in-sequence instance retrieval based on CEM
and category prediction on the TAO validation set. A retrieved result is correct if it
has the same labeled category with the target instance

objects that belong to the same category. A false positive (FP) match is a match
between two objects that belong to different categories. A false negative (FN) is
a non-match between two objects that belong to the same category. To compute
the PR curve, we sample 10 thresholds from 0 to 0.99 with a fixed step size.

Fig. 1 shows the results of the experiment. The hard prior baseline takes the
argmax of the predictions of a softmax classifier from Faster R-CNN, thus there
is only a single value in the PR curve. CEM significantly outperforms the hard
prior baseline.

D TETA Details

We provide additional details regarding our TETA metric about how it disen-
tangles classification and how it deals with evaluation on datasets with complete
annotations.

D.1 Disentangling Classification

The most direct way to disentangle classification is not to consider per-class per-
formance and evaluate every object class-agnostically. However, on large-scale,
long-tailed datasets, such evaluation will be dominated by objects of the few com-
mon categories, and the overall performance will not reflect the improvements on
rare classes. On the other hand, per-class evaluation requires us to select predic-
tion results for each class, which is sensitive to classification performance. If the
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Table 3: Per frequency group results on the TAO validation set using TETA

Method Freq. Group TETA LocA AssocA ClsA

QDTrack [8]

Frequent 36.3 52.4 32.0 24.5
Common 23.9 47.2 21.7 2.9
Rare 26.7 52.7 27.4 0.0
All 30.0 50.5 27.4 12.1

TETer (ours)

Frequent 39.4 53.9 38.7 25.7
Common 27.3 47.3 30.4 4.1
Rare 30.1 54.5 35.3 0.4
All 33.2 51.6 35.0 13.2

classification is wrong, the contribution in localization and association will be ig-
nored. TETA can naturally deal with this issue with the local cluster evaluation
since we select predictions based on their location rather than class. To evaluate
a particular class, we access predictions in the local clusters of ground-truth ob-
jects belonging to the chosen class. Thus, we can evaluate the localization and
association performance even when the class predictions are wrong.

D.2 TETA with Complete Annotations

Multiple categories TETA can also work with complete annotations. First,
the localization accuracy is not affected. In the case of incomplete annotations,
we treat every unmatched predictions in each cluster as false positives. If we
have exhaustive annotations, we still treat those unmatched predictions as false
positives. The remaining question is how to penalize predictions that are not in
any clusters. For such predictions, we know that they are not highly overlapped
with any ground truth box, since we have exhaustive annotations. The predic-
tions thus false classify background as one of the foreground classes, and so we
treat them as classification false positives.

Single category For single category with exhaustive annotations, the classifi-
cation term of TETA is meaningless and can be ignored. Also, since we do not
need to perform per-class evaluation, the margin of the local cluster does not
matter either. Thus, we can set the margin r to 0. With these changes, TETA
becomes similar to the HOTA [7] metric with the only difference being that we
use arithmetic mean instead of geometric mean.

D.3 Ablation Study of TETA

We provide an ablation study of the local cluster IoU margin r of TETA. We
perform this experiment on incomplete dataset TAO.

The results are shown in Table 2. The LocRe and LocPr represent the local-
ization recall and precision. As we can see, with a larger r, the LocPr increases
since TETA becomes more conservative regarding identifying FPs. In the mean
time, TETA makes fewer mistakes where the objects with no annotations are
wrongly identified as FPs. In extreme crowded scenarios with incomplete anno-
tations, it’s recommended to set a higher r to avoid false punishment.
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Fig. 2: Qualitative comparison of tracker optimized for the TAO [2] metric (top) and
tracker optimized for TETA (bottom) on BDD100K. The tracker optimized for TAO
produces more false positives

E Qualitative Results

We provide additional qualitative results of TETer.

E.1 Category label prediction vs. CEM

We first compare the QDTrack [8] which uses class prediction as hard prior to
associate objects with TETer which uses CEM. In Fig. 3, we show an example of
QDTrack producing ID Switches due to errors in classification, whereas TETer
is more robust to such issues.

E.2 Class-agnostic vs. CEM

We further show the comparison between the class-agnostic association (AET
baseline in Section 5.5) and association with CEM. We observe that most class
agnostic association errors happen in rare classes where there are not enough
videos to train the class-agnostic instance association module well. For instance,
Fig. 5 (a) shows the bicycle (16) is wrongly associated with the car with class-
agnostic association, while using the CEM module helps to avoid the mistake.
The CEM module utilizes the supervision from large-scale object detection datasets
to learn fine-grained class appearance differences, which helps the association on
rare classes.

E.3 Tracking results comparison: TAO metric vs. TETA

We provide results for cross-dataset analysis. In Fig. 2, we show predictions from
trackers that are optimized either for the TAO metric or TETA. The tracker
optimized for the TAO metric generates more false positives that highly overlap,
producing results that are difficult to use in practice. On the other hand, the
tracker optimized for TETA produces cleaner results.



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV
#4933

ECCV
#4933

6 ECCV-22 submission ID 4933

Fig. 3: Qualitative comparison of QDTrack [8] (top) and TETer (bottom) on
BDD100K. QDTrack has ID Switches due to classification errors. (Same color rep-
resent the same track)

E.4 Rare class retrieval

We perform the class retrieval experiments in the rare classes on TAO to show
the effectiveness of the CEM embeddings. We take the objects in the first frame
of each ground truth track and use them as the retrieval templates to retrieve
ground truth objects in the whole TAO validation set. The softmax prediction
means we use the softmax confidence to retrieve objects that are predicted as
the same class as the template. The CEM means we use the CEM embedding
similarity to perform the retrieval. Fig. 6 shows the CEM embedding can suc-
cessfully retrieve the examples in the rare classes, while its softmax fails. Fig. 7
shows some failures cases where the CEM module retrieves the wrong class due
to occlusion or high visual similarities.

E.5 TETer failure cases

We also show some common failure cases of TETer on TAO in Fig. 4. Note
that TAO is annotated at 1 FPS. Thus, fast-moving objects usually have huge
appearance changes in neighboring frames. Due to the large appearance and
location variations, tracking is challenging on TAO. Also, TETer suffers from
localization errors caused by occlusion.

F More Implementation Details

We provide more implementation and training details of our method and evalu-
ation setup in different benchmarks.
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Fig. 4: Failure cases of TETer on TAO. Big appearance changes (top) and occlusions
(bottom)

F.1 Network architecture

We use the popular Faster R-CNN [9] with ResNet as the backbone. Specifically,
we use the ResNet-101 [5] for TETer on TAO and ResNet-50 on BDD100K. For
the exemplar encoder, we use 4conv-3fc head with group normalization [10].
The final output channel numbers are 1230 for TETer on TAO [2] and 256 for
BDD100K [11]. We use the same network architecture for the instance appear-
ance encoder but with only 1fc layers for the final output. The channel number
of the instance appearance encoder is 256 by default on both datasets.

F.2 Training

TAO We train TETer following the TAO [3] set up with a mixed LVISv0.5 [4]
and COCO [6] dataset. We set the batch size to 16 and the learning rate to
0.02. We train 24 epochs in total and decrease the learning by 0.1 after 16 and
22 epochs. For data augmentation, we randomly flip the images horizontally
with a 0.5 ratio. We randomly resize the training images to keep their short
edges between 640 to 800. We randomly sample images to form mini-batches
with additionally repeat sampling for rare classes [4]. We set the repeat factor
to 0.001. We train the instance appearance encoder on the TAO training set
following the same setting as QDTrack [8].

BDD100K We use the same object detector as QDTrack [8]. For training
the exemplar encoder, we freeze the object detector above and train with 8
BDD100K MOT categories using the BDD100K Detection set, which contains
70K images. For data augmentation, we randomly flip the images horizontally
with a 0.5 ratio. We randomly resize the training images to keep their short
edges between 640 to 800. We randomly sampled images to form mini-batches.
We set the batch size to 128.



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#4933

ECCV
#4933

8 ECCV-22 submission ID 4933

F.3 Inference and evaluation

TAO We evaluate our model on the TAO validation set with TETA. For the
close-set setting, the TAO validation set contains 988 videos with 302 classes,
a subset with LVIS classes. For the open-set setting, we merge the additional
free-form classes [2] as one unknown class. During inference, we use the fixed
image scale with 800 at the short edge. We initialize a new track if the object
has detection confidence higher than 0.0001.
BDD100K The BDD100K contains 200 videos (40k) for validation and 400
videos (80k) for testing. We use both the BDD100K validation set and the test
set for evaluation. For the inference, we use the (1296, 720) image scale. We use
the best performed model in the validation set which is saved at 2 epoch. We
initialize a new track if the detection confidence is higher than 0.7.
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(a) The class agnostic tracker false associates a bicycle (16) to a car (16).
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(b) The class agnostic tracker false associates a car (31) to a pedestrian (31).

Fig. 5: The qualitative comparison between CEM and class-agnostic association. CEM
can exploit the semantic supervision offered by large scale datasets to learn fine-grained
class appearance differences. Therefore, it can help trackers to avoid the association
mistakes in class-agnostic association
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Fig. 6: Rare class retrieval. Objects in the most left column are the retrieval targets.
The rest columns are the retrieval examples using softmax classifier or CEM. The
retrieval results are ranked by confidence. Columns from left to right are corresponding
to the results from high to low confidence. The class name under each example is the
ground truth class for the example. The CEM module generalizes well on rare classes
and can successfully retrieve them
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Fig. 7: Failure retrieval cases. The first two rows show that the CEM module retrieve
the human hand as rat due to occlusion. The last two rows show the CEM retrieve
monkey, bear as the gorilla due to the high visual similarities


