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Abstract. Current multi-category Multiple Object Tracking (MOT)
metrics use class labels to group tracking results for per-class evalua-
tion. Similarly, MOT methods typically only associate objects with the
same class predictions. These two prevalent strategies in MOT implic-
itly assume that the classification performance is near-perfect. However,
this is far from the case in recent large-scale MOT datasets, which con-
tain large numbers of classes with many rare or semantically similar
categories. Therefore, the resulting inaccurate classification leads to sub-
optimal tracking and inadequate benchmarking of trackers. We address
these issues by disentangling classification from tracking. We introduce
a new metric, Track Every Thing Accuracy (TETA), breaking tracking
measurement into three sub-factors: localization, association, and classi-
fication, allowing comprehensive benchmarking of tracking performance
even under inaccurate classification. TETA also deals with the challeng-
ing incomplete annotation problem in large-scale tracking datasets. We
further introduce a Track Every Thing tracker (TETer), that performs
association using Class Exemplar Matching (CEM). Our experiments
show that TETA evaluates trackers more comprehensively, and TETer
achieves significant improvements on the challenging large-scale datasets
BDD100K and TAO compared to the state-of-the-art.

Keywords: Large-scale Long-tailed MOT, Class Exemplar Matching,
TETA Metric

1 Introduction

Multiple Object Tracking (MOT) aims to estimate the trajectory of objects
in a video sequence. While common MOT benchmarks [15,30,10] only consider
tracking objects from very few pre-defined categories, e.g., pedestrian and car,
the number of categories of interest in the real world is overwhelming. Although
the recent extension of MOT to a large number of categories [47,8] may seem
trivial, it raises profound questions about the definition and formulation of the
problem itself, which are yet to be addressed by the community.

In Fig. 1, we show tracking results from two different trackers on the same
video sequence. Tracker A tracks the object perfectly, but with a slightly in-
correct classification on a fine-grained level. Tracker B classifies the object per-
fectly but does not track the object at all. Which one is the better tracker? The
mMOTA [3] metric gives a 0 score for tracker A and a score of 33 for tracker
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Which is the better tracker?

Tracker A

Tracker B

Fig. 1: Tracking results from two different trackers (A and B). The same color means
the same track. Tracker A gets O score in terms of the MOTA [3]|, IDF1 [40], and
HOTA [28] metrics, while the tracker B gets 33 for first two and 44 for HOTA

B. The above example raises an interesting question: Is tracking still mean-
ingful if the class prediction is wrong? In many cases, the trajectories of
wrongly classified or even unknown objects are still valuable. For instance, an
autonomous vehicle may occasionally track a van as a bus, but the estimated
trajectory can equally well be used for path planning and collision avoidance.

Current MOT models and metrics [2,48,3,40,41,28] are mainly designed for
single-category multiple object tracking. When extending MOT to the large-scale
multi-category scenarios, they simply adopt the same single-category metrics
and models by treating each class independently. The models first detect and
classify each object, and then the association is only done between objects of the
same class. Similarly, the metrics use class labels to group tracking results and
evaluate each class separately. This implicitly assumes that the classification is
good enough since it is the prerequisite for conducting association and evaluating
tracking performance.

The aforementioned near-perfect classification accuracy is mostly valid on
benchmarks consisting of only a handful of common categories, such as humans
and cars. However, it does not hold when MOT extends to a large number of
categories with many rare or semantically similar classes. The classification it-
self becomes a very challenging task on imbalanced large-scale datasets such
as LVIS [16]. Also, it is difficult to distinguish similar fine-grained classes be-
cause of the naturally existing class hierarchy, e.g., the bus and van in Fig. 1.
Besides, many objects do not belong to any predefined category in real-world
settings. Thus, treating every class independently without accounting for the
inaccuracy in classification leads to inadequate benchmarking and non-desired
tracking behavior. To expand tracking to a more general scenario, we propose
that classification should be disentangled from tracking, in both evaluation and
model design, for multi-category MOT. To achieve this, we design a new metric,
Track Every Thing Accuracy (TETA), and a new model, Track Every Thing
tracker (TETer).

The proposed TETA metric disentangles classification performance from
tracking. Instead of using the predicted class labels to group per-class tracking
results, we use location with the help of local cluster evaluation. We treat each
ground truth bounding box of the target class as the anchor of each cluster and
group prediction results inside each cluster to evaluate the localization and asso-
ciation performance. Our local clusters enable us to evaluate tracks even when
the class prediction is wrong. Furthermore, the local cluster evaluation makes
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Fig. 2: CEM can be trained with large-scale datasets and directly employed for tracking

TETA competent to deal with incomplete annotations, which are common in
datasets with a large number of classes, such as TAO |[§].

Our TETer follows an Associate-Every-Thing (AET) strategy. Instead of
associating objects in the same class, we associate every object in neighbor-
ing frames. The AET strategy frees association from the challenging classifi-
cation/detection issue under large-scale long-tailed settings. However, despite
wholly disregarding the class information during association, we propose a new
way of leveraging it, which is robust to classification errors. We introduce Class
Exemplar Matching (CEM), where the learned class exemplars incorporate valu-
able class information in a soft manner. In this way, we effectively exploit se-
mantic supervision on large-scale detection datasets while not relying on the
often incorrect classification output. CEM can be seamlessly incorporated into
existing MOT methods and consistently improve performance. Moreover, our
tracking strategy enables us to correct the per-frame class predictions using rich
temporal information.

We analyze our methods on the newly introduced large-scale multi-category
tracking datasets, TAO [8] and BDD100K [47]. Our comprehensive analysis
show that our metric evaluate trackers more comprehensively and achieve better
cross dataset consistency despite incomplete annotations. Moreover, our tracker
achieves state-of-the-art performance on TAO and BDD100K, both when using
previously established metrics and the proposed TETA.

2 Related Work

Multi-Object Tracking (MOT) aims to track multiple objects in video se-
quences. Earlier methods follow a track-first paradigm, which do not rely on
classification during tracking [35,36,1]. Some utilize LIDAR data with model-free
detection [18,33,11] or point cloud segmentation [44,43|. Others [35,32,34] first
segment the scene [12], which enables tracking of generic objects. Recently, the
most common paradigm for MOT is tracking-by-detection, focusing on learning
better appearance features to strengthen association [21,31,46,27,29,24], mod-
eling the displacement of each tracked object [2,48,38], or using a graph-based
approach [42,5]. Previous MOT approaches mostly focus on benchmarks with a
few common categories, while recent works [25,9] study the MOT in open-set
settings where the goal is to track and segment any objects regardless of their cat-
egories. Those methods use a class agnostic trained detector or RPN network to
generate object proposals, while classification is essential in many applications,
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e.g., video analysis. The close-set settings with large-scale, long-tailed datasets
are severely under-explored. We study the MOT in such a scenario, identifying
issues and proposing solutions in both model design and evaluation metric.

MOT Metrics often evaluate both detection and association performance.
Multi-Object Tracking Accuracy (MOTA) [3] was first introduced to unify the
two measures. MOTA performs matching on the detection level and measures
association performance by counting the number of identity switches. IDF1 [40]
and Track-mAP instead performs matching on the trajectory level. Recently,
Higher-Order Tracking Accuracy (HOTA) [28] was proposed to fairly balance
both components by computing a separate score for each. Liu et al. [25] proposes
a recall-based evaluation to extend MOT into open-world settings. All above
metrics do not independently access the classification performance, making them
unsuitable for large-scale multi-category MOT. TETA extends HOTA by further
breaking down detection into localization and classification, enabling TETA to
evaluate association despite classification failures. Furthermore, current metrics
have issues when evaluating trackers on non-exhaustively annotated datasets
such as TAO, which TETA can handle.

3 Tracking-Every-Thing Metric

Here we introduce the Track Every Thing Accuracy (TETA) metric. We first
discuss how classification is handled in current metrics and the incomplete an-
notation problem in section 3.1. Then, we formulate TETA in section 3.2 to
address the existing issues.

3.1 Limitations for Large-scale MOT Evaluation

How to handle classification. How to evaluate classification in MOT is
an important but under-explored problem. MOT metrics such as MOTA |[3],
IDF1 [40], and HOTA [28] are designed for the single category MOT. When
extending to multiple classes, they require trackers to predict a class label for
each object, then they group tracking results based on the labels and evaluate
each class separately. However, the wrong classification happens frequently in
long-tailed scenarios, which leads to failures in the grouping based on class labels,
and the tracking performance will not be evaluated even if the tracker localizes
and tracks the object perfectly as shown in Fig. 1.

One simple solution is to ignore classification and evaluate every object class-
agnostically. However, large vocabulary datasets often follow long-tailed distri-
butions where few classes dominate the dataset. Ignoring class information leads
to the evaluation being dominated by those classes, resulting in trackers’ perfor-
mance in tracking rare classes being negligible. The class-aware HOTA proposes
to use a geometric mean between with classification confidence and HOTA, which
requires the trackers to output the class probability distribution, while most only
output the final categories. Moreover, it still cannot access classification inde-
pendently.
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Fig. 3: Left: TAO ground truth sample. TAO is partially annotated. Right: Cor-
responding prediction from the best tracker AOA [13]| ranked by TAO metric. AOA
generates many low confidence bounding boxes, making it difficult to use in practice

Incomplete Annotations. MOT metrics such as MOTA [3], IDF1 [40], and
HOTA [28] are designed for datasets with exhaustive annotations of every object.
However, it is prohibitively expensive to annotate every object when construct-
ing large-scale datasets with many categories. The TAO dataset contains over
800 categories, but most of them are not exhaustively annotated (see Fig. 3).
Incomplete annotations pose a new challenge: how can we identify and penalize
false positive (FP) predictions? MOTA, IDF1, and HOTA metrics treat every
unmatched prediction as FP, but this falsely penalizes correct predictions with
no corresponding annotations. On the other hand, TAO metric [8] adopts the
same federated evaluation strategy as the LVIS [16] dataset and does not pe-
nalize categories if there is no ground-truth information about their presence or
absence. This strategy inadvertently rewards a large number of false positives.
In Fig. 3, we visualize predictions from the best tracker on TAO. Since TAO
does not punish most false positives, trackers are incentivized to generate many
low confidence tracks to increase the chances that objects from rare categories
get tracked, making their results difficult to be used in practice. Also, this makes
TAO a game-able metric. We show a simple copying and pasting trick that can
drastically improve the TAO metric’s score in section 5.1. A similar issue is also
observed in the LVIS mAP metric [7].

3.2 Tracking-Every-Thing Accuracy (TETA)

TETA builds upon the HOTA [28] metric, while extending it to better deal with
multiple categories and incomplete annotations. TETA consists of three parts: a
localization score, an association score, and a classification score, which enable
us to evaluate the different aspects of each tracker properly.

Local cluster evaluation. We design the local clusters to deal with incomplete
annotations and disentangle classification from large-scale tracking evaluation.
The main challenge for evaluation with incomplete annotations is determining
false positives. We propose local cluster evaluation to strike a balance between
false-penalizing or the non-penalizing phenomenon as discussed in 3.1. We have
observed that even though we do not have exhaustive annotations, we can still
identify a specific type of false positives with high confidence. Unlike previous
metrics, we only consider predictions within local clusters. We view each ground
truth bounding box as an anchor point of a cluster and assign each prediction
to the closest anchor points within an IoU margin of r. The predictions inside
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Fig. 4: Left: Inter-object overlap in real datasets. We compute the cumulative prob-
ability of ground truth bounding boxes that have different level of IoU overlaps in
four different datasets with exhaustive annotations along with their average. Extreme
inter-object overlap is very rare in real data. Right: Local cluster evaluation. TPL,
FPL, and GT are the true positive localization, false positive localization, and ground
truth, respectively. We create a cluster for each ground truth bounding box based on
the IoU similarities. For evaluation, we only consider predictions inside each cluster.
The predictions that do not belong to any cluster will be ignored

the clusters not chosen as matched true positives are considered false positives.
Fig. 4 shows the inter-object overlap in popular object detection and tracking
datasets, which indicates extreme inter-object overlap is rare in the real world.
If we set the 7 to 0.7 or higher, there is less than 1% chances that we make
mistakes even in highly crowded dataset like MOT20.

To avoid false punishments, we ignore the predictions that are not assigned to
any clusters during evaluation. This process is illustrated in Fig. 4. The margin r
of the clusters can be set according to different scenarios. The bigger the r is, the
more conservative the metric is regarding choosing false positives. Also, it means
fewer false punishments. If the dataset is super crowded and lacks annotation,
we can select a higher r to avoid false punishment. The local cluster design also
allows us to disentangle classification. For evaluation of a particular class, we
evaluate predictions that are assigned to clusters with ground truth bounding
boxes of that class. Since the per class result grouping is done using location
instead of classification. Thus, within each local cluster, we are able to evaluate
the tracking performance even if the class predictions are wrong.

Localization Score. The localization score measures the localization perfor-
mance of a tracker. A true positive candidate b € TPL is a prediction box (pBox)
that has an IoU higher than a localization threshold o with a ground truth box
(gBox). We use the Hungarian algorithm [20] to choose the final matched TPL
that optimizes both localization and association scores. The chosen assignment
represents the best-localized tracks. A false negative localization (FNL) is a gBox
that is not matched to any other pBox. A false positive localization (FPL) is
defined based on each cluster. If a pBox is in a cluster but is not matched to any
ground truth, it is a false positive. The localization score is computed using the
Jaccard Index,
|TPL|

|TPL| + |FPL| + |FNL|"

LocA = (1)

Association Score. Our association score follows the definition of HOTA but
redefines true positive associations (TPA), false negative associations (FNA),
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and false positive associations (FPA) to be based on each b. The association
score of b is

|TPA(D)
AssocA(b) = . 2
350cAW) = [TPA®G) + [FPA(b)| + [FNA(QD)) @)
The final association score is the average over all TPLs,
1
AssocA = ——— AssocA(b). 3

Classification Score. The classification score reflects the pure performance
of the classifier in each tracker. Unlike all other tracking metrics where classi-
fication performance is entangled with tracking performance, our metric makes
it an independent score. We only consider the well-matched TPL, where « is
at least 0.5. The classification score is defined for each class. The true positive
classification (TPC) for certain class ¢ is defined as

TPC(c) = {b|b € TPL A pe(b) = ge(b) = ¢}, (4)

where pc(b) is the class ID of b and gc(b) is the class ID of the ground truth that
is matched to b. This set includes all TPL that have the same predicted class
as the corresponding ground truth. The false negative classification for class c is
defined as

FNC(c) = {b|b € TPL A pc(b) # ¢ A ge(b) = ¢}, (5)

which includes all TPL that have incorrect class predictions with ground truth
class c. The false positive classification for class ¢ is defined as

FPC(c) = {bJb € TPL A pc(b) = ¢ Age(b) # ¢} (6)

which includes all TPL with class ¢ but is matched to an incorrect ground truth
class. If the dataset is fully annotated, the b € P, which includes TPL and the
predictions outside clusters. Full annotations indicate that the predictions that
are far away from gBox wrongly classify background or other classes as c¢. The
final classification score is

ITPC|

IsA = .
CISA = 15p0 £ [FPC| + [FNC @

Combined Score. HOTA uses geometric mean to balance detection and as-
sociation. However, the geometric mean becomes zero if any term is zero. If the
classification performance of a tracker is close to zero, e.g. due to a long-tail class
distribution, it will completely dominate the final tracking metric if computed
as a geometric mean. Therefore, we use an arithmetic mean to compute the final
score:

LocA + AssocA + CIsA

Besides, since different applications focus on different aspects, we encourage users
to look at each subfactor based on the needs instead of focusing on a single score.

TETA =
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Fig. 5: Association protocol of TETer. For every pair of frames, we first compute and
match the class exemplars for each localized object to determine potential matching
candidates. Then, we perform instance association to determine the final matches.
Finally, we use rich temporal information to correct classification errors in each frame

4 Tracking-Every-Thing Tracker

We here introduce our Tracking Every Thing tracker (TETer). TETer aims to
discover every foreground object, associate, and classify them across time. The
full pipeline is shown in Fig. 5

4.1 Class-Agnostic Localization (CAL)

To track every thing, we first need to localize them. However, object detectors
struggle on large-scale, long-tailed datasets, especially for rare categories. In-
terestingly, when decoupling localization and classification in common object
detectors, we find that the detector can still localize rare or even novel objects
well. Fig. 6 shows a comparison of the object detector’s performance with and
without considering classification on the TAO validation set. When we do not
consider class predictions during evaluation, the performance of the detector is
stable across rare, common, and frequent classes. This strongly suggests that the
bottleneck in detection performance lies in the classifier. With this in mind, we
replace the commonly used intra-class non-maximum suppression (NMS) using
class confidence with a class-agnostic counterpart to better localize every object
in the wild.

4.2 Associating Every Thing

Association is often done by considering a single or a combination of cues, e.g.,
location, appearance, and class. Learning motion priors under large-scale, long-
tailed settings is challenging since the motion patterns are irregular among
classes. Moreover, there are also many objects in the real world that are not
in any predefined categories. In contrast, objects in different categories usually
have very different appearances. Thus, we adopt appearance similarity as our
primary cue.

We propose an alternative approach for utilizing class information as feature
clues during association. Instead of trusting the class predictions from object
detectors and using them as hard prior, we learn class exemplars by directly
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Fig. 6: Faster R-CNN’s performance Fig. 7: Training pipeline of CEM

w/ and w/o considering classification

contrasting samples from different categories. This enables us to compute simi-
larity scores for pairs of objects at the category-level, which can better deal with
semantically similar classes compared to discrete class labels. During association,
we use the class exemplars to determine potential matching candidates for each
object. This process can be thought of as using class information as soft prior.
Therefore, it can integrate fine-grained cues required for classification (e.g. the
difference between a big red bus and a red truck), which are difficult to learn for
the purely class-agnostic appearance embedding.

Class Exemplar Matching (CEM). The training pipeline based on a two-
stage detector is shown in Fig. 7. The Region Proposal Network (RPN) computes
all the Region of Interest (Rol) proposals from the input images. Then, we
use Rol align to extract the feature maps from the multi-scale feature outputs.
The feature maps are used as input for the exemplar encoder to learn category
similarity. The exemplar encoder generates class exemplars for each Rol. We
assign category labels to each Rol with a localization threshold «. If a Rol has
an IoU higher than « (in our case, @« = 0.7) with a ground truth box, then we
assign the corresponding category label to the Rol. Positive samples are Rols
from the same category, and negative samples are those from different categories.

We adapt the SupCon loss [19] and propose an unbiased supervised con-
trastive loss (U-SupCon):

_ 1 exp(sim(q,q™)/7)
Lo = =2 4eq [@F @] 2oat €@+ (q) OB PoD@TY, - cq- eEma@a ) ()
POSD(q) = m Zq+eQ+ exp(sim(q, q+)/7—)7 (10)

where @ is the set of class generated from a random sampled image batch,
Q7 (q) is the set of all positive samples to g, @ (q) is the set of all negative
samples to ¢, sim(-) denotes cosine similarity, and 7 is a temperature parameter.
We set 7 to 0.07. We add the PosD(q) to prevent the varying lower bound of
the SupCon loss when training with detection proposals, where the number of
positive samples is consistently changing.

Association Strategy. For a query object ¢ in a tracklet, we find a group of
candidates by comparing their class exemplars. Specifically, assume we have the
class exemplar ¢, for the query object ¢ in frame ¢, and a set of detected objects
D in frame t + 1 and their class exemplars d. € D.. We compute the similarities
between g, and D, and select candidates with high similarity. This gives us a
candidate list C = {d | sim(q., d.) > 9, d € D}. ¢ is set to 0.5.
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To determine the final match from the candidate list, any existing association
method can be used. Thus, CEM can be readily used to replace existing hard
prior-based matching. For our final model TETer, we further utilize quasi-dense
similarity learning [37] to learn instance features for instance-level association.
We compute instance-level matching scores with each candidate from C' using
bidirectional softmax and cosine similarity. We take the candidate with the max-
imum score and if the score is larger than 3, then it is a successful match. We
set 8 to 0.5.

Temporal Class Correction (TCC). The AET strategy allows us to correct
the classification using rich temporal information. If we track an object, we
assume the class label to be consistent across the entire track. We use a simple
majority vote to correct the per-frame class predictions.

5 Experiments

We conduct analyses of different evaluation metrics and investigate the effective-
ness of our new tracking method on TAO [8] and BDD100K [47]. TAO provides
videos and tracking labels for both common and rare objects with over 800 ob-
ject classes. Although BDD100K for driving scenes has fewer labeled categories,
some, like trains, are much less frequent than common objects such as cars. In
this section, we first compare different metrics with TETA. Then we evaluate
the proposed TETer on different datasets and plug CEM into existing tracking
methods to demonstrate its generalizability.

Implementation Details. For the object detector, we use Faster R-CNN [39]
with Feature Pyramid Network (FPN) [23]. We use ResNet-101 as backbone on
TAO, same as TAO baseline [8], and use ResNet-50 as backone on BDD100K,
same as the QDTrack [37]. On TAO, we train our model on a combination of
LVISv0.5 [16] and the COCO dataset using repeat factor sampling. The repeat
factor is set to 0.001. We use the SGD optimizer with a learning rate of 0.02
and adopt the step policy for learning rate decay, momentum, and weight decay
are set to 0.9 and 0.0001. We train our model for 24 epoch in total and learning
rate is decreased at 16 and 22 epoch. For TETer with SwinT backbone [26], we
use 3x schedule used by mmdetection [6]. For TETer-HTC, we use the HTC-
X101-MS-DCN detector from [22]. On BDD100K, we load the same object
detector weights from QDTrack [37] and fine-tune the exemplar encoder with
on BDD100K Detection dataset with other weights frozen. For each image, we
sample a maximum of 256 object proposals. For more details, please refer to the
supplemental materials.

5.1 Metric Analysis

Cross Dataset Consistency. A good metric should correlate with real world
tracking performance. Although we face difficulties in incomplete annotations,
this principle for metric design should not change. For instance, a tracker de-
signed for tracking objects belonging to hundreds of categories on TAO should
also work well on new video sequences that contain a subset of those categories.
We evaluate this by using the BDD100K dataset, which has seven out of eight
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Fig. 8: Left: We pre-train models on TAO (incomplete annotations) and directly test
them on BDD (complete annotations) with the default BDD metric (IDF1). We omit
MOTA as its value range is (—oo, 1], which is inconsistent with other metrics. Right:
Percentage change in score of each metric as number of evaluation classes increases

of its categories overlapped with TAO. We treat BDD100K as the new video
sequences in the real world to test two trackers: QDTrack-TAO [37], which is
optimized for the TAO metric, and our tracker, which is optimized for TETA.
We only evaluate on the overlapped categories, which also contains exhaustive
annotations for every object.

As shown in Fig. 8 (Left), the tracker selected by the TAO metric overly
optimizes for the incomplete TAO dataset setting, which does not generalize
well to BDD100K. In comparison, the tracker selected by TETA generalizes well
to BDD100K. Our metric gives the same ranking on the complete annotations
setting with the default BDD100K IDF1 metric despite facing the difficulties of
ranking trackers under incomplete annotations.

Comprehensively Analyze Trackers. Correctly understanding different as-
pects of trackers is crucial for designing trackers for various scenarios. For ex-
ample, it is important for an autonomous vehicle to detect and understand the
trajectory of every object to avoid collision, but slightly wrong classification may
not be as critical. In this experiment, we evaluate the effect of the number of
classes on metric scores on the TAO validation set. We use the same tracking
predictions but merge the class predictions by sorting the classes in descending
order based on the number of instances and combining the last n classes. For
example for n = 2, we merge all classes besides humans (the most frequent class)
into a single class and only evaluate on two classes. We sample several n between
1 (single class) and 302 (all classes) and evaluate on each set of classes.

The result is shown in Fig. 8 (Right). Although the trajectory predictions are
the same, the score produced by the TAO metric drops significantly as the num-
ber of classes increases. As the TAO metric entangles classification and tracking
into a single metric, this makes it hard to determine which part of the tracker
went wrong. On the other hand, with TETA, we can separately investigate dif-
ferent aspects. While the classification performance follows the same trend as the
TAO metric, the localization and association scores are still stable. This allows
us to instantly understand that the degradation is due to classification.

Cheating TAO track mAP metric. Fig. 9 shows a copy & paste trick that
can boost the TAO track mAP. We simply copy and paste existing trajectories
with low confidence class predictions from the object detector without additional
training. As shown in Table 1, TAO track mAP and Federated HOTA metric
increase drastically from 0 to 62.9 and 4.2 to 68.7. In comparison, TETA drops
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> Federated HOTA|HOTA 1 DetA T AssA 1
Before copy 4.2 3.0 5.9
Paste After copy 68.7 75.7 62.8
{ TETA (ours) |TETA 1 LocA 1 AssocA 1 CIsA 1
(a) Original (b) After copy & paste Before copy 47.6 80.1 59.6 3.2
After copy 13.8 3.3 10.2 27.9

Fig. 9 & Table 1: Copy & paste strategy to cheat the TAO track mAP. (a) tracking
result from our tracker, which incorrectly classifies the deer as a goat. (b) copying and
pasting existing tracks with low confidence class predictions from the object detector.
The table shows the comparison between TAO track mAP and TETA with a simple
copy & paste trick for the sequence in Fig. 9

Table 2: Results on TAO Table 3: Results on BDD100K
Method TETA LocA AssocA ClsA Method Split mMOTA mIDF1|TETA LocA AssocA ClsA
SORT [4] 24845 4813 1432 12.08 DeepSORT [45]| val | 352 49.3 | 43.03 46.36 46.69 51.04
Tracktor [2] 24.15 47.41 12.96 12.08 QDTrack [37] | val | 36.6  51.6 |47.84 45.86 4847 49.20
DeepSORT [45] | 25.98 48.35 17.52 12.09 TETer val | 39.1 53.3 |50.83 47.16 52.89 52.44
?g?kc[})fL o 3?3; ig'gi iggf ﬁﬁf DeepSORT [45]| test | 34.0  50.2 | 46.75 45.26 47.04 47.93
: : ! : QDTrack [37] |test| 35.7 523 |49.17 47.19 50.93 49.38
QDTrack [37] | 30.00 50.53 27.36 12.11 TETer test| 37.4  53.3 [50.42 46.99 53.56 50.71
TETer 33.25 51.58 35.02 13.16 : : : : : :

QDTrack-SwinT| 31.22 51.32 27.27 15.06
TETer-SwinT |34.61 52.10 36.71 15.03
QDTrack-HTC | 32.79 56.21 27.43 14.73
TETer-HTC |36.85 57.53 37.53 15.70

from 47.6 to 13.8, which suggests the trick does not work on TETA. Moreover,
we can clearly see consequences brought by copy & paste. The localization score
drops sharply as copy & paste generates a lot of false positive localizations. On
the other hand, the trick only improves the classification performance.

5.2 TAO Tracking Results

We provide a thorough comparison of TETer against competing methods on the
TAO validation set in Table 2 using our TETA metric. We set the margin r
of local clusters to 0.5 since we observe the TAO dataset is not crowded, and
this choice gives a proper balance between non-penalizing and over-penalizing
FPs. We also include results of other margins in the supplemental material. For
this experiment, we only use the predefined 302 categories without considering
the unknown classes. We allow each tracker maximum outputs 50 predictions
per image. We use the same FasterRCNN detectors with class-agnostic NMS
for all methods except AOA [13]. Despite the increased difficulty introduced by
the large number of categories, TETer outperforms all other methods, providing
consistent improvements in TETA, LocA, and AssocA. In particular, TETer
improves TETA of QDTrack [37] by over 3 points and AssocA by over 7 points.

We also compare our method to AOA [14], the winner of the ECCV 2020
TAO challenge, using the publicly available predictions'. AOA combines multi-
ple state-of-the-art few-shot detection and object ReID models that are trained
using additional external datasets, which enables it to obtain very strong classi-
fication performance. However, as it is optimized using the TAO metric, it makes

1 https://github.com/feiaxyt/Winner_ ECCV20_TAO
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Fig. 10 & Table 4: Fig. 10 shows comparison of DeepSORT [17], Tracktor+-+ [2], and
QDTrack [37] with w/ and w/o our CEM module on TAO and BDD100K datasets.
CEM consistently improves association performance of all methods. Table 4 shows
comparison with different components of TETer on the TAO open set using our TETA
metrics

excessive false positive predictions, which are punished by TETA. Additionally,
TETer achieves better association performance without using external datasets.

5.3 BDD100K Tracking Results

We provide evaluation results on both the BDD100K validation and test sets
in Table 3. We first evaluate each tracker using the established CLEAR MOT
metrics, including MOTA, MOTP, and IDF1, each averaged over every class.
Without bells and whistles, TETer can obtain performance gains across all three
metrics compared to QDTrack [37] on both sets, achieving state-of-the-art per-
formances. In particular, TETer improves the mMOTA and mIDF1 of QDTrack
by 2.5 and 1.7 points on the validation set and 1.7 and 1 points on the test set.
We also show evaluation results using TETA. TETer again obtains consistent
performance gains across all metrics. On both validation and test sets, TETer
can improve AssocA of QDTrack by over 2.5 points.

5.4 Generalizability of CEM

To demonstrate the generalizability of our CEM module, we further apply CEM
to other MOT methods to replace existing hard prior-based matching. We com-
pare three methods, DeepSORT [45], Tracktor++ [2], and QDTrack [37], with
and without CEM across both TAO and BDD100K. The results are shown
in Fig. 10. On the TAO validation set, adding CEM results in at least 2 points of
improvement in AssocA across all methods. In particular, CEM can improve As-
socA of QDTrack by 7 points. On both BDD100K validation and test sets, CEM
can obtain over 2.5 points of improvement in AssocA of QDTrack. This shows
our CEM module can be applied to various popular MOT methods and achieve
consistent improvements in association by better exploiting class information.

5.5 Ablation Study

We conduct ablation studies on TAO and BDD100K. We investigate the impor-
tance of our proposed modules on both predefined and unknown categories. For
TAO, we use their split for known and unknown (free-form) classes. For unknown
split, we only report the LocA and AssocA.

Tracking Components. We evaluate the contributions of each component
of TETer on the TAO open set using TETA in Table 4. When we replace the
class-dependent intra-class NMS from the object detector with a class-agnostic
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Table 5: Comparing different ways of using class information. AET Baseline asso-
ciates every objects without using any class information. Softmax indicates association
happens only within the same class. BERT indicates using BERT word embeddings to
group candidates for association

BDD100K val TAO val
Class mMOTA mIDF1 AssocA AssocA
AET Baseline 37.3 52.6 52.0 33.5
Softmax 36.6 (-0.7) 51.6 (-0.2) 48.9 (-0.2) 27.4 (-6.1)
BERT 37.2 (-0.1) 52.6 52.0 27.8 (-5.7)
CEM 39.1 (+1.8) 53.3 (10.7) 52.9 (10.9) 35.0 (11.5)

NMS, we can improve LocA by over 3 points on both known objects and un-
known objects. Adding CEM drastically improves its AssocA by over 7 points on
known objects and 8 points on unknown objects. Further, using temporal class
correction can improve ClsA by over 1 point.

Comparison of using class information. We compare different ways of uti-
lizing class information during association on the validation set of BDD100K and
TAO in Table 5. The baseline protocol follows the AET strategy and performs
class-agnostic association with pure instance appearance features described in sec-
tion 4.2. We then add different class prior on top of the AET baseline to study
their effectiveness. Softmax use class labels as hard prior and associate objects
within the same class. This strategy leads to a severe downgrade in the tracking
performance, especially for the TAO dataset.

Alternatively, we use the out-of-the-shelf word embeddings to incorporate
class information. The semantically similar classes should be closer in the word
embedding space. This way transfers the hard class labels to soft ones. We utilize
the BERT model to embed the class names to replace our CEM. While the
performance is slightly better than using softmax predictions, it is inferior to
the CEM. Our CEM is the only method capable of effectively utilizing semantic
information to improve the association by outperforming the AET baseline on
large-scale long-tailed datasets.

6 Conclusion

We present a new metric TETA and a new model TETer for tracking every
thing in the wild. TETA and TETer disentangle classification from evaluation
and model design for the long-tailed MOT. TETA can evaluate trackers more
comprehensively and better deal with incomplete annotation issues in large-scale
tracking datasets. TETer disentangles the unreliable classifier from both detec-
tion and association, resulting in a better tracker which outperforms existing
state-of-the-art trackers on large-scale MOT datasets, TAO and BDD100K. The
core component of TETer, CEM, can be used as a drop-in module for existing
tracking methods and boost their performance.
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