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This supplementary document provides further details on our framework
(Sec. A), dataset and training details (Sec. B), the details of contact classification
networks with discussions of the architecture and loss function design choices
(Sec. C), and additional evaluation for the dense contact estimation network and
ablation studies for the optimisations in our framework, as well as the details of
the qualitative comparisons (Sec. D).

A  Framework Details

In this section, we elaborate on the details of the frustum grid transform (Sec. A.1),
the implementation details (Sec. A.2), the optimisation details (Sec. A.3) and
the random sampling for the root translation and orientation in the sampling-
based optimisation stage (Sec. A.4). We also explain, in Sec. A.5, the details of
the random sampling in the kinematic pose space used in the ablation study in
the main paper (Sec. 5.1).

A.1 Frustum Grid Transform

We conduct as follows the transformation from the scene point cloud S € RM*3

defined in the camera frame, into the frustum voxel grid Sp € R32X32x256 yhoge
third dimension corresponds to the discretised depth of the 3D space. Given a
vertex position p = (z,y, 2), i.e., a row of S, in a perspective frustum space, its
normalised vertex p into the cuboid space reads:

p= (2022, M

where f = (fz, fy) is the camera’s focal length. The components of all points
p are then suitably normalised and binned so as to build the binary occupancy

A.2 Implementations

The neural networks are implemented with PyTorch [8] and Python 3.7. We
conducted the evaluations on a computer with one AMD EPYC 7502P 32 Core
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Processor and one NVIDIA QUADRO RTX 8000 graphics card. The training
of the contact classification networks continued until the loss convergence using
Adam optimiser [5] with a learning rate 3.0 x 10~%. Our framework runs with
25 seconds per frame excepting the computation time of SMPLify-X [9] which
we use for the initial root-relative pose estimation.

A.3 Optimisation Details

For the optimization in Eq. 3 of the main paper, we use the weights Aop = 1.0,
Asmooth = 0.01 and Acon = 0.01. For Eq. 9, Ag; and Agata are set to 0.05 and 0.1.
In the final refinement optimisation step, we use Agata = 1.0 while keeping the
same weights for the other terms. Rather than using a Chamfer loss for Lo, to
minimise the body-environment contact vertex distance, we use the Hausdorff
measure [6]; indeed, we observed that, with this measure, the reconstructed 3D
motion is more robust to the false positive contact labels on the environment
vertices. Note that the 2D keypoints are normalised by the image size. The joint
angles are defined in radian.

A.4 Random Sampling for Root Translation and Orientation

In the pose manifold sampling-based optimisation stage, we generate candidate
pose samples in the learned manifold space as described in the main paper (see
Fig.2-(b) for its schematic visualisation). For the root translation and orien-
tation, we generate random samples around the initial translation 7,5t and
@opt since they have only 3 DoF for each. Specifically, we generate samples
by adding the randomly generated offsets AT = ¢, and Aopt = g to Topt
and @, respectively; ¢ is initialised to 1.0, and incremented by 1 when the
solution is not found due to the hard collision constraint; ¢ € [—0.03,0.03]> and
e € [—0.01,0.01]* are the values generated uniformly at random. The range
of g is kept small since even a small change of the root orientation largely
modifies the 3D joint positions.

A.5 Random Sampling in the kinematic pose space for the ablation

Here, we elaborate on the details of the random sampling strategy used for the
ablative study: “our manifold sampling strategy vs. naive random sampling with
a uniform distribution in a kinematic skeleton frame” in Sec. 5.1 in the main
paper. Specifically, for the naive random sampling, we use the random sampling
for the pose parameter O,p; € R3X similar to the method explained in Sec. A.4:
the randomly generated offsets A = 1y are added to O,p to generate the
pose samples; g € [—0.26, 0.26]3K are the values that are uniformly generated
at random.
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B Dataset and Training Detalils

As elaborated in Sec. 4 in the main paper, we use GTA-IM [1] and PROX dataset
[2] for our network training. We first pretrain our networks on the whole GTA-
IM dataset using the image sequences and our body contact annotations. Lastly,
we train our networks on PROX dataset with the environment contact labels
obtained by us (see Sec.4). The script to obtain the contact labels from PROX
dataset and the annotated contact labels on GTA-IM dataset will be released
for the future comparisons. For the evaluations, we extract test sequences from
PROX and GPA [12,13] datasets. The test sequence IDs are listed in the file
test_seq_IDs.txt in our supplement. To report the 3D per-vertex errors on
GPA dataset in our main paper, we fit the SMPL-X human mesh model onto
the ground-truth 3D joint keypoints. The script for this operation will also be
released. In addition to the recordings in indoor scenes, PROX dataset also
provides the studio recordings of the accurate 3D human shape and pose for
quantitative comparison purposes. However, these recordings provide the non-
contiguous sequences, hence not suitable for the evaluations of our method that
requires the contiguous image sequences as one of the inputs. Therefore, we
mainly report the quantitative results on GPA dataset [12,13], and qualitative
results on PROX dataset. During the training, the ground-truth scene contact
vertex information is once converted into the frustum voxel grid representations
as elaborated on Sec. A.1. We further apply 3D Gaussian filtering to obtain the
smoothed contact label signal, which helps to stabilise the network training.

C Network Details

We elaborate here on the network architectures in the dense contact estimation
stage. Networks N7 and N3 consist of 2D-convolution-based encoder and decoder
architectures. We employ Resnet-18 [4] for the encoder of N7 without the last
two layers, i.e., a fully-connected layer and an average-pooling layer. We em-
ploy U-Net [10]-based architecture for N3 with 2 sets of down-convolution and
up-convolutions blocks. Network €., consists of 3 fully-connected layers with
LeakyReLU [7] activation function. At the output layer, we use a sigmoid func-
tion instead of LeakyReLU. For the details of Ny, Q,, and the decoder of N,
please see Figure 1.

Why This Architecture Design? Here, we discuss the architecture design
choice for the environment contact estimation networks. Instead of the pixel-
aligned network €,, a 3D-convolution-based network can also be applied to
obtain the voxel grid that contains per-voxel contact labels of the 3D scene.
However, we observed that the 3D-convolution-based classifier network suffers
from the underfitting issue during the training due to the very small number of
ground-truth positive contact labels over the total number of voxels in the grid.
With the pixel-aligned implicit field, we can adjust these unbalanced positive
and negative contact labels by manipulating the sampling points in the 3D scene
which we can freely control. Also, unlike the original work [11] that provides the
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Fig.1: The detailed network architectures for No, (1},, and the decoder of Nj.
The numbers next to the fully-connected layers represent the output dimen-
sionality. The numbers next to the convolution layers represent kernel size (‘k’),
number of kernels (‘n’), size of sliding (‘s’) and padding size (‘p’). Note that
when the padding size is not shown, no padding is applied at the convolution
layer.

scalar value as a depth query, we provide a one-hot vector as a depth query to
Qen: we observed that it significantly reduces the loss value during the training
compared to providing the scalar depth queries.

Loss Function Design (Eqg. 2 in the main paper). Binary GT environment
contact label (‘1’: contact, ‘0’: no contact) is a very sparse signal, i.e., only a
small number of voxels (70.01%) contain ‘1’. This reduces the network training
stability. We observe that smoothing the environment contact labels mitigates
the unbalance and enhances the training stability. Hence, with smoothing, L2-
loss (not BCE) for the environment contact estimation is used. Contact labels
for body are more balanced compared to the environment contacts. Therefore,
we do not smooth them and use BCE loss.

D Further Evaluations and Ablations

In addition to the ablation studies and evaluations reported in our main pa-
per, we further assess the performance of the dense contact estimation network
(Sec. D.1) and the sliding loss term Lg; (Eq.10) introduced in the main paper

(Sec. D.2). Lastly, we explain the setup of the qualitative results in our video
(Sec. D.3).

D.1 Contact Classifications

As HULC is the first method estimating contact labels on dense body and en-
vironment surfaces from monocular RGB and point cloud input, there are no
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Table D1: Ablation study for the sliding loss term Lg);.
MPJPE [mm)] | sliding error [mm)] |

Ours 217.9 16.0
Ours (w/o L) 220.2 18.5

other existing works that estimate the same outputs. Nonetheless, we report the
performance on the GPA dataset for completeness and future reference. The pre-
cision, recall and accuracy of the body surface contact estimation are 0.22, 0.41
and 0.91, respectively. For the environment surface contact estimation, 0.045,
0.18 and 0.96, respectively. Note that these classification tasks are highly chal-
lenging, especially since the environment point cloud contains several thousands
of vertices to be classified. Furthermore, GPA dataset sequences are not included
in the training dataset for the contact estimation networks (see Sec.B for the
training/test splits). Although it is conceivable that the reported numbers can
be further improved, our framework largely benefits from the estimated contact
labels and significantly reduces the 3D localisation errors as reported in Tables
2 and 3 in the main paper.

D.2 More Ablations for the optimisations

In the main paper, we performed substantial ablation studies; (i) 3D errors
and physical plausibility measurement with the variants of our method (“Ours
(w/o S)”, “Ours (w/o R)” and “Ours (w/o SR)”) in Tables 2 and 4, (ii) with
and w/o (denoted as “Baseline”) contact loss term Leon (Eq.6) in Table 3, (iii)
experiments with different number of samples in the sampling-based optimisation
stage (Fig. 3-a), (iv) experiments with different number of iterations in the
sampling-based optimisation (Fig. 3-b), and (v) with and w/o the confidence
merging strategy (Eq.7) in Sec. 5.1.

For the completion, we report the ablative study for the sliding loss term Lgy;
(Eq.9) used in our optimisations. In Table D1, we report MPJPE and sliding
error ey;, measured in a world frame for our full framework (“Ours”) and our
framework w/o the sliding loss term (“Ours (w/o Lg;)”). The sliding error ey,
is measured by computing the average of the drift of the contact vertex on the
human surface, based on the assumption that contact positions in the scene are
not moving (i.e., zero velocity). This is a reasonable assumption since most of
the contact positions in daily life in a static scene are static contacts, which is
also the case with our evaluation dataset; GPA dataset [12,13].

With the sliding loss term, our framework reduces the sliding error by ~14%
compared to w/o Lg;. Notably, integration of Lg; reduces the 3D joint error
(MPJPE) by 1% as well. Note that the ablation studies of the loss terms (e.g.,
2D reprojection and temporal smoothness terms) other than Lg; and Lo, (Tab.
3 in the main paper) are not of interest as those are already widely used in
many wroks in video-based monocular 3D human MoCap and their significance
is already well known.
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Fig. 2: Qualitative comparison of our HULC wvs existing scene-aware RGB-based
methods on PROX [2] dataset. Our method shows significantly mitigated colli-
sions thanks to our novel sampling-based optimisation, which handles the severe
body-environment penetrations in a hard manner (red rectangles). We also show
the results from a top view (green rectangle). Thanks to the contact-based opti-
misation using the estimated dense contacts on the body surfaces and the envi-
ronment, our estimated 3D global root positions are significantly more accurate
compared to the previous methods.
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D.3 Qualitative Comparisons

In our video, we compare our HULC with the SOTA methods PROX][2] and
POSA]J3| from the RGB-based algorithm class. From the RGB-D based algorithm
class, we choose PROX-D [2] and LEMO][14]. For a fair comparison, Gaussian
smoothing is applied to all those related methods. In Fig. 2, we show compar-
isons of our method with other RGB-based scene-aware methods POSA[3] and
PROX [2]. Our method shows physically more plausible interactions with the
environment than the others. We also visualise the result from a bird’s eye view
to show the significance of the contact-based optimisation, which contributes
to substantially more accurate global translation estimation than other related
methods (green rectangle).
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