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Abstract. Marker-less monocular 3D human motion capture (MoCap)
with scene interactions is a challenging research topic relevant for ex-
tended reality, robotics and virtual avatar generation. Due to the in-
herent depth ambiguity of monocular settings, 3D motions captured
with existing methods often contain severe artefacts such as incorrect
body-scene inter-penetrations, jitter and body floating. To tackle these
issues, we propose HULC, a new approach for 3D human MoCap which is
aware of the scene geometry. HULC estimates 3D poses and dense body-
environment surface contacts for improved 3D localisations, as well as
the absolute scale of the subject. Furthermore, we introduce a 3D pose
trajectory optimisation based on a novel pose manifold sampling that
resolves erroneous body-environment inter-penetrations. Although the
proposed method requires less structured inputs compared to existing
scene-aware monocular MoCap algorithms, it produces more physically-
plausible poses: HULC significantly and consistently outperforms the ex-
isting approaches in various experiments and on different metrics. Project
page: https://vcai.mpi-inf.mpg.de/projects/HULC/.
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1 Introduction

3D human motion capture (MoCap) from a single colour camera received a lot
of attention over the past years [30, 29, 15, 16, 19, 37, 6, 50, 28, 40, 5, 27, 51, 31, 36,
33, 35, 57, 63, 9, 1, 56, 22, 45, 49, 20, 21, 23]. Its applications range from mixed and
augmented reality, to movie production and game development, to immersive
virtual communication and telepresence. MoCap techniques that not only focus
on humans in a vacuum but also account for the scene environment—this en-
compasses awareness of the physics or constraints due to the underlying scene
geometry—are coming increasingly into focus [46, 47, 39, 11, 61, 60, 38, 58].

Taking into account interactions between the human and the environment
in MoCap poses many challenges, as not only articulations and global trans-
lation of the subject must be accurate, but also contacts between the human
and the scene need to be plausible. A misestimation of only a few parame-
ters, such as a 3D translation, can lead to reconstruction artefacts that con-
tradict physical reality (e.g., body-environment penetrations or body floating).
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Approach Inputs
Outputs

body
pose τ

absolute
scale

body
contacts

env.
contacts

PROX [11] RGB+scene mesh ✓ ✓ ✗ ✗ ✗
PROX-D [11] RGBD+scene mesh ✓ ✓ ✗ ✗ ✗
LEMO [61] RGB(D)+ scene mesh ✓ ✓ ✗ ✓∗ ✗
HULC (ours) RGB+scene point cloud ✓ ✓ ✓ ✓ ✓

Table 1: Overview of inputs and outputs
of different methods. “τ” and “env. con-
tacts” denote global translation and envi-
ronment contacts, respectively. “∗” stands
for sparse marker contact labels.

On the other hand, known human-
scene contacts can serve as reli-
able boundary conditions for im-
proved 3D pose estimation and lo-
calisation. While several algorithms
merely consider human interactions
with a ground plane [46, 47, 39, 38,
60], a few other methods also ac-
count for the contacts and interac-
tions with the more general 3D en-
vironment [11, 61]. However, due to
the depth ambiguity of the monoc-
ular setting, their estimated sub-
ject’s root translations can be inaccurate, which can create implausible body-
environment collisions. Next, they employ a body-environment collision penalty
as a soft constraint. Therefore, the convergence of the optimisation to a bad
local minima can also cause unnatural body-environment collisions. This paper
addresses the limitations of the current works and proposes a new 3D HUman
MoCap framework with pose manifold sampLing and guidance by body-scene
Contacts, abbreviated as HULC. It improves over other monocular 3D human
MoCap methods that consider constraints from 3D scene priors [11, 61]. Unlike
existing works, HULC estimates contacts not only on the human body surface
but also on the environment surface for the improved global 3D translation esti-
mations. Next, HULC introduces a pose manifold sampling-based optimisation
to obtain plausible 3D poses while handling the severe body-environment col-
lisions in a hard manner. Our approach regresses more accurate 3D motions
respecting scene constraints while requiring less-structured inputs (i.e., an RGB
image sequence and a point cloud of the static background scene) compared
to the related monocular scene-aware methods [11, 61] that require a complete
mesh and images. HULC returns physically-plausible motions, an absolute scale
of the subject and dense contact labels both on a human template surface model
and the environment.

HULC features several innovations which in interplay enable its functionality,
i.e., 1) a new learned implicit function-based dense contact label estimator for
humans and the general 3D scene environment, and 2) a new pose optimiser
for scene-aware pose estimation based on a pose manifold sampling policy. The
first component allows us to jointly estimate the absolute subject’s scale and
its highly accurate root 3D translations.The second component prevents severe
body-scene collisions and acts as a hard constraint, in contrast to widely-used
soft collision losses [11, 26]. To train the dense contact estimation networks, we
also annotate contact labels on a large scale synthetic daily motion dataset:
GTA-IM [2]. To summarise, our primary technical contributions are as follows:

– A new 3D MoCap framework with simultaneous 3D human pose localisation
and body scale estimation guided by estimated contacts. It is the first method
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that regresses the dense body and environment contact labels from an RGB
sequence and a point cloud of the scene using an implicit function (Sec. 3.1).

– A new pose optimisation approach with a novel pose manifold sampling yield-
ing better results by imposing hard constraints on incorrect body-environment
interactions (Sec. 3.2).

– Large-scale body contact annotations on the GTA-IM dataset [2] that pro-
vides synthetic 3D human motions in a variety of scenes (Fig. 1 and Sec. 4).

We report quantitative results, including an ablative study, which show that
HULC outperforms existing methods in 3D accuracy and on physical plausibility
metrics (Sec. 5). See our video for qualitative comparisons.

2 Related Works

Most monocular MoCap approaches estimate 3D poses alone or along with
the body shape from an input image or video [9, 15, 16, 19, 6, 50, 28, 40, 5, 13,
27, 51, 31, 36, 33, 35, 57, 63, 9, 1, 56, 22, 45, 49, 20, 23, 62]. Some methods also esti-
mate 3D translation of the subject in addition to the 3D poses [30, 29, 21, 37].
Fieraru et al. [8] propose a multi-person 3D reconstruction method consider-
ing human-human interactions. Another algorithm class incorporates an explicit
physics model into MoCap and avoids environmental collisions [47, 39, 46, 59].
These methods consider interactions with only a flat ground plane or a stick-like
object [25], unlike our HULC, that can work with arbitrary scene geometry.

Awareness of human-scene contacts is helpful for the estimation and synthe-
sis [53, 10] of plausible 3D human motions. Some existing works regress sparse
joint contacts on a kinematic skeleton [25, 46, 47, 39, 38, 64] or sparse markers
[61]. A few approaches forecast contacts on a dense human mesh surface [12, 32].
Hassan et al. [12] place a human in a 3D scene considering the semantic informa-
tion and dense human body contact labels. Müller et al. [32] propose a dataset
with discrete annotations for self-contacts on the human body. Consequently,
they apply a self-contact loss for more plausible final 3D poses. Unlike the ex-
isting works, our algorithm estimates vertex-wise dense contact labels on the
human body surface from an RGB input only. Along with that, it also regresses
dense contact labels on the environment given the scene point cloud along with
the RGB sequence. The simultaneous estimation of the body and scene contacts
allows HULC to disambiguate the depth and scale of the subject, although only
a single camera view and a single scene point cloud are used as inputs.

Monocular MoCap with scene interactions. Among the scene-aware Mo-
Cap approaches [46, 47, 39, 11, 61, 38, 60], there are a few ones that consider
human-environment interactions given a highly detailed scene geometry [11, 61,
24]. PROX (PROX-D)[11] estimates 3D motions given RGB (RGB-D) image,
along with an input geometry provided as a signed distance field (SDF). Given
an RGB(D) measurement and a mesh of the environment, LEMO [61] also pro-
duces geometry-aware global 3D human motions with an improved motion qual-
ity characterised by smoother transitions and robustness to occlusions thanks
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Method Overview Contact Labels on GTA-IM

Images Camera View Bottom View

Fig. 1: (Left) Given image sequence I, scene point cloud S and its associated
frustum voxel grid SF, HULC first predicts for each frame dense contact labels
on the body cbo, and on the environment cen. It then refines initial, physically-
inaccurate and scale-ambiguous global 3D posesΦ0 into the final onesΦref in (b).
Also see Fig. 2 for the details of stage (a) and (b). (Right) Example visualisations
of our contact annotations (shown in green) on GTA-IM dataset [2].

to the learned motion priors. These two algorithms require an RGB or RGB-D
sequence with SDF (a 3D scan of the scene) or occlusion masks. In contrast, our
HULC requires only an RGB image sequence and a point cloud of the scene; it
returns dense contact labels on 1) the human body and 2) the environment, 3)
global 3D human motion with translations and 4) absolute scale of the human
body. See Table 1 for an overview of the characteristics. Compared to PROX
and LEMO, HULC shows significantly-mitigated body-environment collisions.

Sampling-based human pose tracking. Several sampling-based human pose
tracking algorithms were proposed. Some of them utilise particle-swarm opti-
misation [14, 41, 42]. Charles et al. [4] employ Parzen windows for 2D joints
tracking. Similar to our HULC, Sharma et al. [44] generate 3D pose samples by
a conditional variational autoencoder (VAE) [48] conditioned on 2D poses. In
contrast, we utilise the learned pose manifold of VAE for sampling, which helps
to avoid local minima and prevent body-scene collisions. Also, unlike [44], we
sample around a latent vector obtained from the VAE’s encoder to obtain poses
that are plausible and similar to the input 3D pose.

3 Method

Given monocular video frames and a point cloud of the scene registered to the
coordinate frame of the camera, our goal is to infer physically-plausible global
3D human poses along with dense contact labels on both body and environment
surfaces. Our approach consists of two stages (Fig. 1):

– Dense Body-environment contacts estimation: Dense contact labels
are predicted on body and scene surfaces using a learning-based approach
with a pixel-aligned implicit representation inspired by [43] (Sec. 3.1);
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– Sampling-based optimisation on the pose manifold: We combine sam-
pling in a learned latent pose space with gradient descent to obtain the ab-
solute scale of the subject and its global 3D pose, under hard guidance by
predicted contacts. This approach significantly improves the accuracy of the
estimated root translation and articulations, and mitigates incorrect envi-
ronment penetrations. (Sec. 3.2).

Modelling and Notations. Our method takes as input a sequence I= {I1, ..., IT }
of T successive video frames from a static camera with known intrinsics (T =5
in our experiments). We detect a squared bounding box around the subject and
resize the cropped image region to 225× 225 pixels. The background scene’s ge-
ometry that corresponds to the detected bounding box is represented by a single
static point cloud S∈RM×3 composed of M points aligned in the camera refer-
ence frame in an absolute scale. To model the 3D pose and human body surface,
we employ the parametric model SMPL-X [34] (its gender-neutral version). This
model defines the 3D body mesh as a differentiable function M(τ ,ϕ,θ,β) of
global root translation τ ∈R3, global root orientation ϕ∈R3, root-relative pose
θ∈R3K of K joints and shape parameters β ∈R10 capturing body’s identity.
For efficiency, we downsample the original SMPL-X body mesh with over 10k
vertices to V∈RN×3, where N =655. In the following, we denote V = M(Φ,β),
where Φ = (τ ,ϕ,θ) denotes the kinematic state of the human skeleton, from
which the global positions X∈RK×3 of the K =21 joints can be derived.

3.1 Contact Estimation in the Scene

We now describe our learning-based approach for contact labels estimation on the
human body and environment surfaces; see Fig. 1-a) for an overview of this stage.
The approach takes I and S as inputs. It comprises three fully-convolutional
feature extractors, N1, N2 and N3, and two fully-connected layer-based contact
prediction networks, Ωbo and Ωen, for body and environment, respectively.

Network N1 extracts from I a stack of visual features fI ∈ R32×32×256. The
latent space features of N1 are also fed to Ωbo to predict the vector cbo ∈ [0, 1]N

of per-vertex contact probabilities on the body surface.
We also aim at estimating the corresponding contacts on the environment

surface using an implicit function. To train a model that generalises well, we need
to address two challenges: (i) No correspondence information between the scene
points and the image pixels are given; (ii) Each scene contains a variable number
of points. Accordingly, we convert the scene point cloud S into a frustum voxel
grid SF ∈ R32×32×256 (the third dimension corresponds to the discretised depth
of the 3D space over 256 bins, please refer to our supplement for the details).
This new representation is independent of the original point-cloud size and is
aligned with the camera’s view direction. The latter will allow us to leverage a
pixel-aligned implicit function inspired by PIFu [43], which helps the networks
figure out the correspondences between pixel and geometry information. More
specifically, SF is fed into N2, which returns scene features fS ∈ R32×32×256. The
third encoder, N3, ingests fI and fS concatenated along their third dimension
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III) Refin�eme�t Optimisatio�I) Contact-based Optimisation

Random
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Fig. 2: Overview of a) dense contact estimation and b) pose manifold
sampling-based optimisation. In b-II), we first generate samples around the
mapping from θopt (orange arrows), and elite samples are then selected among
them (yellow points). After resampling around the elite samples (yellow arrows),
the best sample is selected (green point). The generated sample poses Φsam

(in gray color at the bottom left in b-II)) from the sampled latent vectors are
plausible and similar to Φopt. (bottom left of the Figure) Different body scale
and depth combinations can be re-projected to the same image coordinates (i, ii
and iii),i.e., scale-depth ambiguity. To simultaneously estimate the accurate
body scale and depth of the subject (ii), we combine the body-environment
contact surface distance loss Lcon with the 2D reprojection loss.

and returns pixel-aligned features FP ∈ R32×32×64. Based on FP, Ωen predicts
the contact labels on the environment surface as follows. Given a 3D position
in the scene, we extract the corresponding visual feature fP ∈ R64 at the (u, v)-
position in the image space from FP (via spacial bilinear interpolation), and
query arbitrary depth with a one-hot vector fz ∈ R256. We next estimate the
contact labels cen as follows:

cen = Ωen(fP, fz). (1)

Given contact ground truths ĉbo ∈ {0, 1}N and ĉen ∈ {0, 1}M on the body and
the environment, the five networks are trained with the following loss:

Llabels = ∥cen − ĉen∥22+λ BCE(cbo, ĉbo), (2)

where BCE denotes the binary cross-entropy and λ = 0.3. We use BCE for the
body because the ground-truth contacts on its surface are binary; the ℓ2 loss is
used for the environment, as sparse ground-truth contact labels are smoothed
with a Gaussian kernel to obtain continuous signals. For further discussions of
(2), please refer to our supplement. At test time, we only provide the 3D vertex
positions of the environment to Ωen(·)—to find the contact area on the scene
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point cloud—rather than all possible 3D sampling points as queries. This signif-
icantly accelerates the search of environmental contact labels while reducing the
number of false-positive contact classifications. For more details of the network
architecture, further discussions of the design choice and data pre-processing,
please refer to our supplement.

3.2 Pose Manifold Sampling-based Optimisation

In the second stage of the approach, we aim at recovering an accurate global
3D trajectory of the subject as observed in the video sequence, see Fig. 2-(b)
for the overview. An initial estimate Φ0 is extracted for each input image using
SMPLify-X [34]. Its root translation τ being subject to scale ambiguity, we
propose to estimate it more accurately, along with the actual scale h of the
person with respect to the original body model’s height, under the guidance of
the predicted body-environment contacts (Contact-based Optimisation).We
then update the body trajectory and articulations in the scene, while mitigating
the body-environment collisions with a new sampling-based optimisation on the
pose manifold (Sampling-based Trajectory Optimisation). A subsequent
refinement step yields the final global physically-plausible 3D motions.

I) Contact-based Optimisation Scale ambiguity is inherent to a monocular
MoCap setting: Human bodies with different scale and depth combinations in 3D
can be reprojected on the same positions in the image frame; see Fig. 2 and sup-
plementary video for the schematic visualisation. Most existing algorithms that
estimate global 3D translations of a subject either assume its known body scale
[47, 7, 46] or use a statistical average body scale [30]. In the latter case, the esti-
mated τ is often inaccurate and causes physically implausible body-environment
penetrations. In contrast to the prior art, we simultaneously estimate τ and h
by making use of the body-environment dense contact labels from the previous
stage (Sec. 3.1).

For the given frame at time t ∈ J1, T K, we select the surface regions with
cen > 0.5 and cbo > 0.5 as effective contacts and leverage them in our optimisa-
tion. Let us denote the corresponding index subsets of body vertices and scene
points by Cbo ⊂ J1, NK and Cen ⊂ J1,MK. The objective function for contact-based
optimisation is defined as:

Lopt(τ , h) = λ2DL2D + λsmoothLsmooth + λconLcon, (3)

where the reprojection L2D, the temporal smoothness Lsmooth and the contact
Lcon losses weighted by empirically-set multipliers λ2D, λsmooth and λcon, read:

L2D =
1

K

K∑
k=1

wk∥Π(Xk)− pk∥22, (4)

Lsmooth = ∥τ − τ prev∥22 , (5)

Lcon =
∑

n∈Cbo

min
m∈Cen

∥Vn −Pm∥22 , (6)
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where pk and wk are the 2D detection in the image of the k-th body joint
and its associated confidence, respectively, obtained by OpenPose [3]; Π is the
perspective projection operator; τ prev is the root translation estimated in the
previous frame; Xk, Vn and Pm are, respectively, the k-th 3D joint, the n-
th body vertex (n∈Cbo) and the m-th scene point (m∈Cen). Note that the
relative rotation and pose are taken from Φ0. The body joints and vertices
are obtained from M using τ and scaled with h. For Lcon, we use a directed
Hausdorff measure [18] as a distance between the body and environment contact
surfaces. The combination of Lcon and L2D is key to disambiguate τ and h (thus,
resolving the monocular scale ambiguity). As a result of optimising (3) in frame
t, we obtain Φt

opt, i.e., the global 3D human motion with absolute body scale.
We solve jointly on T frames and optimise for a single h for them.

II-a) Sampling-based Trajectory Optimisation Although the poses Φt
opt,

t = 1 · · ·T , estimated in the previous step yield much more accurate τ and h com-
pared to existing monocular RGB-based methods, incorrect body-environment
penetrations are still observable. This is because the gradient-based optimisa-
tion often gets stuck in bad local minima (see the supplementary video for a toy
example illustrating this issue). To overcome this problem, we introduce an addi-
tional sampling-based optimisation that imposes hard penetration constraints,
thus significantly mitigating physically-implausible collisions. The overview of
this algorithm is as follows: (i) For each frame t, we first draw candidate poses
around Φt

opt with a sampling function G; (ii) The quality of these samples is
ranked by a function E that allows selecting the most promising (“elite”) ones;
samples with severe collisions are discarded; (iii) Using G and E again, we gen-
erate and select new samples around the elite ones. The details of these steps, E
and G, are elaborated next (dropping time index t for simplicity).

II-b) Generating Pose Samples. We aim to generate Nsam sample states
Φsam around the previously-estimated Φopt = (τ opt,ϕopt,θopt). To generate
samples (τ sam,ϕsam) for the global translation and orientation, with 3DoF each,
we simply use a uniform distribution around (τ opt,ϕopt); see our supplement for
the details. However, näıvely generating the relative pose θsam in the same way
around θopt is highly inefficient because (i) the body pose is high-dimensional
and (ii) the randomly-sampled poses are not necessarily plausible. These reasons
lead to an infeasible amount of generated samples required to find a plausible
collision-free pose; which is intractable on standard graphics hardware. To tackle
these issues, we resort to the pose manifold learned by VPoser [34], which is a
VAE [17] trained on AMASS [26], i.e., a dataset with many highly accurate
MoCap sequences. Sampling is conducted in this VAE’s latent space rather than
in the kinematics pose space. Specifically, we first map θopt into a latent pose
vector with the VAE’s encoder Enc(·). Next, we sample latent vectors using
a Gaussian distribution centered at this vector, with standard deviation σ (see
Fig. 2-b). Each latent sample is then mapped through VAE’s decoder Dec(·) into
a pose that is combined with the original one on a per-joint basis. The complete
sampling process reads:

Z ∼ N ( Enc(θopt),σ), θsam = w ◦ θopt + (1−w) ◦Dec(Z), (7)
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where ◦ denotes Hadamard matrix product and w∈R3K is composed of the
detection confidence values wk, k = 1 · · ·K, obtained from OpenPose, each ap-
pearing three times (for each DoF of the joint). This confidence-based strategy
allows weighting higher the joint angles obtained by sampling, if the image-based
detections are less confident (e.g., under occlusions). Conversely, significant mod-
ifications are not required for the joints with high confidence values.

Since the manifold learned by VAE is smooth, the poses derived from the
latent vectors sampled around Enc(θopt) should be close to θopt. Therefore, we
empirically set σ to a small value (0.1). Compared to the näıve random sampling
in the joint angle space, whose generated poses are not necessarily plausible, this
pose sampling on the learned manifold significantly narrows down the solution
space. Hence, a lot fewer samples are required to escape local minima. At the
bottom left of Fig. 2-b contains examples (gray color) of Φsam (Nsam =10) over-
layed onto Φopt (green). In the following, we refer to this sample generation
process as function G(·).

II-c) Sample Selection. The quality of the Nsam generated samples Φsam is
evaluated using the following cost function:

Lsam = Lopt + λsliLsli + λdataLdata, (8)

Lsli = ∥Vc −Vc,pre∥22 , (9)

Ldata = ∥Φsam −Φopt∥22 , (10)

where Lsli and Ldata are contact sliding loss and data loss, respectively, and Lopt

is the same as in (3) with the modification that the temporal consistency (5)
applies to the whole Φsam; Vc and Vc,pre are the body contact vertices (with
vertex indices in Cbo) and their previous positions, respectively.

Among Nsam samples ordered according to their increasing Lsam values, the
selection function EU (·) first discards those causing stronger penetrations (in the
sense that the amount of scene points inside a human body is above a threshold
γ) and returns U first samples from the remaining ones. If no samples pass the
collision test, we regenerate the new set of Nsam samples. This selection mecha-
nism introduces the collision handling in a hard manner. After applying EU (·),
with U<Nsam, U elite samples are retained. Then, ⌊Nsam/U⌋ new samples are
regenerated around every elite sample using G. Among those, the one with mini-
mum Lsam value is retained as the final estimate. The sequence of obtained poses
is temporally smoothed by Gaussian filtering to further remove jittering, which

yields the global 3D motion (Φ̂
t

sam)
T
t=1 with significantly mitigated collisions.

III) Final Refinement. From the previous step, we obtained the sequence

Φ̂sam = (τ̂ sam, ϕ̂sam, θ̂sam) of kinematic states whose severe body-environment
collisions are prevented as hard constraints. Starting from these states as initial-
isation, we perform a final gradient-based refinement using cost function Lsam

with Φ̂sam replacing Φopt. The final sequence is denoted (Φt
ref)

T
t=1.
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4 Datasets with Contact Annotations

As there are no publicly-available large-scale datasets with images and corre-
sponding human-scene contact annotations, we annotate several existing datasets.
GTA-IM [2] dataset contains various daily 3D motions. First, we fit SMPL-X
model onto the 3D joint trajectories in GTA-IM. For each frame, we select con-
tact vertices on the human mesh if: i) The Euclidean distance between the human
body vertices on and the scene vertices are smaller than a certain threshold; ii)
The velocity of the vertex is lower than a certain threshold. In total, we obtain
the body surface contact annotations on 320k frames, which will be released for
research purposes, see Fig. 1 for the examples of the annotated contact labels.
PROX dataset [11] contains scanned scene meshes, scene SDFs, RGB-D se-
quences, 3D human poses and shapes generated by fitting SMPL-X model onto
the RGB-D sequences (considering collisions). We consider the body vertices,
whose SDF values are lower than 5 cm, as contacts. We annotate the environ-
ment contacts by finding the vertices that are the nearest to the body contacts.
GPA dataset [54, 55] contains multi-view image sequences of people interacting
with various rigid 3D geometries, accurately reconstructed 3D scenes and 3D
human motions obtained from VICON system [52] with 28 calibrated cameras.
We fit SMPL-X on GPA to obtain the 3D shapes and compute the scene’s SDFs
to run other methods [11, 61, 12].

We extract from GPA 14 test sequences with 5 different subjects. We also
split PROX [11] into training and test sequences. The training sequences of
PROX and GTA-IM [2] are used to train the contact estimation networks.
For further details of dataset and training, please refer to our supplement.

5 Evaluations

We compare our HULC with the most related scene-aware 3D MoCap algo-
rithms, i.e., PROX[11], PROX-D[11], POSA[12] and LEMO [61]. We also test
SMPLify-X [34] which does not use scene constraints. The root translation of
SMPLify-X is obtained from its estimated camera poses as done in [11]. To run
LEMO [61] on the RGB sequence, we use SMPLify-X[34] to initialise it; we call
this combination “LEMO (RGB)”. We use the selected test sequences of GPA
[54, 55] and PROX [11] dataset for the quantitative and qualitative comparisons.
To avoid redundancy, we downsample all the predictions to 10 fps except for the
temporal consistency measurement (esmooth in Table 4). Since the 3D poses in
PROX dataset are prone to inaccuracies due to their human model fitting onto
the RGB-D sequence, we use it only for reporting the body-scene penetrations
(Table 4) and for qualitative comparisons.

5.1 Quantitative Results

We report 3D joint and vertex errors (Table 2), global translation and body
scale estimation errors (Table 3), body-environment penetration and smoothness



HULC: 3D HUman Motion Capture with Pose Manifold Sampling. . . 11

Table 2: Comparisons of 3D error on GPA dataset [54, 55]. “†” denotes that the
occlusion masks for LEMO(RGB) were computed from GT 3D human mesh.

No Procrustes Procrustes

MPJPE [mm]↓ PCK [%]↑ PVE [mm]↓ MPJPE [mm]↓ PCK [%]↑ PVE [mm]↓

Ours 217.9 35.3 214.7 81.5 89.3 72.6
Ours (w/o S) 221.3 34.5 217.2 82.6 89.3 73.1
Ours (w/o R) 240.8 31.9 237.3 83.1 86.6 73.6
Ours (w/o SR) 251.1 31.5 245.2 83.9 86.6 74.1
SMPLify-X [34] 550.0 10.0 549.1 84.7 85.9 74.1

PROX [11] 549.7 10.1 548.7 84.6 86.0 73.9
POSA [12] 552.2 10.1 550.9 85.5 85.6 74.5

LEMO (RGB) [61] 570.1 8.75 570.5 83.0 86.4 73.7
LEMO (RGB) [61]† 570.0 8.77 570.4 83.0 86.4 73.6

Table 3: Ablations and compar-
isons for global translations and ab-
solute body length on GPA dataset.

global
translation
error [m] ↓

absolute
bone length
error [m]↓

Ours (+1m) 0.242 0.104
Ours (+3m) 0.244 0.097
Ours (+10m) 0.244 0.109

Baseline (+1m) 0.751 0.498
Baseline (+3m) 1.033 0.560
Baseline (+10m) 2.861 1.918
SMPLify-X [34] 0.527 0.156

PROX [11] 0.528 0.160
POSA [12] 0.545 0.136

Table 4: Comparisons of physical plausibil-
ity measures on GPA dataset [54, 55] and
PROX dataset [11].

GPA Dataset PROX Dataset

non penet. [%]↑ esmooth ↓ non penet. [%]↑

RGB

Ours 99.4 20.2 97.0

Ours (w/o S) 97.6 28.1 93.8

Ours (w/o R) 99.4 24.7 97.1

Ours (w/o SR) 97.6 47.1 93.8

SMPLify-X [34] 97.7 43.3 88.9

PROX [11] 97.7 43.2 89.8

LEMO (RGB)[61] 97.8 19.9 -

POSA [12] 98.0 47.0 93.0

RGB-D
PROX-D [11] - - 94.2

LEMO [61] - - 96.4

errors (Table 4) and ablations on the sampling-based optimisation component,
i.e., a) Manifold sampling vs. random sampling and b) Different number of
sampling iterations in Fig. 3. “Ours (w/o S)” represents our method without the
sampling optimisation component, i.e., only the contact-based optimisation and
refinement are applied (see Fig. 2-(b) and Sec. 3.2). “Ours (w/o R)” represents
our method without the final refinement. “Ours (w/o SR)” denotes ours without
the sampling and refinement. For a further ablation study and evaluation of
contact label estimation networks, please see our supplement.

3D Joint and Vertex Errors. Table 2 compares the accuracy of 3D joint and
vertex positions with and without Procrustes alignment. LEMO also requires
human body occlusion masks on each frame. We compute them using the scene
geometry and SMPLify-X [34] results. We also show another variant “LEMO
(RGB)†” whose occlusion masks are computed using the ground-truth global 3D
human mesh instead of SMPLify-X. Here, we report the standard 3D metrics,
i.e., mean per joint position error (MPJPE), percentage of correct keypoints
(PCK) (@150mm) and mean per vertex error (PVE). Lower MPJPE and PVE
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represent more accurate 3D reconstructions, higher PCK indicates more accurate
3D joint positions.

On all these metrics, HULC outperforms other methods both with and with-
out Procrustes. Notably, thanks to substantially more accurate global transla-
tions obtained from the contact-based optimisation (Sec. 3.2), HULC signifi-
cantly reduces the MPJPE and PVE with a big margin, i.e., ≈ 60% error deduc-
tion in MPJPE and PVE w/o Procrustes compared to the second-best method.
The ablative studies on Table 2 also indicate that both the sampling and re-
finement optimisations contribute to accurate 3D poses. Note that the sampling
optimisation alone (“Ours (w/o R)”) does not significantly reduce the error
compared to “Ours (w/o SR)”. This is because the sampling component priori-
tises removal of environment penetrations by introducing hard collision handling,
which is the most important feature of this component. Therefore, the sampling
component significantly contributes to reducing the environment collision as can
be seen in Table 4 (discussed in the later paragraph). Applying the refinement
after escaping from severe penetrations by the sampling optimisation further
increases the 3D accuracy (“Ours” in Table 2) while significantly mitigating
physically implausible body-environment penetrations (Table 4).

Global Translation and Body Scale Estimation. Table 3 reports global
translation and body scale estimation errors for the ablation study of the contact-
based optimisation (Sec. 3.2). More specifically, we evaluate the output Φopt

obtained from the contact-based optimisation denoted “ours”. We also show the
optimisation result without using the contact loss term (6) (“Baseline”). The
numbers next to the method names represent the initialisation offset from the
ground-truth 3D translation position (e.g., “+10m” indicates that the initial
root position of the human body was placed at 10 meters away along the depth
direction from the ground-truth root position when solving the optimisations).

Without the contact loss term—since global translation and body scale are
jointly estimated in the optimisation—the baseline method suffers from up-to-
scale issue (see Fig. 2). Hence, its results are significantly worse due to worse ini-
tialisations. In contrast, our contact-based optimisation disambiguates the scale
and depth by localising the contact positions on the environment, which confirms
HULC to be highly robust to bad initialisations. Compared to the RGB-based
methods PROX, POSA and SMPLify-X, our contact-based optimisation result
has ≈ 40% smaller error in the absolute bone length, and ≈ 57% smaller error
in global translation, which also contributes to the reduced body-environment
collisions as demonstrated in Table 4 (discussed in the next paragraph).

Plausibility Measurements. We also report the plausibility of the recon-
structed 3D motions in Table 4. Non penet. measures the average ratio of non-
penetrating body vertices into the environment over all frames. A higher value
denotes fewer body-environment collisions in the sequence; esmooth measures
the temporal smoothness error proposed in [47]. Lower esmooth indicates more
temporally smooth 3D motions. On both GPA and PROX datasets, our full
framework mitigates the collisions thanks to the manifold sampling-based opti-
misations (ours vs. ours (w/o S)). It also does so when compared to other related
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works as well. Notably, HULC shows the least amount of collisions even com-
pared with RGBD-based methods on the PROX dataset. Finally, the proposed
method also shows the significantly low esmooth (on par with LEMO(RGB)) in
this experiment.

a) b)

Fig. 3: (a) MPJPE [mm] comparison
with different numbers of samples for
the learned manifold sampling strat-
egy vs. the näıve random sampling in
the joint angle space of the kinematic
skeleton.(b) MPJPE [mm] comparison
with different numbers of iterations in
the sampling strategy.

More Ablations on Sampling-
based Optimisation. In addition to
the ablation studies reported in Tables
2, 3 and 4, we further assess the per-
formance of the pose update manifold
sampling step (Fig. 2-(b)-(II)) on GPA
dataset [54, 55], reporting the 3D er-
ror (MPJPE [mm]) measured in world
frame. Note that we report MPJPE
without the final refinement step to
assess the importance of the manifold
sampling approach. In Fig. 3-(a), we
show the influence of the number Nsam

of samples on the performance of our
manifold sampling strategy vs. a näıve
random sampling with a uniform distri-
bution in a kinematic skeleton frame.
For the details of the näıve random
sampling strategy, please refer to our
supplement. In Fig. 3-(a), since the generated samples of the learned manifold
return plausible pose samples, our pose manifold sampling strategy requires sig-
nificantly fewer samples compared to the random sampling (∼15× more samples
are required for the random sampling to reach 243 [mm] error in MPJPE). This
result strongly supports the importance of the learned manifold sampling. No
more than 2000 samples can be generated due to the hardware memory capac-
ity. In Fig. 3-(b), we report the influence of the number of generation-selection
steps using functions G and EU (with U =3) introduced in Section 3.2, with
Nsam =1000 samples. No iteration stands for choosing the best sample from the
first generated batch (hence no resampling), while one iteration is the variant
described in Sec. 3.2. This first iteration sharply reduces the MPJPE, while the
benefit of the additional iterations is less pronounced. Based on these observa-
tions, we use only one re-sampling iteration with 1000 samples in the previous ex-
periments. Finally, we ablate the confidence value-based pose merging in Eq. (7),
setting Nsam=1000 and the number of iterations to 0. The measured MPJPE
for with and without this confidence merging are 245.5 and 249.1, respectively.

5.2 Qualitative Results

Figure 4 summarises the qualitative comparisons on GPA and PROX datasets.
HULC produces more physically-plausible global 3D poses with mitigated col-
lisions, whereas the other methods show body-environment penetrations. Even
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ours PROX PROX-DSMPLify-X LEMOInput RGB
RGB based

Ours PROX POSALEMO 
(RGB)

POSA Input 
RGB

RGB-D based RGB based

Fig. 4: The qualitative comparisons of our results with the related methods on
PROX (left) and GPA dataset (right). Our RGB-based HULC shows fewer body-
scene penetrations even when compared with RGB-D based methods; mind the
red rectangles in the second row.

compared with the RGB(D) approaches, HULC mitigates collisions (mind the
red rectangles). For more qualitative results, please refer to our video.

6 Concluding Remarks

Limitations. HULC requires the scene geometry aligned in a camera frame like
other related works [11, 61, 12]. Also, HULC does not capture non-rigid defor-
mations of scenes and bodies, although the body surface and some objects in
the environment deform (e.g., when sitting on a couch or lying in a bed). More-
over, since our algorithm relies on the initial root-relative pose obtained from an
RGB-based MoCap algorithm, the subsequent steps can fail under severe occlu-
sions. Although the estimated contact labels help to significantly reduce the 3D
translation error, the estimated environment contacts contain observable false
positives. These limitations can be tackled in the future.
Conclusion. We introduced HULC—the first RGB-based scene-aware MoCap
algorithm that estimates and is guided by dense body-environment surface con-
tact labels combined with a pose manifold sampling. HULC shows 60% smaller
3D-localisation errors compared to the previous methods. Furthermore, deep
body-environment collisions are handled in hard manner in the pose manifold
sampling-based optimisation, which significantly mitigates collisions with the
scene. HULC shows the lowest collisions even compared with RGBD-based scene-
aware methods.
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