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Abstract. Estimating the target extent poses a fundamental challenge
in visual object tracking. Typically, trackers are box-centric and fully rely
on a bounding box to define the target in the scene. In practice, objects
often have complex shapes and are not aligned with the image axis. In
these cases, bounding boxes do not provide an accurate description of
the target and often contain a majority of background pixels.
We propose a segmentation-centric tracking pipeline that not only pro-
duces a highly accurate segmentation mask, but also internally works
with segmentation masks instead of bounding boxes. Thus, our tracker
is able to better learn a target representation that clearly differentiates
the target in the scene from background content. In order to achieve
the necessary robustness for the challenging tracking scenario, we pro-
pose a separate instance localization component that is used to condition
the segmentation decoder when producing the output mask. We infer a
bounding box from the segmentation mask, validate our tracker on chal-
lenging tracking datasets and achieve the new state of the art on LaSOT
with a success AUC score of 69.7%. Since most tracking datasets do
not contain mask annotations, we cannot use them to evaluate predicted
segmentation masks. Instead, we validate our segmentation quality on
two popular video object segmentation datasets. The code and trained
models are available at https://github.com/visionml/pytracking.

1 Introduction

Visual object tracking is the task of estimating the state of a target object for
each frame in a video sequence. The target is solely characterized by its initial
state in the video. Current approaches predominately characterize the state it-
self with a bounding box. However, this only gives a very coarse representation
of the target in the image. In practice, objects often have complex shapes, un-
dergo substantial deformations. Often, targets do not align well with the image
axes, while most benchmarks use axis-aligned bounding boxes. In such cases, the
majority of the image content inside the target’s bounding box often consists of
background regions which provide limited information about the object itself.
In contrast, a segmentation mask precisely indicates the object’s extent in the
image (see Fig. 1 frames #1600 and #3200). Such information is vital in a vari-
ety of applications, including video analysis, video editing, and robotics. In this
work, we therefore develop an approach for accurate and robust target object
segmentation, even in the highly challenging tracking datasets [16,36].

https://github.com/visionml/pytracking
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Fig. 1. Comparison between the VOT method Stark [55], the VOS method LWL [5]
and our proposed method on two tracking sequences from the LaSOT [16] dataset.
The ground-truth annotation (�) is shown in each frame for reference. Our approach
is more robust and predicts a more accurate target representation.

While severely limiting the information about the target’s state in the video,
the aforementioned issues with the bounding box representation can itself lead to
inaccurate bounding box predictions, or even tracking failure. To illustrate this,
Fig. 1 shows two typical tracking sequences. The tracking method STARK [55]
(first row) fails to regress bounding boxes that contain the entire object (#1600,
#1400) or even starts tracking the wrong object (#0700). Conversely, segmen-
tation masks are a better fit to differentiate pixels in the scene that belong to
the background and the target. Therefore, a segmentation-centric tracking ar-
chitecture designed to work internally with a segmentation mask of the target
instead of a bounding box has the potential to learn better target representa-
tions, because it can clearly differentiate background from foreground regions in
the scene.

A few recent tracking methods [47,54] have recognized the advantage of pro-
ducing segmentation masks instead of bounding boxes as final output. However,
these trackers are typically bounding-box-centric and the final segmentation mask
is obtained by a separate box-to-mask post-processing network. These methods
do not leverage the accurate target definition of segmentation masks to learn a
more accurate and robust internal representation of the target.

In contrast, most Video Object Segmentation (VOS) methods [38,5] follow a
segmentation-centric paradigm. However, these methods are not designed for the
challenging tracking scenarios. Typical VOS sequences consist only of a few hun-
dred frames [41] whereas multiple sequences of more than ten thousand frames
exist in tracking datasets [16]. Due to this setup, VOS methods focus on produc-
ing highly accurate segmentation masks but are sensitive to distractors, substan-
tial deformations and occlusions of the target object. Fig. 1 shows two typical
tracking sequences where the VOS method LWL [5] (second row) produces a
fine-grained segmentation mask of the wrong object (#3200) or is unable to
detect only the target within a crowd (#0700, #1400).

We propose Robust Visual Tracking by Segmentation (RTS), a unified track-
ing architecture capable of predicting accurate segmentation masks. To design
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a segmentation-centric approach, we take inspiration from the aforementioned
LWL [5] method. However, to achieve robust and accurate segmentation on Vi-
sual Object Tracking (VOT) datasets, we introduce several new components.
In particular, we propose an instance localization branch trained to predict a
target appearance model, which allows occlusion detection and target identifi-
cation even in cluttered scenes. The output of the instance localization branch
is further used to condition the high-dimensional mask encoding. This allows
the segmentation decoder to focus on the localized target, leading to a more ro-
bust mask prediction. Since our proposed method contains a segmentation and
instance memory that need to be updated with previous tracking results, we
design a memory management module. This module first assesses the predic-
tion quality, decides whether the sample should enter the memory and, when
necessary, triggers the model update.
Contributions Our contributions are the following: (i) We propose a unified
tracking architecture capable of predicting robust classification scores and ac-
curate segmentation masks. We design separate feature spaces and memories
to ensure optimal receptive fields and update rates for segmentation and in-
stance localization. (ii) To produce a segmentation mask which agrees with the
instance prediction, we design a fusion mechanism that conditions the segmen-
tation decoder on the instance localization output and leads to more robust
tracking performance. (iii) We introduce an effective inference procedure capa-
ble of fusing the instance localization output and mask encoding to ensure both
robust and accurate tracking. (iv) We perform comprehensive evaluation and
ablation studies of the proposed tracking pipeline on multiple popular tracking
benchmarks. Our approach achieves the new state of the art on LaSOT with an
area-under-the-curve (AUC) score of 69.7%.

2 Related Work

Visual Object Tracking
Over the years, research in the field of visual tracking has been accelerated by

the introduction of new and challenging benchmarks, such as LaSOT [16], GOT-
10k [24], and TrackingNet [37]. This led to the introduction of new paradigms
in visual object tracking, based on Discriminative Correlation Filters (DCFs),
Siamese networks and Transformers.

One of the most popular type of approaches, DCF-based visual trackers
[6,22,15,32,12,48,61,3,14] essentially solve an optimization problem to estimate
the weights of the DCF that allow to distinguish foreground from background re-
gions. The DCF is often referred to as the target appearance model and allows to
localize the target in the video frame. More recent DCF approaches [3,14] enable
end-to-end training by unrolling a fixed number of the optimization iterations
during offline training.

Siamese tracking methods have gained in popularity due to their simplic-
ity, speed and end-to-end trainability [44,2,43,62,20,50,21,29,28]. These trackers
learn a similarity metric using only the initial video frame and its annotation
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that allows to clearly identify the target offline. Since no online learning com-
ponent is involved, these trackers achieve high frame rates at the cost of limited
online adaptability to changes of the target’s appearance. Nonetheless, several
methods have been proposed to overcome these issues [44,2,29,28].

Very recently, Transformer-based trackers have achieved state-of-the-art per-
formance on many datasets, often outperforming their rivals. This group of
trackers typically uses a Transformer component in order to fuse information ex-
tracted from training and test frames. This produces discriminative features that
allow to accurately localize and estimate the target in the scene [8,56,55,49,34].

Video Object Segmentation Semi-supervised VOS is the task of classifying
all pixels belonging to the target in each video frame, given only the segmen-
tation mask of the target in the initial frame. The cost of annotating accu-
rate segmentation masks is limiting the sequence length and number of videos
contained in available VOS datasets. Despite the relatively small size of VOS
datasets compared to other computer vision problems, new benchmarks such as
Youtube-VOS [53] and DAVIS [41] accelerated the research progress in the last
years.

Some methods rely on a learnt target detector [7,46,33], others learn how to
propagate the segmentation mask across frames [52,40,30,25]. Another group of
methods uses feature matching techniques across one or multiple frames with or
without using an explicit spatio-temporal memory [9,23,45,38]. Recently, Bhat et
al. [5] employed meta-learning approach, introducing an end-to-end trainable
VOS architecture. In this approach, a few-shot learner predicts a learnable la-
bels encoding. It generates and updates online the parameters of a segmentation
target model that produces the mask encoding used to generate the final seg-
mentation mask.

Joint Visual Tracking and Segmentation A group of tracking methods have
already identified the advantages of predicting a segmentation mask instead of a
bounding box [54,60,47,31,51,42]. Siam-RCNN is a box-centric tracker that uses
a pretrained box2seg network to predict the segmentation mask given a bound-
ing box prediction. In contrast, AlphaRefine represents a novel box2seg method
that has been evaluated with many recent trackers such as SuperDiMP [14]
and SiamRPN++ [28]. Further, Zhao et al. [60] focus on generating segmenta-
tion masks from bounding box annotations in videos using a spatio-temporal
aggregation module to mine consistencies of the scene across multiple frames.
Conversely, SiamMask [51] and D3S [31] are segmentation-centric trackers that
produce a segmentation mask directly, without employing a box2seg module.
In particular, SiamMask [51] is a fully-convolutional Siamese network with a
separate branch which predicts binary segmentation masks supervised by a seg-
mentation loss.

From a high-level view, the single-shot segmentation tracker D3S [31] is most
related to our proposed method. Both methods employ two dedicated modules
or branches; one for localization and one for segmentation. D3S adopts the target
classification component of ATOM [12], requiring online optimization of weights
in a two-layer CNN. In contrast, we learn online the weights of a DCF similar
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Fig. 2. Overview of our entire online tracking pipeline used for inference, see Sec 3.1.

to DiMP [3]. For segmentation, D3S [31] propose a feature matching technique
that matches test frame features with background and foreground features corre-
sponding to the initial frame. In contrast, we adopt the few-shot learning based
model prediction proposed in LWL [5] to produce accurate segmentation masks.
Furthermore, D3S proposes to simply concatenate the outputs of both modules
whereas we learn a localization encoding to condition the segmentation mask de-
coding based on the localization information. Compared to D3S, we update not
only the instance localization but also the segmentation models and memories.
Hence, our method integrates specific memory management components.

3 Method

3.1 Overview

Video object segmentation methods can produce high quality segmentation masks
but are typically not robust enough for video object tracking. Robustness be-
comes vital for medium and long sequences, which are most prevalent in tracking
datasets [16,36]. In such scenarios, the target object frequently undergoes sub-
stantial appearance changes. Occlusions and similarly looking objects are com-
mon. Hence, we propose to adapt a typical VOS approach with tracking com-
ponents to increase its robustness. In particular, we base our approach on the
Learning What to Learn (LWL) [5] method and design a novel and segmentation-
centric tracking pipeline that estimates accurate object masks instead of bound-
ing boxes. During inference, a segmentation mask is typically not provided in
visual object tracking. Hence, we use STA [60] to generate a segmentation mask
from the provided initial bounding box. An overview of our RTS method is
shown in Fig. 2. Our pipeline consists of a backbone network, a segmentation
branch, an instance localization branch and a segmentation decoder. For each
video frame, the backbone first extracts a feature map xb. These features are
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further processed into segmentation features xs and classification features xc to
serve as input for their respective branch. The segmentation branch is designed
to capture the details of the object with a high dimensional mask encoding,
whereas the instance localization branch aims at providing a coarser but robust
score map representing the target location. Both branches contain components
learned online, trained on memories (Ds and Dc) that store features and predic-
tions of past frames. The instance localization branch has two purposes. The first
is to control models and memories updating. The second is used to condition
the segmentation mask decoder. To do so, we add instance localization informa-
tion with a learnt score encoding produced by Hθ. The obtained segmentation
scores and the raw instance model score map are then used to generate the final
segmentation mask output.

3.2 Segmentation Branch

The architecture of the segmentation branch is adopted from LWL [5], and we
briefly review it here. It consists of a segmentation sample memory Ds, a label
generator Eθ, a weight predictor Wθ, a few-shot learner Aθ and a segmentation
model Tτ . The goal of the few-shot learner Aθ is producing the parameters τ of
the segmentation model Tτ such that the obtained mask encoding xm contains
the information needed to compute the final segmentation mask of the target
object. The label mask encodings used by the few-shot learner are predicted by
the label generator Eθ.

The few-shot learner is formulated through the following optimization prob-
lem, which is unrolled through steepest descent iterations in the network

Ls(τ) =
1

2

∑
(xs,ys)∈Ds

∥∥Wθ(ys) ·
(
Tτ (xs)− Eθ(ys)

)∥∥2 + λs

2
∥τ∥2, (1)

where Ds corresponds to the segmentation memory, xs denotes the segmentation
features, ys the segmentation masks and λs is a learnable scalar regularization
parameter. The weight predictor Wθ produces sample confidence weights for
each spatial location in each memory sample. Applying the optimized model
parameters τ∗ within the segmentation model produces the mask encoding xm =
Tτ∗(xs) for the segmentation features xs.

LWL [5] feeds the mask encoding directly into the segmentation decoder to
produce the segmentation mask. For long and challenging tracking sequences,
only relying on the mask encoding may lead to an accurate segmentation mask,
but often for the wrong object in the scene (see Fig 1). Since LWL [5] is only
able to identify the target to a certain degree in challenging tracking sequences,
we propose to condition the mask encoding based on an instance localization
representation, described next.

3.3 Instance Localization Branch

The segmentation branch can produce accurate masks but typically lacks the
necessary robustness for tracking in medium or long-term sequences. Especially
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challenging are sequences where objects similar to the target appear, where the
target object is occluded or vanishes from the scene for a short time. There-
fore, we propose a dedicated branch for target instance localization, in order to
robustly identify the target among distractors or to detect occlusions. A power-
ful tracking paradigm that learns a target-specific appearance model on both
foreground and background information are discriminative correlation filters
(DCF) [6,22,13,3]. These methods learn the weights of a filter that differenti-
ates foreground from background pixels represented by a score map, where the
maximal value corresponds to the target’s center.

Similar to the segmentation branch, we propose an instance localization
branch that consists of a sample memory Dc and a model predictor Pθ. The
latter predicts the parameters κ of the instance model Tκ. The instance model
is trained online to produce the target score map used to localize the target
object. To obtain the instance model parameters κ we minimize the following
loss function

Lc(κ) =
∑

(xc,yc)∈Dc

∥∥R(Tκ(xc), yc
)∥∥2 + λc

2
∥κ∥2, (2)

where Dc corresponds to the instance memory containing the classification fea-
tures xc and the Gaussian labels yc. R denotes the robust hinge-like loss [3]
and λc is a fixed regularization parameter. To solve the optimization problem
we apply the method from [3], which unrolls steepest descent iterations of the
Gauss-Newton approximation of (2) to obtain the final model parameters κ∗.
The score map can then be obtained with sc = Tκ∗(xc) by evaluating the target
model on the classification features xc.

3.4 Instance-Conditional Segmentation Decoder

In video object segmentation the produced mask encoding is directly fed into
the segmentation decoder to generate the segmentation mask. However, solely
relying on the mask encoding is not robust enough for the challenging tracking
scenario, see Fig 1. Thus, we propose to integrate the instance localization in-
formation into the segmentation decoding procedure. In particular, we condition
the mask encoding on a learned encoding of the instance localization score map.

First, we encode the raw score maps using a multi-layer Convolutional Neu-
ral Network (CNN) to learn a suitable representation. Secondly, we condition
the mask encoding with the learned representation using element-wise addition.
The entire conditioning procedure can be defined as xf = xm + Hθ(sc), where
Hθ denotes the CNN encoding the scores sc, and xm the mask encoding. The
resulting features are then fed into the segmentation decoder that produces the
segmentation scores of the target object.
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3.5 Jointly Learning Instance Localization and Segmentation

In this section, we describe our general training strategy and parameters. In
particular, we further detail the segmentation and classification losses that we
use for offline training.
Segmentation Loss First, we randomly sample J frames from an annotated
video sequence and sort them according to their frame IDs in increasing order
to construct the training sequence V = {(xj

b, y
j
s , y

j
c)}J−1

j=0 , where x
j
b = Bθ(I

j) are

the extracted features of the video frame Ij using the backbone Bθ, y
j
s is the cor-

responding segmentation mask and yjc denotes the Gaussian label at the target’s
center location. We start with entry v0 ∈ V and store it in the segmentation Ds

and instance memory Dc and obtain parameters τ0 and κ0 of the segmentation
and instance model. We use these parameters to compute the segmentation loss
for v1 ∈ V. Using the predicted segmentation mask, we update the segmentation
model parameters to τ1 but keep the instance model parameters fixed. Segmen-
tation parameters typically need to be updated frequently to enable accurate
segmentation. Conversely, we train the model predictor on a single frame only.
The resulting instance model generalizes to multiple unseen future frames, en-
suring robust target localization. The resulting segmentation loss for the entire
sequence V can thus be described as follows

Lseq
s (θ;V) =

J−1∑
j=1

Ls

(
Dθ

(
Tτj−1(xj

s) +Hθ

(
Tκ0(xj

c)
))

, yjs

)
, (3)

where xs = Fθ(xb) and xc = Gθ(xb) and Ls is the Lovasz segmentation loss [1].
Classification Loss Instead of training our tracker only with the segmentation
loss, we add an auxiliary loss to ensure that the instance module produces score
maps localizing the target via a Gaussian distribution. These score maps are
essential to update the segmentation and instance memories and to generate
the final output. As explained before, we use only the first training v0 ∈ V
to optimize the instance model parameters. To encourage fast convergence, we
use not only the parameters corresponding to the final iteration Niter of the
optimization method κ0

(Niter)
explained in Sec. 3.3, but also all the intermediate

parameters κ0
(i) of loss computation. The final target classification loss for the

whole sequence V is defined as follows

Lseq
c (θ;V) =

J−1∑
j=1

(
1

Niter

Niter∑
i=0

Lc

(
Tκ0

(i)
(xj

c), yjc

))
, (4)

where Lc is the hinge loss defined in [3]. To train our tracker we combine the
segmentation and classification losses using the scalar weight η and minimize
both losses jointly

Lseq
tot (θ;V) = Lseq

s (θ;V) + η · Lseq
c (θ;V). (5)

Training Details We use the train sets of LaSOT [16], GOT-10k [24], Youtube-
VOS [53] and DAVIS [41]. For VOT datasets that only provide annotated bound-
ing boxes, we use these boxes and STA [60] to generate segmentation masks and
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treat them as ground truth annotations during training. STA [60] is trained sep-
arately on YouTube-VOS 2019 [53] and DAVIS 2017 [39]. For our model, we
use ResNet-50 with pre-trained MaskRCNN weights as our backbone and ini-
tialize the segmentation model and decoder weights with the ones available from
LWL [5]. We train for 200 epochs and sample 15’000 videos per epoch, which
takes 96 hours to train on a single Nvidia A100 GPU. We use the ADAM [26]
optimizer with a learning rate decay of 0.2 at epochs 25, 115 and 160. We weigh
the losses such that the segmentation loss is predominant but in the same range
as the classification loss. We empirically choose η = 10. Further details about
training and the network architecture are given in the appendix.

3.6 Inference

Memory Management and Model Updating Our tracker consists of two
different memory modules. A segmentation memory that stores segmentation
features and predicted segmentation masks of previous frames. In contrast, an
instance memory contains classification features and Gaussian labels marking
the center location of the target in the predicted segmentation mask of the pre-
vious video frame. The quality of the predicted labels directly influences the
localization and segmentation quality in future video frames. Hence, it is cru-
cial to avoid contaminating the memory modules with predictions that do not
correspond to the actual target. We propose the following strategy to keep the
memory as clean as possible. (a) If the instance model is able to clearly localize
the target (maximum value in the score map larger than tsc = 0.3) and the seg-
mentation model constructs a valid segmentation mask (at least one pixel above
tss = 0.5) we update both memories with the current predictions and features.
(b) If either the instance localization or segmentation fail to identify the target
we omit updating the segmentation memory. (c) If only the segmentation mask
fails to represent the target but the instance model can localize it, we update the
instance memory only. (d) If instance localization fails we do not update either
memory. Further, we trigger the few-shot learner and model predictor after 20
frames have passed, but only if the corresponding memory has been updated.
Final Mask Output Generation We obtain the final segmentation mask
by thresholding the segmentation decoder output. To obtain the bounding box
required for standard tracking benchmarks, we report the smallest axis-aligned
box that contains the entire estimated object mask.
Inference Details We set the input image resolution such that the segmenta-
tion learner features have a resolution of 52× 30 (stride 16), while the instance
learner operates on features of size 26 × 15 (stride 32). The learning rate is set
to 0.1 and 0.01 for the segmentation and instance learner respectively. We use
a maximum buffer of 32 frames for the segmentation memory and 50 frames for
the instance memory. We keep the samples corresponding to the initial frame in
both memories and replace the oldest entries if the memory is full. We update
both memories for the first 100 video frames and afterwards only after every
20th frame. We randomly augment the sample corresponding to the initial frame
with vertical flip, random translation and blurring.
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4 Evaluation

Our approach is developed within the PyTracking [11] framework. The imple-
mentation is done with PyTorch 1.9 with CUDA 11.1. Our model is evaluated
on a single Nvidia GTX 2080Ti GPU. Our method achieves an average speed
of 30 FPS on LaSOT [16]. Each number corresponds to the average of five runs
with different random seeds.

4.1 Branch Ablation Study

For the ablation study, we analyze the impact of the instance branch on three
datasets and present the results in Tab. 1. First, we report the performance of
LWL [5] since we build upon it to design our final tracking pipeline. We use
the network weights provided by Bhat et al. [5] and the corresponding inference
settings. We input the same segmentation masks obtained from the initial bound-
ing box for LWL as used for our method. We observe that LWL is not robust
enough for challenging tracking scenarios. The second row in Tab. 1 corresponds
to our method but we omit the proposed instance branch. Hence, we use the
proposed inference components and settings and train the tracker as explained
in Sec. 3.5, but with conditioning removed. We observe that even without the
instance localization branch our tracker can achieve competitive performance on
all three datasets (e.g. +5.6% on LaSOT). Fully integrating the instance local-
ization branch increases the performance even more (e.g. +4.4 on LaSOT). Thus,
we conclude that adapting the baseline method to the tracking domain improves
the tracking performance. To boost the performance and achieve state-of-the-
art results, an additional component able to increase the tracking robustness is
required.

4.2 Inference Parameters

In this part, we ablate two key aspects of our inference strategy. First, we study
the effect of relying on the instance branch if the segmentation decoder is unable
to localize the target (max(ss) < tss). Second, we study different values for tsc
that determines whether the target is detected by the instance model, see Tab. 2.

If the segmentation branch cannot identify the target, using the instance
branch improves tracking performance on all datasets (e.g. +1.3% on UAV123).

Table 1. Comparison between our segmentation network baseline LWL and our
pipeline, with and without Instance conditioning on different VOT datasets.

Method
Seg. Inst. Branch LaSOT [16] NFS [19] UAV123 [36]

Branch Conditioning AUC P NP AUC P NP AUC P NP

LWL [5] ✓ - 59.7 60.6 63.3 61.5 75.1 76.9 59.7 78.8 71.4
RTS ✓ ✗ 65.3 68.5 71.5 65.8 84.0 85.0 65.2 85.6 78.8
RTS ✓ ✓ 69.7 73.7 76.2 65.4 82.8 84.0 67.6 89.4 81.6
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Table 2. Ablation on inference strategies. The first column analyzes the effect of using
the instance branch as fallback for target localization if the segmentation branch is
unable to detect the target (max(ss) < tss). The second column shows the impact of
different confidence thresholds tsc .

Inst. Branch
tsc

LaSOT [16] NFS [19] UAV123 [36]
Fallback AUC P NP AUC P NP AUC P NP

✗ 0.30 69.3 73.1 75.9 65.3 82.7 84.0 66.3 87.2 80.4
✓ 0.30 69.7 73.7 76.2 65.4 82.8 84.0 67.6 89.4 81.6

✓ 0.20 68.6 72.3 75.0 65.3 82.7 83.9 67.0 88.7 80.7
✓ 0.30 69.7 73.7 76.2 65.4 82.8 84.0 67.6 89.4 81.6
✓ 0.40 69.1 72.7 75.6 63.3 79.7 81.7 67.1 89.1 80.7

Table 3. Comparison to the state of the art on the LaSOT [16] test set in terms of
AUC score. The methods are ordered by AUC score.

ToMP ToMP Keep STARK Alpha Siam Tr Super STM Pr DM
RTS 101 50 Track ST-101 Refine TransT R-CNN DiMP DiMP Track DiMP LWL Track LTMU DiMP Ocean D3S

[34] [34] [35] [55] [54] [8] [47] [49] [11] [18] [14] [5] [59] [10] [3] [58] [31]

Precision 73.7 73.5 72.2 70.2 72.2 68.8 69.0 68.4 66.3 65.3 63.3 60.8 60.6 59.7 57.2 56.7 56.6 49.4
Norm. Prec 76.2 79.2 78.0 77.2 76.9 73.8 73.8 72.2 73.0 72.2 69.3 68.8 63.3 66.9 66.2 65.0 65.1 53.9
Success (AUC) 69.7 68.5 67.6 67.1 67.1 65.9 64.9 64.8 63.9 63.1 60.6 59.8 59.7 58.4 57.2 56.9 56.0 49.2

∆ AUC to Ours - ↑1.2 ↑2.1 ↑2.6 ↑2.6 ↑3.8 ↑4.8 ↑4.9 ↑5.8 ↑6.6 ↑9.1 ↑9.9 ↑10.0 ↑11.3 ↑12.5 ↑12.8 ↑13.7 ↑20.5

Furthermore, Tab. 2 shows that our tracking pipeline achieves the best perfor-
mance when setting tsc = 0.3 whereas smaller or larger values for tsc decrease the
tracking accuracy. Hence, it is important to find a suitable trade-off between fre-
quently updating the model and memory to quickly adapt to appearance changes
and updating only rarely to avoid contaminating the memory and model based
on wrong predictions.

4.3 Comparison to the state of the art

Assessing segmentation accuracy on tracking datasets is not possible since only
bounding box annotations are provided. Therefore, we compare our approach on
six VOT benchmarks and validate the segmentation masks quality on two VOS
datasets.

LaSOT [16] We evaluate our method on the test set of the LaSOT dataset,
consisting of 280 sequences with 2500 frames on average. Thus, the benchmark
challenges the long term adaptability and robustness of trackers. Fig. 3 shows
the success plot reporting the overlap precision OP with respect to the over-
lap threshold T . Trackers are ranked by AUC score. In addition, Tab. 3 reports
the precision and normalized precision for all compared methods. Our method
outperforms the state-of-the-art ToMP-50 [34] and ToMP-101 [34] by large mar-
gins (+1.2% and +2.1% AUC respectively). Our method is not only as robust
as KeepTrack (see the success plot for T < 0.2) but also estimates far more
accurate bounding boxes than any tracker (0.8 < T < 1.0).
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Fig. 3. Success (left) and Precision (right) plots on LaSOT [16] with other state-of-
the-art methods. The AUCs for all methods are ordered and reported in the legend.
Our method outperforms all existing approaches, both in Overlap Precision (left) and
Distance Precision (right).

Table 4. Results on the GOT-10k validation set [24] in terms of Average Overlap
(AO) and Success Rates (SR) for overlap thresholds of 0.5 and 0.75.

RTS STA LWL PrDiMP-50 DiMP-50 SiamRPN++
[60] [5] [14] [3] [28]

SR0.50(%) 94.5 95.1 92.4 89.6 88.7 82.8
SR0.75(%) 82.6 85.2 82.2 72.8 68.8 -
AO(%) 85.2 86.7 84.6 77.8 75.3 73.0

Table 5. Comparison to the state of the art on the TrackingNet [37] test set in terms
of AUC scores, Precision and Normalized Precision.

ToMP ToMP Keep STARK STARK Siam Alpha STM Tr Super Pr
RTS 101 50 Track ST101 ST50 STA LWL TransT R-CNN Refine Track DTT DiMP DiMP DiMP D3S

[34] [34] [35] [55] [55] [60] [5] [8] [47] [54] [18] [56] [49] [11] [14] [31]

Precision 79.4 78.9 78.6 73.8 - - 79.1 78.4 80.3 80.0 78.3 76.7 78.9 73.1 73.3 70.4 66.4
Norm. Prec 86.0 86.4 86.2 83.5 86.9 86.1 84.7 84.4 86.7 85.4 85.6 85.1 85.0 83.3 83.5 81.6 76.8
Success (AUC) 81.6 81.5 81.2 78.1 82.0 81.3 81.2 80.7 81.4 81.2 80.5 80.3 79.6 78.4 78.1 75.8 72.8

∆ AUC to Ours - ↑0.1 ↑0.4 ↑3.5 ↓0.4 ↑0.3 ↑0.4 ↑0.9 ↑0.2 ↑0.4 ↑1.1 ↑1.3 ↑2.0 ↑3.2 ↑3.5 ↑5.8 ↑8.8

GOT-10k [24] The large-scale GOT-10k dataset contains over 10.000 shorter
sequences. Since we train our method on several datasets instead of only GOT-
10k train, we evaluate it on the val set only, which consists of 180 short videos.
We compile the results in Tab. 4. Our method ranks second for all metrics,
falling between two VOS-oriented methods, +0.6% over LWL [5] and −1.5%
behind STA [60]. Our tracker outperforms other trackers by a large margin.

TrackingNet [37] We compare our approach on the test set of the Track-
ingNet dataset, consisting of 511 sequences. Tab. 5 shows the results obtained
from the online evaluation server. Our method outperforms most of the existing
approaches and ranks second in terms of AUC, close behind STARK-ST101 [55]
which is based on a ResNet-101 backbone. Note that we outperform STARK-
ST50 [55] that uses a ResNet-50 as backbone. Also, we achieve a higher preci-
sion score than other methods that produce a segmentation mask output such
as LWL [5], STA [60], Alpha-Refine [54] and D3S [31].
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Table 6. Comparison with state-of-the-art on the UAV123 [36] and NFS [19] datasets
in terms of AUC score.

ToMP ToMP Keep STARK STARK Super Pr STM Siam Siam
RTS 101 50 Track CRACT ST101 TrDiMP TransT ST50 DiMP DiMP Track AttN R-CNN KYS DiMP LWL

[34] [34] [35] [17] [55] [49] [8] [55] [11] [14] [18] [57] [47] [4] [3] [5]

UAV123 67.6 66.9 69.0 69.7 66.4 68.2 67.5 69.1 69.1 67.7 68.0 64.7 65.0 64.9 – 65.3 59.7
NFS 65.4 66.7 66.9 66.4 62.5 66.2 66.2 65.7 65.2 64.8 63.5 – – 63.9 63.5 62.0 61.5

Table 7. Results on the VOT2020-ST [27] challenge in terms of Expected Average
Overlap (EAO), Accuracy and Robustness.

STARK STARK-
ST-50 ST-101- Ocean Fast Alpha

RTS +AR +AR LWL STA Plus Ocean Refine RPT AFOD D3S STM
[55] [55] [27] [60] [27] [27] [27] [27] [27] [27] [27]

Robustness 0.845 0.817 0.789 0.798 0.824 0.842 0.803 0.777 0.869 0.795 0.769 0.574
Accuracy 0.710 0.759 0.763 0.719 0.732 0.685 0.693 0.754 0.700 0.713 0.699 0.751
EAO 0.506 0.505 0.497 0.463 0.510 0.491 0.461 0.482 0.530 0.472 0.439 0.308

∆ EAO to Ours - ↑0.001 ↑0.009 ↑0.043 ↓0.004 ↑0.015 ↑0.045 ↑0.024 ↓0.024 ↑0.034 ↑0.067 ↑0.198

UAV123 [36] The UAV dataset consists of 123 test videos that contain small
objects, target occlusion, and distractors. Small objects are particularly chal-
lenging in a segmentation setup. Tab. 6 shows the achieved results in terms
of success AUC. Our method achieves competitive results on UAV123, close to
TrDiMP [49] or SuperDiMP [11]. It outperforms LWL [5] by a large margin.
NFS [19] The NFS dataset (30FPS version) contains 100 test videos with fast
motions and challenging sequences with distractors. Our method achieves an
AUC score that is only 1% below the current best method KeepTrack [35] while
outperforming numerous other trackers, including STARK-ST50 [55] (+0.2) Su-
perDiMP [3] (+0.6) and PrDiMP [14] (+1.9).
VOT 2020 [27] Finally, we evaluate our method on the VOT2020 short-term
challenge. It consists of 60 videos and provides segmentation mask annotations.
For the challenge, the multi-start protocol is used and the tracking performance
is assessed based on accuracy and robustness. We compare with the top methods
on the leader board and include more recent methods in Tab. 7. In this setup, our
method ranks 2nd in Robustness, thus outperforming most of the other meth-
ods. In particular, we achieve a higher EAO score than STARK [55], LWL [5],
AlphaRefine [54] and D3S [31].
YouTube-VOS 2019 [53] We use the validation set which consist of 507
sequences. They contain 91 object categories out of which 26 are unseen in the
training set. The results presented in Tab. 8 were generated by an online server
after uploading the raw results. On this benchmark, we want to validate the
quality of the produced segmentation masks rather than to achieve the best
accuracy possible. Hence, we use the same model weight as for VOT without
further fine tuning.

When using the provided segmentation masks for initialization, we observe
that our method performs slightly worse than LWL [5] and STA [60] (-1.3 G, -0.9
G) but still outperforms the VOS method STM [38] (+0.5 G). We conclude that
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Table 8. Results on the Youtube-VOS 2019 [53] and DAVIS 2017 [41] datasets. The
table is split in two parts to separate methods using bounding box initialization or
segmentation masks initialization, in order to enable a fair comparison.

Method
YouTube-VOS 2019 [53] DAVIS 2017 [41]

G Jseen Junseen Fseen Funseen J&F J F

RTS 79.7 77.9 75.4 82.0 83.3 80.2 77.9 82.6
LWL [5] 81.0 79.6 76.4 83.8 84.2 81.6 79.1 84.1
STA [60] 80.6 - - - - - - -
STM [38] 79.2 79.6 73.0 83.6 80.6 81.8 79.2 84.3

RTS (Box) 70.8 71.1 65.2 74.0 72.8 72.6 69.4 75.8
LWL (Box) [5] - - - - - 70.6 67.9 73.3
Siam-RCNN [47] 67.3 68.1 61.5 70.8 68.8 70.6 66.1 75.0
D3S [51] - - - - - 60.8 57.8 63.8
SiamMask [31] 52.8 60.2 45.1 58.2 47.7 56.4 54.3 58.5

our method can generate accurate segmentation masks. When using bounding
boxes to predict both the initialization and segmentation masks, we outperform
all other methods by a large margin. This confirms that even with our bounding-
box initialization strategy, RTS produces accurate segmentation masks.
DAVIS 2017 [41] Similarly, we compare our method on the validation set of
DAVIS 2017 [41], which contains 30 sequences. We do not fine tune the model
for this benchmark. The results are shown in Tab. 8 and confirm the observation
made above that RTS is able to generate accurate segmentation masks. Our
method is competitive in the mask-initialization setup. In the box-initialization
setup however, our approach outperforms all other methods in J&F , in particu-
lar the segmentation trackers like SiamMask [51] (+16.2) and D3S [31] (+11.8).

5 Conclusion

We introduced RTS, a robust, end-to-end trainable, segmentation-driven track-
ing method that is able to generate accurate segmentation masks. Compared to
the traditional bounding box outputs of classical visual object trackers, segmen-
tation masks enable a more accurate representation of the target’s shape and
extent. The proposed instance localization branch helps increasing the robustness
of our tracker to enable reliable tracking even for long sequences of thousands of
frames. Our method outperforms previous segmentation-driven tracking meth-
ods by a large margin, and it is competitive on several VOT benchmarks. In
particular, we set a new state of the art on the challenging LaSOT [16] dataset
with a success AUC of 69.7%. Competitive results on two VOS datasets confirm
the high quality of the generated segmentation masks.
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