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Abstract. In this work, we present a single-stage framework, named
S2F2, for forecasting multiple human trajectories from raw video im-
ages by predicting future optical flows. S2F2 differs from the previous
two-stage approaches in that it performs detection, Re-ID, and forecast-
ing of multiple pedestrians at the same time. The architecture of S2F2
consists of two primary parts: (1) a context feature extractor responsible
for extracting a shared latent feature embedding for performing detec-
tion and Re-ID, and (2) a forecasting module responsible for extracting
a shared latent feature embedding for forecasting. The outputs of the
two parts are then processed to generate the final predicted trajectories
of pedestrians. Unlike previous approaches, the computational burden
of S2F2 remains consistent even if the number of pedestrians grows. In
order to fairly compare S2F2 against the other approaches, we designed
a StaticMOT dataset that excludes video sequences involving egocentric
motions. The experimental results demonstrate that S2F2 is able to out-
perform two conventional trajectory forecasting algorithms and a recent
learning-based two-stage model, while maintaining tracking performance
on par with the contemporary MOT models.

Keywords: Multiple trajectory forecasting, optical flow estimation, single-
stage forecasting framework, S2F2.

1 Introduction

Multiple pedestrian trajectory forecasting is the task of predicting future loca-
tions of pedestrians from video data, and has received increasing attention in
recent years across a wide variety of domains. Foreseeing how a scene involving
multiple objects will unfold over time is crucial for a number of applications,
such as self-driving vehicles, service robots, and advanced surveillance systems.

In the past few years, multiple pedestrian trajectory forecasting from im-
age sequences has been implemented as a two-stage process: (1) the detection
and tracking stage, where targets in a single video frame are first located (i.e.,
detection), and then associated to existing trajectories (i.e., tracking) with or
without the help of re-identification (Re-ID); and (2) the forecasting stage, where
the previous trajectory of each person is fed into a forecasting model to predict its
potential future locations over a short period of time. This branch of methods is
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Fig. 1. A comparison between the two-stage approach and our one stage framework.

referred to as the two-stage approach in this work, and is illustrated in Fig 1 (a).
Among them, previous works concentrated only on the second stage, and uti-
lized pre-processed bounding boxes and tracking histories [21,5,2,28,6,13]. Albeit
effective, two-stage approaches inherently suffer from several limitations. First,
their forecasting performances are constrained by the quality and correctness of
the first stage. Second, despite that the first stage only processes the input in
one pass, the second stage usually requires multiple passes of forecasting if the
input image sequence contains multiple pedestrians [21,13,28].

In light of these shortcomings, a promising direction to explore is the use
of a single-stage architecture. Single-stage architectures often possess favorable
properties such as multitasking, fast inference speed, etc., and have recently
been investigated in a wide range of other domains [31,24,32,22,19,27]. The ad-
vantages of these one-stage approaches usually come from the bottom-up design
philosophy, where their feature maps are typically constructed from features of
local regions, and optimized to encompass certain hierarchies of different scales if
necessary. Such a design philosophy allows them to make multiple predictions in
one shot, regardless of the number of target instances in an image. Despite their
successes, the previous single-stage approaches are mostly designed for tasks in-
volving only a single image frame. The multiple pedestrian trajectory forecasting
task, however, requires temporal information encoded from multiple past frames,
making previous single-stage architectures not readily applicable. As this prob-
lem setup has not been properly investigated, the challenges to be addressed
are twofold. First, it requires various types of information (e.g., detection re-
sults, past trajectories, context features, etc.) to be concurrently encrypted to
the latent features. Second, it necessitates temporal information to facilitate
plausible predictions. Therefore, this multiple pedestrian trajectory forecasting
problem can be considered as a unique and complicated multitask learning prob-
lem. To this end, we present the first single-stage framework, called S2F2, for
predicting multiple pedestrian trajectories from raw video images. S2F2 is in-
spired by the concept of optical flow forecasting, and is constructed atop the
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design philosophy of an anchor-free one-stage multiple object tracking (MOT)
framework [31]. Fig. 1 highlights the differences between S2F2 and the prior two-
stage approaches. S2F2 differs from them in that it performs detection, Re-ID,
as well as forecasting of multiple pedestrians at the same time. Unlike two-stage
approaches, the computational burden of S2F2 remains consistent even if the
number of pedestrians grows. We show that with the same amount of training
data, S2F2 is able to outperform two conventional trajectory forecasting algo-
rithms and a recent learning-based two-stage model [21], while maintaining its
tracking performance on par with the contemporary MOT models. The main
contributions of this work are:

1. We present the first single-stage framework that jointly accomplishes track-
ing and forecasting of multiple pedestrians from raw video image frames.

2. We introduce a future flow decoder and a special loss function to enable the
predictions of future optical flows without any additional labeled data.

3. We propose to leverage the predicted optical flow maps to assist in forecast-
ing the trajectories of multiple pedestrians concurrently, within a consistent
computational burden even if the number of pedestrians increases.

2 Related Work

The task of forecasting the trajectories of multiple pedestrians typically requires
their track histories. To date, the existing methods [1,5,21,20,2,28,6,13,26] are
all carried out in a two-stage fashion: (1) object detection and tracking, and (2)
forecasting. The former stage is responsible for extracting features and associ-
ating bounding boxes, while the latter utilizes the information from the former
to forecast their potential future locations. These two stages have been treated
by these methods separately, instead of being integrated as a single model. In
these methods, detection is usually based on the ground truths provided by the
datasets [21,26,17,10,18,4], which offer continuously tracked bounding boxes or
centers. On the other hand, forecasting is performed either based on the track
histories alone [2,1,28,5,6], or with a combination of additional extracted context
features [13,26,21,11,20,15]. Social-LSTM [1] introduces the concept of social in-
teractions by proposing a technique called social pooling, which encodes the
latent features of multiple trajectories through LSTMs for sharing the informa-
tion of interactions among pedestrians in a scene. In order to make reasonable
forecasts, some researchers proposed to further incorporate content or context
features into their architectures [21,20,11], such as semantic segmentation [13],
optical flow [21,20], human pose [26], ego motion [26,15], etc., and have demon-
strated the effectiveness of them. Such additional features are extracted sepa-
rately by distinct deep neural networks. Albeit effective, these two-stage methods
suffer from the issues discussed in Section 1. Although single-stage forecasting
has been attempted for point cloud based input data captured by lidars [12],
there is no single-stage forecasting method that makes predictions based on raw
RGB image frames.
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3 Methodology

In this section, we first describe the problem formulation of this work. Then, we
introduce the proposed S2F2 framework, followed by a detailed description of
its various task modules.

3.1 Problem Formulation

Consider a sequence of raw RGB images from a static scene {I0, I1, ..., It}, where
t represents the current timestep, our objective is to estimate and track the
current and future locations of all pedestrians. Given the tracking information
encoded from the previous images, the task of multiple pedestrian trajectory
forecasting aims to infer a set of bounding boxes Bit = {bit, bit+1, b

i
t+2, ..., b

i
t+n}

for each identifiable person i in the current and the subsequent n image frames,
where bti denotes the bounding box of person i at timestep t.

3.2 Overview of the S2F2 Framework

Fig. 2 illustrates an overview of the S2F2 framework. To accomplish trajectory
forecasting for multiple pedestrians within a single stage, S2F2 employs two
distinct modules in its architecture: (a) a context feature extractor for processing
and encrypting the input RGB image frame of the current timestep t, and (b) a
forecasting module for recurrently encoding the latent features and predicting the
future optical flows, which are later exploited for deriving the future trajectories
of the pedestrians in the image. Given a raw input image It, it is first processed by
the backbone K of the context feature extractor to generate a feature embedding
Xt, which is used for three purposes: detection, Re-ID, and forecasting. To derive
the future flow maps, the forecasting module takes Xt as its input, and leverages
a set of gated recurrent units (GRUs) to generate a series of optical flow maps
{ft+1, ft+2, ..., ft+n} for the subsequent n timesteps. These optical flow maps
represent the estimated offsets of each pixel from It to It+n, and thus can be
utilized to perform forward warping of the detection results to derive the future
bounding boxes Bit for each identifiable person i in the scene, as depicted in
Fig. 2 (highlighted as the blue bounding boxes). Finally, all the bounding boxes
are processed by a tracking algorithm, and are associated into distinct tracks.

3.3 Context Feature Extractor

The context feature extractor of S2F2 inherits the design from FairMOT [31],
in which an enhanced version of Deep Layer Aggregation (DLA) [32] is used
as the backbone to generate Xt. Except for forwarding it to the forecasting
module, the other two objectives of the context feature extractor is to utilize Xt
to extract necessary features for the detection and Re-ID tasks. These two tasks
are accomplished by four heads, including a heatmap head, an offset head, a size
head, and a Re-ID head. These heads ensure that Xt can serve as an adequate
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Fig. 2. The proposed S2F2 framework. Our model contains two modules: (a) a context
feature extractor for processing It, and (b) a forecasting module for aggregating past
features to predict future flow maps. Forecasting is accomplished by forward warping
the detection results, followed by a tracking algorithm to associate them into tracks.

representation of the locations and the appearances of the objects in It, and offer
sufficient information for the forecasting module. We explain the functionality
of each head in the following paragraphs.

– Heatmap Head. The heatmap head is responsible for estimating the loca-
tions of the centers of different bounding boxes in an input image.

– Offset and Size Heads. The function of the offset head is to precisely
locate the objects, while the role of the size head is to estimate the height
and width of the target bounding boxes.

– Re-ID Head. The function of this head is to extract features for generating
a unique identifier for each person so as to track its bounding boxes across
different frames.

3.4 Forecasting Module

The forecasting module is in charge of encoding temporal features based on Xt,
and predicting the future optical flow maps which are later used to derive the
future trajectories. It contains an encoder and a decoder, which are depicted in
Fig 2 and explained as follows.

GRU Encoder Block. The goal of the gated recurrent unit (GRU) encoder
block is to generate an embedding St from Xt. It is a single convolutional
GRU (ConvGRU) [25]. At timestep t, Xt is passed into the ConvGRU along
with the corresponding previous embedding St−1 to derive the updated St =
GRU(St−1,Xt). St can be considered as a summary of the past state embeddings
up to t. Note that at t = 1, X1 is also utilized as the initial state embedding S0.
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Future Flow Decoder Block. The objective of the future flow decoder is
to predict n residual future flow estimations {∆ft+1, ∆ft+2, ...,∆ft+n}, ∆f ∈
R2×w×h, where each estimation is an update direction used to update a fixed
flow field initialized with zeros. More specifically, this decoder generates a set
of future flow maps F = {ft+1, ft+2, ..., ft+n}, where ft+1 = ∆ft+1 + ft. Each
of the predicted flows in F has the same initial reference frame It (i.e., fn is
the optical flow from frame It to It+n, instead of It+(n−1) to It+n). This design
choice aims to avoid error accumulation while forming forecasting predictions.
Similar to the encoder block, the decoder also contains a ConvGRU. It takes
the state embedding St as its input, and splits St into a hidden state H1 and an
input R. They are then fed separately into the ConvGRU to generate the next
hidden state H2 = GRU(H1, R), which is utilized by a ∆ flow head to produce
∆ft+1. This, in turn, is used to generate the subsequent input to the ConvGRU
by concatenating ∆ft+1 with R. The above procedure repeats n times, where
each iteration stands for a timestep into the future.

To train the future flow decoder block, a loss function consisting of two parts
are employed. The first part is a supervised loss for the centers of future bounding
boxes, given by:

LCenter =

t+n∑
τ=t+1

Kτ∑
i=1

‖ciτ − ĉiτ‖1 =

t+n∑
τ=t+1

Kτ∑
i=1

‖ciτ − (cit + fτ (cit))‖1, (1)

where fτ is the estimated future flow, ciτ and ĉiτ represent the centers of the

annotated bounding box biτ and the predicted bounding box b̂iτ of pedestrian i
at timestep τ , respectively, and Kτ denotes the number of pedestrians in the
image at timestep τ . For each center cτ , the forecasted center ĉτ can be inferred
from fτ , i.e., ĉτ = ct + fτ (ct). Please note that, instead of directly warping the
entire frame It using fτ , we only warp the centers of bounding boxes appeared
at timestep t. This is because warping the entire frame may cause occlusions,
and leave behind duplicate pixels. The second part further refines the flow maps
and stabilizes the training process with the structural similarity index (SSIM)
loss adopted in several unsupervised optical flow estimation works [7,29,16,23]:

LSSIM =

t+n∑
τ=t+1

SSIM
(
It,W (Iτ , fτ )

)
, (2)

where W (·) is the backward warping operator, and the SSIM loss LSSIM is
obtained by calculating the similarities of the corresponding pixels between It
and its warped frame Iτ .

3.5 Online Association with Forecasting Refinement

In order to enhance the tracking performance with the information provided from
the forecasted results, we modify the original tracking algorithm of FairMOT [31]
by not only considering the current bounding boxes bt, but taking the bounding
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boxes b̂t forecasted from the previous timestep t − 1 into consideration. In the
original design, only the bounding boxes predicted with confidence scores higher
than a threshold δ are associated into tracks. However, this might result in
missing objects and fragmented trajectories, since objects with low confidence
scores are neglected (e.g., occluded objects) [30]. To alleviate this issue, we reduce
the threshold value if the distance of any ĉt and ct is within a predefined range
r, which can be formulated as:

∀i ∈ K, δi =

{
δ/2, if ∃ĉt, ‖ĉt − cit‖1 < r

δ, otherwise
, (3)

where K denotes the number of pedestrians in It, and δi is the threshold for
pedestrian i. This design allows the bounding boxes with lower confidence scores
to be re-considered and associated if their previously forecasted locations are
nearby. We examine the effectiveness of this design in Section 4.4.

3.6 Training Objective

We trained S2F2 in an end-to-end fashion by minimizing the following objective:

Lall =
1

ew1
Ldet +

1

ew2
Lid +

1

ew3
Lfut + w1 + w2 + w3, (4)

where Lfut = LCenter + LSSIM , w1, w2 and w3 are learnable parameters, and
Ldet and Lid are the losses for the detection and Re-ID tasks, respectively. In
Eq. (4), we modify the formulation of the uncertainty loss proposed in [9] to
balance the detection, Re-ID, and forecasting tasks.

4 Experimental Results

In this section, we first briefly introduce the settings used for training and vali-
dation, then evaluate S2F2 in terms of its tracking and forecasting performance.

4.1 Data Curation for Forecasting without Camera Movement

In this work, we examine the proposed S2F2 on the subset of the widely-adopted
MOT17 and MOT20 Challenge Datasets [14,3]. The video sequences can be clas-
sified into two categories based on whether the ego-motion of the camera is in-
volved. Image sequences with ego-motion are considered to be hard cases for the
forecasting task, since additional designs may be required to handle the view-
point movements. Some research works [21,26,17] focus on the image sequences
from a first-person moving perspective, however, in our work, we concentrate
on the model’s capability of both tracking and forecasting, and thus the move-
ments from the camera are not considered. As a result, we select a subset of
video sequences from MOT17 and MOT20 without camera movement to form
our dataset, named StaticMOT. The details of StaticMOT are shown in Ta-
ble 1. We train and evaluate S2F2 on StaticMOT, with each sequence presented
in Table 1 split into halves to form the training and validation sets, respectively.
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Table 1. The video sequences contained in StaticMOT. Please note that ‘Density’
refers to the average number of pedestrians per frame.

Sequence Frames Density Viewpoint Sequence Frames Density Viewpoint

MOT17-02 300 31.0 eye level MOT20-02 1390 72.7 elevated
MOT17-04 525 45.3 elevated MOT20-03 1002 148.3 elevated
MOT17-09 262 10.1 eye level MOT20-05 1657 226.6 elevated
MOT20-01 214 62.1 elevated Average 764 126.8 -

4.2 Trajectory Forecasting Results

In this section, we compare our approach with two conventional trajectory fore-
casting algorithms and a recent learning-based method STED [21]. To fairly
compare different methods, the pre-processed bounding boxes and the necessary
past trajectories of the pedestrians are generated by S2F2 from the validation
set of StaticMOT. Tracks that are not continuously detected for six frames are
discarded, resulting in around 470, 000 tracks for evaluation. We predict three
future frames, corresponding to around one second of forecasting into the future.

1) Baselines:

– Constant Velocity & Constant Scale (CV-CS): We adopt the simple
constant velocity model, which is used widely as a baseline for trajectory
forecasting models and as a motion model for MOT. We only use the previous
three frames to compute the velocity, instead of the whole past history, as
this setting delivers better performance.

– Linear Kalman Filter (LKF) [8]: LKF is one of the most popular motion
models for MOT, and is widely used for tracking objects and predicting
trajectories under noisy conditions. We use the implementation in [31], and
use the last updated motion value for forecasting. Unlike CV-CS, all the
previous bounding box locations of a tracked object are utilized.

– STED [21]: STED is a recent two-stage pedestrian forecasting model with
a GRU based encoder-decoder architecture. Instead of encoding image fea-
tures, it encodes pre-computed bounding box information along with features
extracted from pre-generated optical flow to forecast future bounding boxes.
We follow the original implementatio of STED, and train it on the ground
truth tracks from the StaticMOT training set for 20 epochs.

2) Forecasting Metrics:

– (ADE, FDE): Average displacement error (ADE) is defined as the mean
Euclidean distance between the predicted and ground-truth bounding box
centroids for all predicted bounding boxes, and final displacement error
(FDE) is defined similarly but only for the final timestep.

– (AIOU, FIOU): Average intersection-over-union (AIOU) is defined as the
mean intersection-over-union (IOU) of the predicted and ground truth bound-
ing boxes for all predicted boxes, and final intersection-over-union (FIOU)
is the mean IOU for the bounding boxes at the final timestep.
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Table 2. The forecasting results evaluated on the StaticMOT validation set. The
latency reported is evaluated on an NVIDIA Tesla V100 GPU.

Model ADE(↓) FDE(↓) AIOU(↑) FIOU(↑) Latency (ms)

CV 14.481 20.196 0.673 0.594 -
LKF 20.635 24.323 0.581 0.512 -

STED 16.928 23.761 0.654 0.570 623.480
Ours 12.275 16.228 0.704 0.643 13.788

Table 3. The detailed forecasting results evaluated on the StaticMOT validation set.

Sequences Boxes AIOU (↑) ADE (↓) FIOU (↑) FDE (↓)

Model - CV LKF Ours CV Kal Ours CV Kal Ours CV Kal Ours

MOT17-02 4202 0.58 0.536 0.602 17.136 22.112 16.171 0.514 0.483 0.544 22.423 23.447 20.656
MOT17-04 19506 0.702 0.654 0.724 11.672 16.304 10.802 0.638 0.585 0.677 15.651 19.187 13.631
MOT17-09 1302 0.508 0.426 0.58 67.857 62.232 52.954 0.364 0.248 0.488 104.309 121.644 72.297
MOT20-01 6343 0.606 0.495 0.656 23.962 33.395 18.59 0.483 0.371 0.559 36.096 44.601 26.683
MOT20-02 49985 0.647 0.534 0.676 21.449 31.446 18.428 0.547 0.435 0.591 30.977 37.856 25.2
MOT20-03 103031 0.698 0.568 0.727 8.351 15.334 7.007 0.627 0.524 0.672 11.571 14.666 9.231
MOT20-05 286362 0.67 0.592 0.703 15.165 20.45 12.811 0.592 0.521 0.643 20.96 24.906 16.805

Average 67247 0.673 0.581 0.704 14.481 20.635 12.275 0.594 0.512 0.643 20.196 24.323 16.228

3) Quantitative Results: Table 2 shows the quantitative results in terms of
ADE/FDE and AIOU/FIOU for all methods on StaticMOT. The latency of
S2F2 and STED are also included for comparison. The latency is calculated
for the forecasting part only, and is tested on sequence MOT20-05 with the
largest pedestrian density. Please note that for STED, the time needed for pre-
computing optical flow is not included. It can be observed that, the proposed
S2F2 outperforms all baselines, while running several times faster than STED.
This is because STED requires feature extraction for every person in a scene.
Another reason is that STED was designed for videos from the first person
perspective, while the majority of StatcMOT are elevated sequences. Table 3
shows more detailed results on every sequence.

4) Qualitative Results: Fig. 3 shows three examples of the successful scenarios
selected and evaluated from our StaticMOT validation set. From the left to the
right, the scenarios are: (1) a person behind two people walks away from the
viewpoint, (2) a person moves to the right and takes a sharp turn due to the
lockers in his way, and (3) a person makes a right turn to follow the crowd. In
the first scenario, the person’s bounding boxes from different timesteps become
closer to each other due to the increase in their distances from the viewpoint.
This can be forecasted by S2F2, but is unable to be correctly predicted by CV-
CS. In the second scenario, CV-CS also fails to estimate the trajectory of the
person. However, S2F2 incorporates features from the whole images, enabling it
to anticipate the lockers in the person’s way. In the third scenario, since S2F2
makes predictions for all objects concurrently based on a dense flow field, it
is thus capable of capturing the spatial correlations between different objects,
allowing it to forecast the future trajectory of the person by taking into account
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Fig. 3. Examples where the forecasting results made by S2F2 outperform CV-CS. From
the left to the right, a pedestrian (1) walks away from the viewpoint, (2) makes a sharp
turn due to the lockers in his way, and (3) makes a right turn to follow the crowd. The
bounding boxes are highlighted in different colors to represent the ground truth (red),
the past locations (white), and the predictions made by CV-CS (aqua) and those made
by S2F2 (dark blue). The predictions are one second into the future.

Table 4. A comparison between the detection results of FairMOT [31] and S2F2. The
results marked with * are taken directly from the FairMOT paper. The MOT17 test
results are taken from the evaluation server under the “private detection” protocol.

Method Dataset MOTA(↑) MOTP(↑) IDs(↓) IDF1(↑)

FairMOT ∗ MOT17 test 69.8 - 3996 69.9
Ours MOT17 test 70.0 80.15 4590 69.9

FairMOT ∗ MOT17 val 67.5 - 408 69.9
Ours MOT17 val 67.7 80.3 513 71.0

FairMOT StaticMOT 73.1 80.5 2283 76.4
Ours StaticMOT 73.6 80.5 2307 76.6

the behavior of the crowd. The failure scenarios are shown in Fig 4. From the
left to the right, the scenarios are: (1) a person suddenly turns and runs to
the left, (2) a person walks towards the viewpoint and is occluded by another
person walking to the right, and (3) a person comes to a crosswalk and turns
left instead of turning right to cross the street. In the first scenario, it is difficult
for S2F2 to forecast sudden movements of the person. In the second scenario, it
is possible for S2F2 to sample the wrong object center from our predicted flow
when multiple people are overly close to each other. In the third scenario, our
model incorrectly predicts the direction of that person because it is different from
the majority of the people in the scene. More visualizations of our forecasting
results and predicted future optical flow are shown in Fig 8.

4.3 Multiple Object Tracking Results

In addition to forecasting, Table 4 further compares the tracking results of S2F2
and FairMOT [31], the framework that S2F2 is based on. From top to bottom, the
three categories correspond to the models trained on the whole official MOT17
training dataset [14], the training split of MOT17 from [31], and our StaticMOT,
respectively. For each category, S2F2 and FairMOT are trained with the same
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Fig. 4. Examples of the unsuccessful forecasting results made by S2F2. From the left
to the right, a person (1) suddenly turns and runs to the left, (2) walks towards the
viewpoint and is occluded by another person walking to the right, and (3) comes to
a crosswalk and turns left instead of turning right to cross the street. The bounding
boxes are highlighted in different colors to represent the ground truth (red), the past
locations (white), and the predictions made by CV-CS (aqua) and those made by S2F2
(dark blue). The predictions are one second into the future.

set of data samples, and do not use any additional fine-tuning. It is observed
from the results that our performance is on par or even slightly better than that
of FairMOT for certain metrics, implying that the addition of our forecasting
module does not affect its tracking capability. Note that S2F2 performs slightly
worse than FairMOT in terms of the ID switch (IDS) metric. This might be
due to the fact that FairMOT is trained on independent images, while S2F2 is
trained on image sequences, thus causing slight overfitting.

4.4 Ablation Studies

In this section, we dive into a set of ablation studies to discuss the rationales of
our design decisions and validate them.

Inference Speed. In Fig. 5, we separately time the detection, tracking, and
forecasting portions of S2F2 on videos from StaticMOT with different numbers
of pedestrians to validate our claim of consistent computational burden. The in-
ference time of the two stage tracker (i.e., STED) is also included. All models are
run on a single NVIDIA Tesla V100 GPU. As shown in the figure, the forecasting
portion of S2F2 takes approximately 0.01 seconds per frame regardless of the
number of pedestrians in the scene. On the other hand, the two stage tracker’s
inference time grows with the number of pedestrians. This supports our claim.

GRU Encoder Optimization. In this section, we validate the effectiveness
of the design of the GRU encoder adopted in S2F2 and compare it against two
different variants. Fig. 6 illustrates a comparison of the three architectures. The
main objective of this ablation analysis is to validate whether incorporating
features beneficial for predicting the optical flow from timestep t− 1→ t would
help the prediction of the future optical flow maps F = {ft+1, ft+2, ..., ft+n}. To
achieve this objective, an additional “past flow decoder” with a design similar to
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Fig. 5. A comparison of the inference time between a two-stage approach (STED) and
our proposed one stage approach (S2F2).

Fig. 6. An illustration of the three different model architectures discussed in Table 5.

the original future flow decoder block is incorporated into the variants shown in
Fig. 6. It is trained using the unsupervised warping loss presented in Eq. (2) to
predict the optical flow from t−1→ t. The incorporation of the past flow decoder
ensures that the relative motion between frames t−1→ t could be encoded in the
feature embedding. For the two variants, Ours+Past is the case where only the
past flow decoder block is added. Notice that in Ours+Past, the gradients from
both the past and future flow decoders are used for updating the GRU Encoder
and the backbone network K. On the other hand, the variant Ours+PastDetach
further includes an additional “past GRU encoder” which is only updated by the
gradients from the past flow decoder. The original GRU encoder is placed after
the past GRU encoder, but is detached such that its gradients are not utilized
for updating the past GRU encoder. This design aims to examine whether the
features beneficial for predicting optical flows from t − 1 → t could benefit the
future flow prediciton.

Table 5 shows the results of the three different architectures on the MOT17
validation set, with MOTA representing the detection and tracking accuracy, and
FDE representing the forecasting performance. It can be observed from Table 5
that both Ours+Past and Ours+PastDetach perform relatively unsatisfactory
as compared to Ours. The detection results of Ours + PastDetach are better
than those of Ours+Past. However, the forecasting results demonstrate a differ-
ent trend. The reasons are twofold. First, the features needed for predicting the
optical flow from t−1→ t might not be suitable for predicting the future optical
flow maps. This is supported by the evidence that Ours + PastDetach, which
extracts features solely by the past GRU encoder, delivers the worst forecasting
performance. Second, multi-task learning with tasks that need different repre-
sentations might harm the performance of each individual tasks. As a result,
Ours+PastDetach shows better detection results as compared to Ours+Past.
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Table 5. Ablation results for the GRU encoder optimization. All results are trained
and validated on MOT17.

Ours + Past Ours + PastDetach Ours w/o LSSIM Ours

MOTA(↑) FDE(↓) MOTA(↑) FDE(↓) MOTA(↑) FDE(↓) MOTA(↑) FDE(↓)

66.0 43.097 66.2% 46.869 67.0 43.021 67.7 39.891

Table 6. Ablation results regarding changes to the tracking algorithm.

Ours + BYTE Ours w/o refinement Ours

Dataset MOTA(↑) FDE(↓) MOTA(↑) FDE(↓) MOTA(↑) FDE(↓)

MOT17 66.2 39.626 67.6 40.014 67.7 39.891

StaticMOT 73.4 16.146 73.3 16.249 73.6 16.228

An ablation study on the effectiveness of the loss function LSSIM described in
Section 3.4 is also presented in Table 5 under the column ‘Ours w/o LSSIM ’, cor-
responding to the case trained without LSSIM . It can be observed that the per-
formance declines if LSSIM is not employed. Fig 7 further depicts that if LSSIM
helps S2F2 to concentrate on predicting the optical flows of the pedestrains.

Effectiveness of the Forecasting Refinement for Online Association. In
this section, we validate the effectiveness of our forecasting refinement discussed
in Section 3.5, and compare it with two different tracking variants. The results
are presented in Table 6, in which Ours+BY TE corresponds to the case where
the tracking algorithm is replaced by ByteTrack [30] (denoted as BYTE). In this
experiment, we use the implementation of BYTE that does not take Re-ID into
consideration. On the other hand, ‘Ours w/o refinement’ corresponds to the
case where the original tracking algorithm from FairMOT [31] is utilized without
the forecasting refinement. It can be observed from the results that our proposed
forecasting refinement does benefit the detection and tracking performance, thus
validating its effectiveness. In contrast, Ours+BY TE does not yield the most
superior results, which might be due to the fact that ByteTrack [30] requires
accurate detections. This can be inferred from the fact that Ours + BY TE
performs better when the model is trained on StaticMOT (a larger dataset)
than the case where the model is trained solely on MOT17 (a smaller dataset).

5 Conclusion

In this paper, we presented the first single-stage framework, named S2F2, for
predicting multiple human trajectories from raw video images. S2F2 performs
detection, Re-ID, and forecasting of multiple pedestrians at the same time, with
consistent computational burden even if the number of pedestrians grows. S2F2
is able to outperform two conventional trajectory forecasting algorithms, and a
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Fig. 7. Visualizations of the predicted flow maps from S2F2 trained with different loss
terms.

Fig. 8. The tracking results and the predicted flow maps of S2F2 on the validation set
of StaticMOT. Bounding boxes with different colors represent different identities.

recent two-stage learning-based model [21], while maintaining its tracking perfor-
mance on par with the contemporary MOT models. We hope this sheds light on
single-stage pedestrian forecasting, and facilitates future works in this direction.
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