
Large-displacement 3D Object Tracking with
Hybrid Non-local Optimization

Xuhui Tian†, Xinran Lin†, Fan Zhong, and Xueying Qin

Shandong University, China
zhongfan@sdu.edu.cn

Abstract. Optimization-based 3D object tracking is known to be pre-
cise and fast, but sensitive to large inter-frame displacements. In this
paper we propose a fast and effective non-local 3D tracking method.
Based on the observation that erroneous local minimum are mostly due
to the out-of-plane rotation, we propose a hybrid approach combining
non-local and local optimizations for different parameters, resulting in
efficient non-local search in the 6D pose space. In addition, a precom-
puted robust contour-based tracking method is proposed for the pose
optimization. By using long search lines with multiple candidate corre-
spondences, it can adapt to different frame displacements without the
need of coarse-to-fine search. After the pre-computation, pose updates
can be conducted very fast, enabling the non-local optimization to run
in real time. Our method outperforms all previous methods for both
small and large displacements. For large displacements, the accuracy is
greatly improved (81.7% v.s. 19.4%). At the same time, real-time speed
(>50fps) can be achieved with only CPU. The source code is available
at https://github.com/cvbubbles/nonlocal-3dtracking.

Keywords: 3D Tracking, Pose Estimation

1 Introduction

3D object tracking aims to estimate the accurate 6-DoF pose of dynamic video
objects provided with the CAD models. This is a fundamental technique for
many vision applications, such as augmented reality [14], robot grasping [2],
human-computer interaction [12], etc.

Previous methods can be categorized as optimization-based [4, 16, 18, 21] and
learning-based [3, 13, 25, 26]. The optimization-based methods are more efficient
and more precise, while the learning-based methods are more robust by lever-
aging the object-specific training process and the power of GPU. Our work will
focus on the optimization-based approach, aiming at mobile applications that
require fast high-precision 3D tracking (e.g. augmented reality).

In order to achieve real-time speed, previous optimization-based 3D tracking
methods search for only the local minima of the non-convex cost function. Note

†Authors contribute equally

2 X. Tian et al.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4

A
cc

ur
ac

y(
%

)

Frame Step

RBOT RBGT SRT3D Ours(local) Ours init. 6d pose

Translation

In-plane

Rotation

Out-of-plane

Rotation

Local Opt.

Non-local Opt.

result pose

(a) (b)

Fig. 1. (a) The accuracy of previous 3D tracking methods (RBOT [22], RBGT [18],
SRT3D [19]) would decrease fast with the increase of displacements (frame step S). (b)
The proposed hybrid non-local optimization method.

that this is based on the assumption that frame displacement is small, which in
practice is often violated due to fast object or camera movements. For large frame
displacements, a good initialization is unavailable, then the local minima would
deviate the true object pose. As shown in Figure 1(a), when frame displacements
become large, the accuracy of previous 3D tracking methods will decrease fast.

The coarse-to-fine search is commonly adopted in previous tracking meth-
ods for handling large displacements. For 3D tracking, it can be implemented
by image pyramids [7, 22] or by varying the length of search lines [18]. How-
ever, note that since the 3D rotation is independent of the object scale in image
space, coarse-to-fine search in image space would take little effect on the ro-
tation components. On the other hand, although non-local tracking methods
such as particle filter [10] can overcome the local minimum, directly sampling in
the 6D pose space would result in a large amount of computation, so previous
methods [3, 28] always require powerful GPU to achieve real-time speed.

In this paper, we propose the first non-local 3D tracking method that can
run in real-time with only CPU. Firstly, by analyzing previous methods, we
find that most tracking failures (e.g. near 90% for SRT3D [19])) are caused
by the out-of-plane rotations. Based on this observation, we propose a hybrid
approach for optimizing the 6D pose. As illustrated in Figure 1(b), non-local
search is applied for only out-of-plane rotation, which requires to do sampling
only in a 2D space instead of the original 6D pose space. An efficient search
method is introduced to reduce the invocations of local joint optimizations, by
pre-termination and near-to-far search. Secondly, for better adaption to the non-
local search, we propose a fast local pose optimization method that is more
adaptive to frame displacements. Instead of using short search lines as in previous
methods, we propose to use long search lines taking multiple candidate contour
correspondences. The long search lines can be precomputed, and need not be
recomputed when the pose is updated, which enables hundreds of pose update
iterations to be conducted in real-time. A robust estimation method is introduced
to deal with erroneous contour correspondences. As shown in Figure 1(a), for the
case of large displacements, our local method significantly outperforms previous
methods, and the non-local method further improves the accuracy.

Large-disp. 3D Object Tracking 3

2 Related Work

Due to space limitation, here we only briefly introduce the methods that are
closely related to our work. A more comprehensive review can be found in [19].

For textureless 3D object tracking, the optimization-based methods can be
categorized as contour-based or region-based. The contour-based approaches
have been studied for a long time [4, 5, 24]. However, early contour-based meth-
ods are known to be sensitive to background clutters that may cause wrong con-
tour correspondences. To solve this problem, local color information is leveraged
for improving the correspondences [8, 17], which effectively improves accuracy.

Recent progress is mainly achieved by the region-based methods [7, 18, 19, 29].
PWP3D [16] is the first real-time region-based method. Many methods are then
proposed to improve the object segmentation. Hexner and Hagege [6] proposed
a localized segmentation model to handle cluttered scenes. Tjaden et al. [23]
extended the idea by using temporally consistent local color histograms. Zhong
et al. [29] proposed to use polar coordinates for better handling occlusion. The
recent works of Stobier et al. [18, 19] proposed a sparse probabilistic model and
Gaussian approximations for the derivatives in optimization, achieving state-of-
the-art accuracy on the RBOT dataset [22] and can run at a fast speed. The
above methods all do only local optimization, and thus are sensitive to large
displacements.

The power of deep learning can be exploited for 3D tracking when GPU is
available. The 6D pose refinement network of DeepIM [13] provides an effective
way to estimate the pose difference between an input image and a rendered tem-
plate. A similar network is adopted in SE(3)-TrackNet [26] for RGBD-based 3D
tracking. A model-free 3D tracking method is proposed in BundleTrack [25], by
leveraging an online optimization framework. In PoseRBPF [3], 6D pose track-
ing is formulated in a particle filter framework, with rotations searched glob-
ally in the 3D rotation space. This approach actually bridges 3D tracking with
detection-based 6D pose estimation [11, 15, 27].

3 Adaptive Fast Local Tracking

To enable the non-local optimization in real-time, we first introduce a fast lo-
cal optimization method that solves the local minima for arbitrary initial pose
rapidly.

3.1 Robust Contour-based Tracking

As in the previous method [22], the rigid transformation from the model space
to the camera coordinate frame is represented as:

T =

[
R t
0 1

]
= exp(ξ) ∈ SE(3) (1)

with ξ ∈ R6 the parameterization of T.

4 X. Tian et al.

Given a 3D model and an initial object pose, a set of 3D model points Xi

(i = 1, · · · , N) can be sampled on the projected object contour. Denoted by xξ
i

the projection of Xi on image plane with respect to object pose ξ. As illustrated
in Figure 2(a), for each xξ

i , a search line li = {oi,ni} is assigned, with oi the
start point and ni the normalized direction vector. li will be used to determine
the image contour correspondence ci. The optimal object pose then is solved by
minimizing the distance between the projected contour and the image contour:

E(ξ) =

N∑
i=1

ωi ∥ n⊤
i (x

ξ
i − oi)− di ∥α (2)

with di the distance from ci to oi, i.e. ci = oi + dini, so the cost function above
actually measures the projected distance of xξ

i and ci on the search line. ωi

is a weighting function for the i-th point. α is a constant parameter for robust
estimation. xξ

i can be computed based on the pinhole camera projection function:

xξ
i = π(K(TX̃i)3×1), where K =

fx 0 cx
0 fy cy
0 0 1

 (3)

where X̃i is the homogeneous representation of Xi, π(X) = [X/Z, Y/Z]⊤ for 3D
point X = [X,Y, Z]⊤, K is the known 3× 3 camera intrinsic matrix.

The above method extends previous contour-based methods [8, 17] in the
following aspects:

First, in previous methods, the search lines are generally centered at the pro-
jected point xξ

i , and the image correspondences are searched in a fixed range on
the two sides. This approach raises difficulty in determining the search range for
the case of large displacements. In addition, since the search lines are dependent
on the current object pose ξ, they should be recomputed once the pose is up-
dated. The proposed search line method as shown in Figure 2(a) can address the
above problems by detaching the line configurations from ξ, which enables us to
use long search lines that can be precomputed for all possible ξ in the range (see
Section 3.2).

Second, our method takes robust estimation with α < 2 to handle erro-
neous correspondences. In previous methods α = 2, so the optimization process
is sensitive to the correspondence errors, and complex filtering and weighting
techniques thus are necessary [8, 17]. We will show that, by setting α as a small
value, erroneous correspondences can be well suppressed with a simple weighting
function ωi (see Section 3.3).

3.2 Precomputed Search Lines

Using long search lines would make it more difficult to determine the contour
correspondences. On the one hand, there may be multiple contour points on the
same search line, and the number is unknown. On the other hand, due to the
background clutters, searching in a larger range would be more likely to result in

Large-disp. 3D Object Tracking 5

ni

oi

xi

ci

Background Foreground

Projected Contour

Object Contour

Projected Contour

xi

oi
ni

ci

0°
22.5°

𝑐1

𝑜1

𝑜2

𝑐2 𝑜3

𝑐31
𝑐32

(a) (b) (c)

Fig. 2. (a) The adopted contour-based tracking model. (b) The search lines in one
direction. The top right shows all of the directions for D = 16. (c) The foreground
probability map and exemplar search lines. Note that the contour points of o1 and o2

are on the opposite sides of the object. o3 has two different contour points.

an error. To overcome these difficulties, for each search line lk we select multiple
candidate contour points ckm. Then during pose optimization, for xξ

i associated

with lk, ckm closest to xξ
i will be selected as the correspondence point ci. In

this way, significant errors in ckm can be tolerated because ckm far from the
projected contour would not be involved in the optimization.

For xξ
i with projected contour normal n̂i, the associated search line can be

determined as the one passing xξ
i and has direction vector ni = n̂i. Therefore, a

search line can be shared by all xξ
i on the line with the same projected normal,

which enables the search lines to be precomputed. Figure 2(b) shows all search
lines in one direction. Given the ROI region containing the object, each search
line will be a ray going through the ROI region. The search lines in each direction
are densely arranged, so every pixel in the ROI will be associated with exactly
one search line in each direction.

In order to precompute all search lines, the range [0◦, 360◦) are uniformly
divided into D different directions (D = 16 in our experiments). The search
lines in each of the D directions then can be precomputed. Note that a direction
o and its opposite direction o+180◦ are taken as two different directions because
the contour correspondences assigned to them are different (see Section 3.3). For

arbitrary xξ
i in the ROI, there will be D search lines passing through it, one of

which with the direction vector closest to n̂i is assigned to xξ
i , and then the

contour correspondence ci can be found as the closest candidate point.

3.3 Contour Correspondences based on Probability Gradients

Correspondences would take a great effect on the resulting accuracy, so have been
studied much in previous methods. Surprisingly, we find that with the proposed
search line and robust estimation methods, high accuracy can be achieved with
a very simple method for correspondences.

For an input image, we first compute a foreground probability map p(x)
based on color histograms. The approach is widely used in previous region-

6 X. Tian et al.

based methods [7, 18, 22]. As shown in Figure 2(c), the probability map is in fact
a soft segmentation of the object, based on which the influence of background
clutters and interior contours can be suspended effectively. Considering large
object displacements, we estimate p(x) based on the global color histograms.
Note that although local color probabilities have been shown to handle complex
and indistinctive color distributions better [7, 22], the local window size is usually
hard to be determined for the case of large displacement.

During tracking, foreground and background color histograms are maintained
in the same way as [18], which produces probability densities pf (x) and pb(x)
respectively for each pixel x, then p(x) is computed as:

p(x) =
pf (x) + ϵ

pf (x) + pb(x) + 2ϵ
(4)

where ϵ = 10−6 is a small constant, so p(x) would be 0.5 if pf (x) and pb(x) are
both zero (usually indicating a new color has not appeared before).

Given p(x), for each search line lk, the probability value pk(d) at the pixel
location x = ok + dnk can be resampled with bilinear interpolation. Since p(x)

is a soft segmentation of the object, the probability gradients ∇k = ∂pk(d)
∂d can

be taken as the response of object contours along lk. We thus can select the
candidate contour correspondences ckm based on ∇k. Specifically, standard 1D
non-maximum suppression is first applied to ∇k, then the M locations with
the maximum gradient response are selected as ckm. Finally, a soft weight is
computed for ckm as:

ωkm = (
1

W
∇km)2 (5)

where W is a normalizing factor computed as the maximum gradient response
of all candidate correspondences, ∇km is the gradient response of ckm. ωkm will
be used as the weight ωi in Eq. (2) if xξ

i is matched with ckm (i.e. ci = ckm).
The above method is pretty simple and elegant compared with previous meth-

ods. Note that unless there is not enough local maximum, each search line would
take a fixed number of M candidates (M = 3 in our experiments). We did not
even filter candidates with small responses as in usual cases. By taking a small
α, the effect of erroneous correspondences can be well suppressed.

3.4 Pose Optimization

The cost function in Eq. (2) can be rewritten as

E(ξ) =

N∑
i=1

ωi ∥ F (ξ, i) ∥α, where F (ξ, i) = n⊤
i (x

ξ
i − oi)− di (6)

which can be solved with iterative reweighted least square (IRLS) by further
rewriting as

E(ξ) =

N∑
i=1

ωiψiF (ξ, i)
2, with ψi =

1

∥ F (ξ, i) ∥2−α
(7)

Large-disp. 3D Object Tracking 7

X

Y

Z

θx

θy

(θT, θT)

(θT, -θT)

(-θT, θT)

(-θT, -θT)

O

θx

θy

θx

θy

R0

a

b

c

d

(a) (b) (c)

Fig. 3. (a) Parameterization of the out-of-plane rotation with θx and θy. (b) Conver-
gence paths of the naive grid search in the 2D out-of-plane parameter space, with each
path corresponds to the iterations of a local optimization. (c) The near-to-far search
starting from R0. The iterations toward R0 (e.g. a, b) may be terminated soon by the
path pretermination, while the iterations apart from R0 (e.g. c, d) may converge to
other local minimum.

with ψi fixed weights computed with the current ξ. ψi would penalize the cor-
respondences with larger matching residuals, which are usually caused by er-
roneous correspondences. Using smaller α can better suppress erroneous corre-
spondences, with some sacrifice in convergence speed.

Eq. (7) is a nonlinear weighted least square problem that can be solved
similarly as in previous methods [7, 22]. Given the Jacobian J of F (ξ, i), the
pose update of each iteration can be computed as

∆ξ = −(

N∑
i=1

ωiψiJJ
⊤)−1

N∑
i=1

ωiψiJF (ξ, i) (8)

Please refer the supplementary material for details. Note that for arbitrary xξ
i ,

the corresponding ci and di can be easily retrieved from the precomputed search
lines, so the pose update iterations can be executed very fast.

4 Hybrid Non-local Optimization

The E(ξ) in Eq. (2) is obviously non-convex, so the method in Section 3.4 can
obtain only the local minima. This is a common case in previous methods. Con-
sidering the complexity of the cost function and the real-time speed requirement,
it is hard to be addressed with general non-convex optimization methods [9]. Here
we propose an efficient non-local optimization method to address this problem.

4.1 The Hybrid Optimization

A rotation matrix R can be decomposed as in-plane rotation Rin and out-of-
plane rotation Rout, i.e., R = RinRout. Rout will rotate a direction vector v to

8 X. Tian et al.

the view axis, and Rin is a rotation around the view axis. By fixing an up vector,
Rout can be uniquely determined from v, then R can be uniquely decomposed.
Please see the supplementary material for the details.

By analyzing previous tracking methods, we find that most of the erroneous
local minimums are due to out-of-plane rotations. The supplementary material
contains loss distributions of RBOT [22] and SRT3D [19]. As can be found,
about 70% of RBOT failures and 90% of SRT3D failures are due to out-of-plane
rotation. Based on this observation, we propose a hybrid approach combining
non-local search and continuous local optimization, with the non-local search
performed only in the 2D out-of-plane rotation space, and then jointly optimized
with other parameters using local optimization.

To facilitate the non-local sampling of Rout, we parameterize it as a 2D
vector. SinceRout can be determined with v, it can be parameterized in the same
way. As illustrated in Figure 3(a), each v around the Z axis is parameterized as
a 2D vector θ = [θx, θy]

⊤, with θx, θy ∈ (−π/2, π/2) the elevation angles of the
projections of v on the XOZ and Y OZ planes, respectively. Compared with the
parameterization with elevation and azimuth angles, this method can facilitate
determining the neighbors in each direction and is more uniform for sampling
around the Z axis.

4.2 Efficient Non-local Search

A naive non-local search method now can be easily devised based on grid search.
Given an initial pose (R0,t0) and a maximum search range θT ∈ [0, π/2) for the
out-of-plane rotation, a grid of rotation offsets ∆R

ij can be generated from the

direction vectors uniformly sampled in the range Ω = [−θT , θT]× [−θT , θT]. In
our implementation a fixed interval π/12 is used for the sampling. For each grid
point (i, j), the initial pose is reset as (∆R

ijR
0,t0), then the local optimization

method proposed in Section 3 is invoked to find the corresponding local minimum
ξij . The final pose is selected as ξij that results in smallest contour matching
error E′(ξ) = 1

N ′E(ξ), where N ′ is the actual number of contour points involved
in the computation of E(ξ), excluding those occluded or out of image scope.

The above naive grid search is inefficient because the local optimizations are
independent of each other, which incurs a large amount of redundant computa-
tion. We thus propose an improved version with the following improvements:

1) grid pre-termination. The grid search process is pre-terminated once it
finds a pose ξij that is accurate enough, i.e., the contour matching error E′(ξij)
is less than a threshold eT . In this way, a large amount of computation can
be saved if an accurate pose is found in the early stage. Since eT is generally
not easy to set manually, we adaptively estimate it as the median of the result
matching errors of the previous 15 frames.

2) path pre-termination. As visualized in Figure 3(b), the local optimizations
contain a large number of overlaps in the space of Ω, which indicates that the
same point in Ω may be searched multiple times. To avoid this, a new grid table
that is 3 times finer than the searching grid is created for recording the visited

Large-disp. 3D Object Tracking 9

Algorithm 1 Non-local 3D Tracking

1: Input: initial pose {R, t} and parameters eT , θT

2: Precompute the search lines
3: {R, t} ← localUpdates({R, t}) ▷ Please see text
4: err ← E′({R, t})
5: if err > eT then
6: R0 = R
7: Sampling ∆R

ij from the range [−θT , θT]× [−θT , θT]
8: Visit grid points (i, j) in breadth-first search and do
9: {R̂, t̂} ← innerLocalUpdates({∆R

ijR
0, t}) ▷ Please see text

10: ˆerr ← E′({R̂, t̂})
11: err,R, t ← ˆerr, R̂, t̂ if ˆerr < err
12: Break if err < eT

13: end if
14: {R, t} ← localUpdates({R, t})

locations in Ω, then the iterations of local optimization can be pre-terminated
when it reaches a visited location. Note that this may harm the optimization of
other parameters (in-plane rotation and translation), so we choose to disable the
pretermination for iterations with a small step in Ω, which usually indicates that
the current pose is close to a local minimum in Ω, so the optimization should
continue for further optimizing in-plane rotation and translation.

3) near-to-far search. A near-to-far search is used instead of the sequential
search in Ω. As illustrated in Figure 3(c), starting from R0, the locations closer
to R0 are visited first with a breadth-first search. As a result, for the case of
small displacements, R0 is close to the true object pose, then the search process
would terminate soon with the grid pre-termination. On the contrary, for the
case of large displacements, a larger range will be searched automatically for
smaller errors. This is a nice property making our method more adaptive to
different displacements.

Algorithm 1 outlines the overall procedures of the proposed non-local search
method. localUpdates is a procedure for local optimization, it accepts an ini-
tial pose and returns the optimized one. R0,t0 is computed as the result of a
local tracking, if R0,t0 is already accurate enough, the non-local search process
would completely be skipped. Note that this is a special case of the near-to-far
search process mentioned above, with grid pre-termination activated for R0,t0.
innerLocalUpdates is the version of localUpdates with the path pretermination.
After the non-local search, localUpdates is called again to refine the pose.

5 Implementation Details

Similar to [18], the 3D model of each object is pre-rendered as 3000 template
views to avoid online rendering. The view directions are sampled uniformly with
the method introduced in [1]. For each template, N = 200 contour points Xi

are sampled and stored together with their 3D surface normal. Given the pose

10 X. Tian et al.

parameter ξ, the image projection xξ
i as well as projected contour normals ni

can be computed fast with the camera projection function in Eq.(3).
The ROI region for the current frame is determined by dilating the object

bounding box of the previous frame with 100 pixels on each side. For the efficient
computation of the search lines in the direction o, the probability map p(x) is
first rotated around the center of the ROI to align the direction o with image
rows. Each row of the rotated map po(x) then is used for one search line. The
probability gradient map ∇o is computed from po(x) using a horizontal Sobel
operator with 7 × 7 kernel size. Compared with pixel difference, the smoothing
process of the Sobel operator is helpful for suspending small response of contours
and results in better accuracy. Note that for the opposite direction o + 180◦,
the probability gradient is negative to ∇o at the same pixel location, and thus
can be computed from ∇o with little computation, saving nearly half of the
computations for all directions.

The localUpdates in Algorithm 1 will execute the local pose optimization
as in Eq. (8) up to 30 iterations, with the closest template view updated ev-
ery 3 iterations. The iteration process will pre-terminate if the step ∥ ∆ξ ∥
is less than 10−4. The robust estimation parameter α is fixed to 0.125. Note
that this is a small value for better handling erroneous correspondences. For
innerLocalUpdates, the above settings are the same except α, which is set as
0.75 for better convergence speed.

The non-local search range θT is adaptively estimated from the previous
frames. When the frame t is successfully tracked, the displacement with the frame
t−1 is computed the same as the rotation error in the RBOT dataset [22]. θT for
the current frame then is computed as the median of the rotation displacements
of the latest 5 frames.

6 Experiments

In experiments we evaluated our method with the RBOT dataset [22], which is
the standard benchmark of recent optimization-based 3D tracking methods [7,
18, 19, 29]. The RBOT dataset consists of 18 different objects, and for each ob-
ject, 4 sequences with different variants (i.e., regular,dynamic light, noisy, occlu-
sion) are provided. The accuracy is computed the same as in previous works
with the 5cm-5◦ criteria [22]. A frame is considered as successfully tracked if the
translation and rotation errors are less than 5cm and 5◦, respectively. Other-
wise, it will be considered as a tracking failure and the pose will be reset with
the ground truth. The accuracy is finally computed as the success rate of all
frames.

6.1 Comparisons

Table 1 compares the accuracy of our method with previous methods, including
RBOT [22], RBGT [18], SRT3D [19], etc. The cases of large displacements are
tested with different frame step S. Each sequence of RBOT dataset contains

Large-disp. 3D Object Tracking 11

Table 1. Large-displacement tracking results on the regular variant of the RBOT
dataset [22]. In [] is the mean and maximum displacements of rotation/translation
corresponding to different frame step S. For S > 1, only the methods with published
code are tested. Ours- is our method without the non-local optimization(lines 5-13 in
Algorithm 1). Results of other variants can be found in the supplementary material.

M
e
t
h
o
d

A
p
e

S
o
d
a

V
is
e

S
o
u
p

C
a
m
e
ra

C
a
n

C
a
t

C
lo
w
n

C
u
b
e

D
ri
ll
e
r

D
u
ck

E
g
g
B
o
x

G
lu
e

Ir
o
n

C
a
n
d
y

L
a
m
p

P
h
o
n
e

S
q
u
ir
re
l

A
v
g
.

S = 1 [Disp. Mean=7.1◦/15.6mm, Max=14.8◦/30.1mm]

[29] 88.8 41.3 94.0 85.9 86.9 89.0 98.5 93.7 83.1 87.3 86.2 78.5 58.6 86.3 57.9 91.7 85.0 96.2 82.7

[8] 91.9 44.8 99.7 89.1 89.3 90.6 97.4 95.9 83.9 97.6 91.8 84.4 59.0 92.5 74.3 97.4 86.4 99.7 86.9

[20] 93.0 55.2 99.3 85.4 96.1 93.9 98.0 95.6 79.5 98.2 89.7 89.1 66.5 91.3 60.6 98.6 95.6 99.6 88.1

[7] 94.6 49.4 99.5 91.0 93.7 96.0 97.8 96.6 90.2 98.2 93.4 90.3 64.4 94.0 79.0 98.8 92.9 99.8 89.9

[22] 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4 79.9

[18] 96.4 53.2 98.8 93.9 93.0 92.7 99.7 97.1 92.5 92.5 93.7 88.5 70.0 92.1 78.8 95.5 92.5 99.6 90.0

[19] 98.8 65.1 99.6 96.0 98.0 96.5 100 98.4 94.1 96.9 98.0 95.3 79.3 96.0 90.3 97.4 96.2 99.8 94.2

Ours- 99.8 65.6 99.5 95.0 96.6 92.6 100 98.7 95.0 97.1 97.4 96.1 83.3 96.9 91.5 95.8 95.2 99.7 94.2

Ours 99.8 67.1 100 97.8 97.3 93.7 100 99.4 97.4 97.6 99.3 96.9 84.7 97.7 93.4 96.7 95.4 100 95.2

S = 2 [Disp. Mean=14.0◦/30.7mm, Max=28.1◦/57.8mm]

[22] 37.6 11.4 72.0 46.6 45.2 44.0 46.6 52.0 24.6 65.6 46.4 44.6 13.6 42.4 22.8 67.8 45.2 75.2 44.6

[18] 83.4 21.8 72.4 75.0 68.4 58.2 86.4 78.8 74.0 58.0 80.4 65.4 38.8 63.8 41.6 59.4 61.8 90.0 65.4

[19] 94.0 30.6 82.8 83.4 78.0 72.8 90.2 90.0 81.8 72.2 90.6 77.6 56.4 79.0 62.6 70.8 76.4 94.4 76.9

Ours- 97.2 38.4 94.6 85.8 87.2 78.2 91.4 92.6 84.6 82.8 93.6 82.2 61.6 87.4 66.8 77.4 78.8 98.2 82.2

Ours 100 49.0 99.4 96.8 94.4 90.2 99.6 99.4 95.2 93.2 98.8 92.6 72.0 95.4 88.0 93.4 89.8 100 91.5

S = 3 [Disp. Mean=20.8◦/45.8mm, Max=39.5◦/81.0mm]

[22] 8.1 0.3 28.8 9.0 12.3 9.9 14.1 16.8 4.8 19.2 17.1 11.7 2.4 12.9 3.9 22.2 11.1 37.8 13.5

[18] 47.4 7.2 26.4 35.7 28.5 17.4 43.2 42.0 40.5 25.2 47.1 30.3 12.0 31.2 14.1 24.6 25.2 45.9 30.2

[19] 70.6 12.6 42.6 48.9 41.4 30.6 54.4 55.9 53.2 38.7 63.7 43.2 27.9 44.1 22.8 36.6 35.7 59.2 43.5

Ours- 81.7 15.9 69.1 68.2 55.3 44.7 65.5 74.8 68.5 53.8 81.4 51.7 34.5 68.8 35.1 41.7 50.8 88.3 58.3

Ours 99.4 37.8 99.4 94.9 91.6 83.5 99.4 98.5 93.1 84.7 99.7 87.4 62.2 91.6 79.3 85.3 80.2 100 87.1

S = 4 [Disp. Mean=27.7◦/60.7mm, Max=54.6◦/97.6mm]

[22] 0.8 0.0 5.6 2.0 3.2 2.4 3.6 1.6 0.4 5.2 2.4 2.8 0.4 3.2 0.4 2.8 1.2 7.6 2.5

[18] 22.0 2.0 10.0 14.8 12.4 4.8 18.4 17.2 16.4 10.8 22.0 14.0 4.8 12.8 5.2 8.4 10.4 19.6 12.6

[19] 36.4 3.2 15.2 22.4 17.2 10.0 26.0 26.0 28.0 16.8 37.6 18.0 10.4 19.2 6.8 12.8 16.4 27.2 19.4

Ours- 50.0 8.0 34.8 42.0 28.8 15.2 36.4 41.2 39.2 22.0 55.2 24.8 12.4 38.0 10.0 16.4 22.0 56.0 30.7

Ours 96.8 31.6 97.6 93.6 85.6 77.6 98.0 97.6 84.8 80.0 98.8 82.0 46.8 86.0 60.0 80.8 74.0 99.6 81.7

1001 frames, from which a sub-sequence {0, S, 2S, 3S, · · · } is extracted for given
frame step S. The mean and maximum displacements for different S are included
in Table 1. Note that the objects in RBOT actually move very fast, so S = 4 is
indeed very challenging. For the compared methods, the results of S = 1 are from
the original paperw, and the results of S > 1 are computed with the authors’
code with default parameters. Therefore, only the methods with published code
are tested for S > 1. For our method, the same setting is used for all S.

As is shown, our method constantly outperforms previous methods for differ-
ent frame steps. More importantly, the margin of accuracy becomes larger and
larger with the increase of frame step, showing the effectiveness of our method
in handling large displacements. When S = 4, the average frame displacement
is 27.7◦/60.7mm, which is hard for local tracking methods. In this case, the
most competitive method SRT3D [19] can achieve only 19.4% accuracy, while
our method still obtains 81.7% accuracy. Note that this accuracy is even higher
than the accuracy of RBOT [22] for S = 1 (79.9%). We have also tested with
stricter 2cm-2◦ criteria and the tracking accuracy is 84.1%. As a comparison, in
this case, SRT3D [19] achieves only 78.7% accuracy.

12 X. Tian et al.

(a) init. (b) srt3d [19] (c) ours prob. (d) ours(local) (e) ours

Fig. 4. Visual examples and comparisons for S = 8.

Table 1 also shows the results of the proposed local tracking method (Ours -).
As can be found, our local method still significantly outperforms previous meth-
ods for large displacements. This is mainly attributed to the new search line
model, which makes our method more adaptive to displacements. Note that our
method does not even use coarse-to-fine search, while the compared methods all
exploit coarse-to-fine search for handling large displacements.

Figure 4 shows some challenging examples with S = 8. In the top row, the
translation displacement is very large. Thanks to the use of long search lines,
our local method can compensate for most translation errors and performs much
better than SRT3D. In the bottom row, the rotation displacement is large and the
probability map is very inaccurate, so both SRT3D and Ours - fail to converge
properly. In both cases, our non-local method can result in the correct pose.

Due to the space limitation, results of other variants (dynamic light, noisy,
occlusion) are put in the supplementary material. The trend is generally the
same as the regular variant when compared with previous methods.

6.2 Time Analysis

Runtime is measured on a machine with Intel(R) Core(TM) i7-7700K CPU.
The pre-computation needs to be done for each of the D directions (D = 16
in our experiments). We implement it in parallel with the OpenCV parallel -
for procedure for acceleration, which requires about 4 ∼ 7ms for each frame,
depending on the object size. As a comparison, a sequential implementation
requires 11 ∼ 20ms. After the pre-computation, the pose update iterations in
Eq. (8) can be executed very fast. For N = 200 as in our experiments, only
about 0.03ms is required for each pose update iteration.

Besides the pre-computation, no parallelism is used in other parts of our
code. For S = 1, 2, 3, 4, the average runtime per frame is about 10.8ms, 12.5ms,
21.7ms, 22.3ms respectively, achieving average about 50∼100fps. The runtime
varies a lot for different S because of the pre-termination and near-to-far strate-
gies in the non-local search. This is a desirable feature making our system adapt
better to different displacements. On the contrary, previous non-local methods

Large-disp. 3D Object Tracking 13

Table 2. Ablation studies to the non-local search (GP=grid pretermination, PP=path
pretermination, N2F=near-to-far search). The results are computed with S = 4 for the
regular variant. UpdateItrs is the average pose update iterations per frame.

naive +GP +PP +GP&PP +GP&PP&N2F local(Ours-)

UpdateItrs 1085 718 823 578 468 59

Time 47.7ms 34.0ms 37.9ms 27.6ms 22.3ms 9.7ms

Accuracy 85.1 83.5 84.6 82.7 81.7 30.7

such as particle filter usually require constant computation regardless of the
displacements.

6.3 Ablation Studies

Table 2 shows the ablation studies for the non-local search method. With the
naive grid search, more than 1000 pose update iterations are required for each
frame. Thanks to the proposed fast local optimization method, even the naive
search can achieve near real-time speed. The three strategies all contribute sig-
nificantly to higher efficiency. Using them all can reduce more than half of the
time with only about 3% sacrifice in accuracy. Moreover, compared with the
local method, it increases the absolute accuracy by more than 50% with only
about 12ms sacrifice in time.

Table 3 shows the ablation experiments for the parameters α and D. As
can be seen, α would take a great effect on the accuracy. Using α > 1 would
significantly reduce the accuracy due to the erroneous contour correspondences.
As shown in Figure 4, the foreground probability map of some objects is very
noisy. Actually, for larger α, the reduction of accuracy are mainly due to the
objects with indistinctive colors, as detailed in the supplementary material.

The number of directions D would also take significant effects. Surprisingly,
even with only the horizontal and vertical directions (i.e., D = 4), our local
method can still achieve 88.1% accuracy, which is competitive in comparison
with previous methods other than SRT3D.

Table 4 shows the ablation experiments for the parameters M and N . Our
method is very insensitive to the choice of M . We set M = 3 by default, but it
is surprising that our method could benefit from using a larger M , which will
increase the chance to find the correct correspondence, but at the same time
introduce more noise. This further demonstrates the robustness of our method
to erroneous contour correspondences.

The number of sampled contour points N also takes some effects on the
accuracy. From Table 3 we can find that N is not difficult to set. For N > 200,
the increase of N takes little effect on the accuracy. Note that the computation
of our method is proportional to the number of sample points, so smaller N may
be considered for applications that are more time-critical.

14 X. Tian et al.

Table 3. Ablation studies to α, D with Ours- and the regular variant.

α 0.125 0.25 0.5 0.75 1.0 1.5 D 4 8 12 16 20

Acc. 94.2 94.2 93.6 92.1 88.8 72.3 Acc. 88.1 92.8 93.7 94.2 94.3

Table 4. Ablation studies to M and N with the regular variant.

M 1 3 5 7 9 15 N 50 100 200 300 400

Acc. 93.6 95.2 95.2 95.6 95.7 95.6 Acc. 93.9 94.6 95.2 95.3 95.2

6.4 Limitations

Our current method is still limited in some aspects that can be further improved.
Firstly, the error function E′(.) is very simple, and it may be failed to recognize
the true object pose in complicated cases. For example, for the case of noisy
variant and S = 1, the mean accuracy is reduced from 83.4% to 83.2% after
adding the non-local optimization (see the supplementary material). Obviously,
this case should not occur if the error function is reliable.

Secondly, the same as previous texture-less tracking methods, only the ob-
ject shape is used for the pose estimation, so our method is not suitable for
symmetrical objects (e.g., soda in the RBOT dataset). For symmetrical objects,
additional cues such as interior textures should be considered for improvements.

Thirdly, since the correspondences are based on the probability map, the seg-
mentation method would take a great effect on the accuracy of our method. Our
current segmentation method is very simple considering the speed requirement,
using better segmentation (e.g., those based on deep learning) would definitely
improve the accuracy to a great extent.

7 Conclusions

In this paper we proposed a non-local 3D tracking method to deal with large
displacements. To our knowledge, this is the first non-local 3D tracking method
that can run in real-time on CPU. We achieve the goal with contributions in both
local and non-local pose optimization. An improved contour-based local track-
ing method with long precomputed search lines is proposed, based on which an
efficient hybrid non-local search method is introduced to overcome local mini-
mums, with non-local sampling only in the 2D out-of-plane space. Our method
is simple yet effective, and for the case of large displacements, large margin of
improvements can be achieved. Future work may consider extending the idea to
related problems, such as 6D pose estimation [27] and camera tracking [28].

Acknowledgements. This work is supported by NSFC project 62172260, and
the Industrial Internet Innovation and Development Project in 2019 of China.

Large-disp. 3D Object Tracking 15

References

1. Arvo, J.: Fast random rotation matrices. In: Graphics gems III (IBM version), pp.
117–120. Elsevier (1992)

2. Choi, C., Christensen, H.I.: Real-time 3d model-based tracking using
edge and keypoint features for robotic manipulation. In: IEEE Interna-
tional Conference on Robotics and Automation. pp. 4048–4055 (2010).
https://doi.org/10.1109/ROBOT.2010.5509171

3. Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., Fox, D.:
PoseRBPF: A Rao–Blackwellized Particle Filter for 6-D Object Pose
Tracking. IEEE Transactions on Robotics 37(5), 1328–1342 (Oct 2021).
https://doi.org/10.1109/TRO.2021.3056043

4. Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(7), 932–946 (2002).
https://doi.org/10.1109/TPAMI.2002.1017620

5. Harris, C., Stennett, C.: Rapid - a video rate object tracker. In: BMVC (1990)
6. Hexner, J., Hagege, R.R.: 2d-3d pose estimation of heterogeneous objects

using a region based approach. Int. J. Comput. Vision 118(1), 95–112
(may 2016). https://doi.org/10.1007/s11263-015-0873-2, https://doi.org/10.

1007/s11263-015-0873-2
7. Huang, H., Zhong, F., Qin, X.: Pixel-Wise Weighted Region-Based 3D Object

Tracking using Contour Constraints. IEEE Transactions on Visualization and Com-
puter Graphics pp. 1–1 (2021). https://doi.org/10.1109/TVCG.2021.3085197

8. Huang, H., Zhong, F., Sun, Y., Qin, X.: An Occlusion-aware Edge-Based Method
for Monocular 3D Object Tracking using Edge Confidence. Computer Graphics
Forum 39(7), 399–409 (Oct 2020). https://doi.org/10.1111/cgf.14154

9. Jain, P., Kar, P.: Non-convex optimization for machine learning. arXiv preprint
arXiv:1712.07897 (2017)

10. Kwon, J., Lee, H.S., Park, F.C., Lee, K.M.: A geometric particle filter for template-
based visual tracking. IEEE transactions on Pattern Analysis and Machine Intel-
ligence 36(4), 625–643 (2013)

11. Labbé, Y., Carpentier, J., Aubry, M., Sivic, J.: Cosypose: Consistent multi-view
multi-object 6d pose estimation. In: European Conference on Computer Vision.
pp. 574–591. Springer (2020)

12. Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid objects. Now
Publishers Inc (2005)

13. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: Deepim: Deep iterative matching for
6d pose estimation. In: Proceedings of the ECCV. pp. 683–698 (2018)

14. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality:
A hands-on survey. IEEE Transactions on Visualization and Computer Graphics
22(12), 2633–2651 (2016). https://doi.org/10.1109/TVCG.2015.2513408

15. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: Pixel-Wise
Voting Network for 6DoF Pose Estimation. In: IEEE/CVF Conference
on CVPR. pp. 4556–4565. IEEE, Long Beach, CA, USA (Jun 2019).
https://doi.org/10.1109/CVPR.2019.00469

16. Prisacariu, V., Reid, I.: Pwp3d: Real-time segmentation and tracking of 3d objects.
In: Proceedings of the 20th British Machine Vision Conference (September 2009)

17. Seo, B.K., Park, H., Park, J.I., Hinterstoisser, S., Ilic, S.: Optimal local searching
for fast and robust textureless 3d object tracking in highly cluttered backgrounds.
IEEE Transactions on Visualization and Computer Graphics 20(1), 99–110 (2014).
https://doi.org/10.1109/TVCG.2013.94

16 X. Tian et al.

18. Stoiber, M., Pfanne, M., Strobl, K.H., Triebel, R., Albu-Schaeffer, A.: A sparse
gaussian approach to region-based 6dof object tracking. In: Proceedings of the
Asian Conference on Computer Vision (2020)

19. Stoiber, M., Pfanne, M., Strobl, K.H., Triebel, R., Albu-Schäffer, A.: Srt3d: A
sparse region-based 3d object tracking approach for the real world (2021)

20. Sun, X., Zhou, J., Zhang, W., Wang, Z., Yu, Q.: Robust monocular pose
tracking of less-distinct objects based on contour-part model. IEEE Transac-
tions on Circuits and Systems for Video Technology 31(11), 4409–4421 (2021).
https://doi.org/10.1109/TCSVT.2021.3053696

21. Tjaden, H., Schwanecke, U., Schömer, E.: Real-time monocular segmentation and
pose tracking of multiple objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) Computer Vision – ECCV 2016. pp. 423–438. Springer International Pub-
lishing, Cham (2016)

22. Tjaden, H., Schwanecke, U., Schomer, E., Cremers, D.: A Region-Based Gauss-
Newton Approach to Real-Time Monocular Multiple Object Tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 41(8), 1797–1812 (Aug 2019).
https://doi.org/10.1109/TPAMI.2018.2884990

23. Tjaden, H., Schwanecke, U., Schömer, E.: Real-time monocular pose estima-
tion of 3d objects using temporally consistent local color histograms. In: IEEE
International Conference on Computer Vision (ICCV). pp. 124–132 (2017).
https://doi.org/10.1109/ICCV.2017.23

24. Vacchetti, L., Lepetit, V., Fua, P.: Combining edge and texture informa-
tion for real-time accurate 3d camera tracking. In: IEEE and ACM Inter-
national Symposium on Mixed and Augmented Reality. pp. 48–56 (2004).
https://doi.org/10.1109/ISMAR.2004.24

25. Wen, B., Bekris, K.: Bundletrack: 6d pose tracking for novel objects without in-
stance or category-level 3d models. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 8067–8074. IEEE (2021)

26. Wen, B., Mitash, C., Ren, B., Bekris, K.E.: se(3)-tracknet: Data-driven 6d pose
tracking by calibrating image residuals in synthetic domains. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). pp. 10367–10373.
IEEE (2020)

27. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: A Convolutional Neu-
ral Network for 6D Object Pose Estimation in Cluttered Scenes. In: Robotics:
Science and Systems XIV. Robotics: Science and Systems Foundation (Jun 2018).
https://doi.org/10.15607/RSS.2018.XIV.019

28. Zhang, J., Zhu, C., Zheng, L., Xu, K.: Rosefusion: random optimization for online
dense reconstruction under fast camera motion. ACM Transactions on Graphics
(TOG) 40(4), 1–17 (2021)

29. Zhong, L., Zhao, X., Zhang, Y., Zhang, S., Zhang, L.: Occlusion-Aware Region-
Based 3D Pose Tracking of Objects With Temporally Consistent Polar-Based Lo-
cal Partitioning. IEEE Transactions on Image Processing 29, 5065–5078 (2020).
https://doi.org/10.1109/TIP.2020.2973512

