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Fig. 1: Half face makeup (left) and step-by-step makeup (right).
Abstract. In this paper, we propose a region adaptive makeup transfer
GAN, called RamGAN, for precise region-level makeup transfer. Com-
pared to face-level transfer methods, our RamGAN uses spatial-aware
Region Attentive Morphing Module (RAMM) to encode Region Atten-
tive Matrices (RAMs) for local regions like lips, eye shadow and skin. Af-
ter that, the Region Style Injection Module (RSIM) is applied to RAMs
produced by RAMM to obtain two Region Makeup Tensors, γ and β,
which are subsequently added to the feature map of source image to
transfer the makeup. As attention and makeup styles are calculated for
each region, RamGAN can achieve better disentangled makeup transfer
for different facial regions. When there are significant pose and expres-
sion variations between source and reference, RamGAN can also achieve
better transfer results, due to the integration of spatial information and
region-level correspondence. Experimental results are conducted on pub-
lic datasets like MT, M-Wild and Makeup datasets, both visual and
quantitative results and user study suggest that our approach achieves
better transfer results than state-of-the-art methods like BeautyGAN,
BeautyGlow, DMT, CPM and PSGAN.
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1 Introduction

With the development of the times, human beings, especially women are paying
more and more attention to their appearance and willing to spend a lot of time
and money on it. Among all facial beautification techniques, makeup is one of
the most convenient and popular way, which usually applies some cosmetics like
foundation, eye shadow, lipstick and so on, to generate good-looking appearance.

As facial makeup has become more and more popular, a large number of
makeup transfer methods have been proposed in recent years. Makeup transfer
is a computer vision task to render a non-makeup face image a makeup style
without changing the face identity. Most of existing methods employ Genera-
tive Adversarial Networks (GANs) [4–6, 8, 18, 26] to learn a mapping from non-
makeup face image domain to the makeup one. CycleGAN [28] adopted cycle
consistency loss to learn the mapping between two domains. BeautyGAN [14]
adopted the dual input/output architecture, which can perform makeup transfer
and removal simultaneously. It also introduced a pixel-level histogram matching
loss to improve the appearance of the lips, eye shadow and skin regions. Beauty-
Glow [1] used the Glow [13] framework to perform makeup transfer. LADN [9]
adopted multiple and overlapping local adversarial discriminators for heavy fa-
cial makeup. DMT [25] applied two encoders to decompose the input images into
identity codes and makeup codes, and produced various outputs by combining
the two codes. Recently, CPM [19] successfully achieved color/pattern makeup
transfer with a color/pattern transfer branch. However, most of these methods
have a shortcoming, i.e., they can only work well on frontal facial images since
they lack a specific module to focus on the spatial information of the images.
When these methods are directly applied to the unaligned images for makeup
transfer, the generated results are always far from satisfactory.

The Attentive Makeup Morphing (AMM) module proposed by PSGAN [11]
tried to model how a pixel in the source is morphed from the reference image,
and integrated the spatial information by including the relative positions with
landmarks and the facial regions of each pixel into the attention matrix. As an
extension, PSGAN++ [15] equipped an Identity Distill Network (IDNet) with
the AMM module to achieve makeup transfer and removal simultaneously. How-
ever, although PSGAN and PSGAN++ can achieve makeup transfer between
faces with large variations, they can not achieve accurate region-level makeup
transfer, i.e., they cannot well disentangle each region when implementing partial
makeup transfer.

Therefore, we propose RamGAN, which consists of two core architectures,
i.e., Region Attentive Morphing Module (RAMM) and Region Style Injection
Module (RSIM), for region-level makeup transfer. Fig. 1 shows four examples of
region-level makeup results transferred by our approach. In the first row of the
left figure, the makeup of the reference is tranferred to the left face of source
and one can observe that RamGAN precisely preserves the right face of source.
In the second row of the left figure, even when there is significant pose dif-
ferences between source and reference, RamGAN still successfully transfers the
makeup of reference to the lower part of source. In the right figue, we can observe
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that RamGAN can precisely transfer the makeup for local regions like skin, eye
shadow and lip.

Fig. 2 shows the main differences between our RamGAN and PSGAN. First
of all, while PSGAN learns a relationship between the styles (γ and β) of refer-
ence and source, our RamGAN does not assume such a relationship and directly
learns γ and β applied to source. To integrate spatial constrain, the attention
matrix in AMM is calculated by measuring the similarity between pixels of
source and reference by weighting both the relative position to 68 landmarks
and the extracted visual features. However, when faces are occluded, some of
the landmarks might not be accurately detected, which will significantly affect
the accuracy of attention map. Instead, the attention maps of RamGAN, Re-
gion Attentive Matrices (RAMs), are calculated for each region, based on visual
features only. The makeup transfer of our approach is thus more robust against
large pose differences. Based on the RAMs, two Region Makeup Tensors (RMTs)
are learned to transfer the style of source face.

In addition, in order to make sure that the regions are translated separately,
that is, the translation of certain region does not affect other regions, we use
Region Matching Loss (RML) and Background Loss to measure the similarity
between the corresponding regions of no-makeup and local/global translated
images.

Our contributions are mainly summarized as follows:
– We propose a makeup transfer framework based on spatial region attention,

called RamGAN, to achieve robust makeup transfer between faces with large
pose variations and accurate region transfer.

– The proposed Region Attentive Morphing Module (RAMM) adaptively and
separately learns the makeup information through three Region Attentive
Matrices (RAMs) and successfully achieves region-level makeup transfer.

– We propose Region Style Injection Module (RSIM) to accurately transfer
makeup information of reference faces to the corresponding areas of non-
makeup faces.

– Experimental results quantitatively and qualitatively demonstrate that our
RamGAN framework achieves the start-of-the-art performance.

2 Methodology

2.1 Problem Formulation

Let X ⊂ R3×H×W and Y ⊂ R3×H×W be the source image domain and the
reference image domain. Note that the pair of makeup and non-makeup images
is not available, i.e., the identities of source and reference images are different.
Given a non-makeup sample x ∈ X and a makeup sample y ∈ Y, the goal of the
proposed RamGAN is to learn a mapping G : x → ỹx, where ỹx ∈ Y possesses
the makeup style of y and the identity of x.

2.2 Network Structure

As shown in Fig. 2 (b), our proposed framework mainly consists of four modules,
Feature Extractor, Region Attentive Morphing Module (RAMM), Region Style
Injection Module (RSIM) and Makeup Transfer Decoder.
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Fig. 2: An overview of PSGAN [11] (a) and our proposed RamGAN (b) .

Feature Extractor. As shown in Fig. 2 (b), the Feature Extractor consists
of two encoder-bottleneck architectures, i.e. a source image encoder FEx and a
reference image encoder FEy, which can extract the makeup-related features,
e.g., the color of face, the size of eyes, etc. And these makeup-related features
are fed to the RAMM subsequently. Note that the FEx and FEy share the same
architecture, but do not share parameters. Mathematically, it is formulated as:

fx = FEx(x), fy = FEy(y), (1)

where fx ∈ RC×H×W and fy ∈ RC×H×W are the source and reference feature
map extracted by Feature Extractor. C, H and W are the number of channels,
height and width of the feature map. FEx and FEy represent source image
Feature Extractor and reference image Feature Extractor, respectively.

Region Attentive Morphing Module. Inspired by AMM module of PS-
GAN [11], we propose Region Attentive Morphing Module (RAMM) based on
attention mechanism [2,3,22,24,27], which produces attention matrix for each of
the facial regions like skin, lip and eye shadow. Fig. 2 shows the main differences
between AMM and our RAMM. The attention matrix of AMM models the re-
lationship between each pixel in the source with all pixels in the reference. The
relative positions with 68 landmarks and the facial regions of each pixel are also
considered in AMM to integrate spatial information, such that the style of ref-
erence is transferred to that of closely related pixels in source, in terms of both
spatial position and visual similarity. The attention matrix is then multiplied
with the style features (γ and β) of reference and applied to the source face to
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Fig. 3: Detailed architecture of the proposed RAMM and RSIM.

transfer the makeup. Different with AMM, our RAMM extracts style features
and learns attention matrix for each of the facial region, the style features of ref-
erence face regions are then multiplied with the corresponding attention matrix
and input to the RSIM (Region Style Injection Module) to generate the style
codes (γ and β) to transfer the makeup to source face.

As shown in the upper part of Fig. 3, our RAMM has 4 inputs, i.e., source
feature map fx, reference feature map fy, source mask mrk

x and reference mask
mrk

y . The source feature map and reference feature map are element-wisely mul-
tiplied with corresponding facial parsing masks to get two regional feature maps.

frk
x =

(
fx ⊙mrk

x

)
, frk

y =
(
fy ⊙mrk

y

)
. (2)

Here, ⊙ denotes element-wise product, frk
x and frk

y indicate the source regional
feature map and reference regional feature map, respectively, mrk

x and mrk
y rep-

resent the facial parsing mask of source and reference image, respectively. The
superscript rk represents different regions of face and k ∈ {skin, lip, eye shadow}.
Note that different definitions of regions can be used. Specially, when we perform
global makeup transfer, the facial mask is defined as mglobal

x = mrskin
x +m

rlip
x +

m
reye
x .
In the following branch, three Region Attentive Matrices (RAMs) are pro-

duced by multiplying two regional feature maps, which is shown in the upper
part of Fig. 3. Formally, the RAMs can be expressed as:

Ark = R(frk
x )T ⊗R(frk

y ), (3)

where ⊗ andR denote matrix multiplication and reshape operation, respectively,
and Ark represents the Region Attentive Matrices for different regions.
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Several differences exist between AMM of PSGAN and the proposed RAMM
when calculating the attention matrix. First, both facial landmarks and facial
parsing masks are required by AMM to integrate the spatial information into
the attention matrix. The proposed RAMM only needs the facial masks. To
integrate spatial constrain into the attention, AMM calculates the similarity
between pixels of source and reference by weighting both the relative position
to 68 landmarks and extracted visual features. They tested different weights
and found 0.01 to be the best value, which actually emphasizes much more
on the spatial positions. However, when there are significant pose variations
between source and reference faces, some of the landmarks might be occluded
and can’t be detected. In this case, the position correspondence between source
and reference might not be well established, which will significantly affect the
accuracy of attention map. In contrast, our attention map is calculated for each
region, based on visual features only. As faces are symmetric and the makeup
styles of pixels are consistent within the same region, the makeup can still be
successfully transferred to the corresponding regions when there are large pose
differences between source and reference.

Fig. 4 shows the attention maps generated by PSGAN and our RamGAN for
two pairs of source and references. Due to the pose differences, PSGAN wrongly
matches the pixels located on the upper lip and right eyes of source face to mouth
and the centers of eyes in reference face, respectively. As a result, the eye shadow
and lip color of the face generated by PSGAN are significantly different with that
of reference. In contrast, our RamGAN can accurately attend the makeup style
to that of the same region and succesfully transfer the makeup style of each
region.

Fig. 4: The visualization of attention map on reference image. Given a specific
red point in source image, we calculate the attentive values for pixels in the
reference face and visualize the attention map.

After obtaining the RAMs, a softmax layer is subsequently applied to RAMs,
which enables the attentive values in RAMs become more gathered [11]. Finally,
the RAMM applies RAMs to the regional reference feature with matrix multi-
plication to produce the Region Attentive Tensor (RAT), which is shown in the
red dashed box in the Fig. 3. The RAT consists of three Attentive Tensors, each
of which has C channels with spatial-aware attentive values for different regions.
The process can be expressed as:
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T rk = softmax
(
Ark

)
⊗R(frk

y ), (4)

where T rk represents Region Attentive Tensor for different regions, softmax rep-
resents softmax activation layer.

Region Style Injection Module. In order to accurately control the ap-
plication of makeup to the target region, we introduce RSIM module. It first
applies the RAT produced by RAMM to the source mask mrk

x by element-wise
multiplication and the output is concatenated along the channel dimension. The
lower part of Fig. 3 shows the process of multiplication and concatenation. The
output Makeup Tensor is fed into two 1×1 convolution layers separately to pro-
duce two Region Makeup Tensors (RMTs), γ ∈ RC×H×W and β ∈ RC×H×W .
The process can be defined as:

MT = Cat
(
Conv(T rk)⊙mrk

x

)
γ = Convγ(MT ), β = Convβ(MT ),

(5)

where MT ∈ R3C×H×W denotes Makeup Tensor, Cat and Conv represent the
concatenation and 1×1 convolution, respectively. Then γ and β are applied to the
source feature map fx to get the transferred feature map by matrix multiplication
and addition. More specifically, the transferred feature map is computed by

ft = γfx + β, (6)

where ft represents the transferred feature map.
Note that the makeup matrices γ′ and β′ of PSGAN are duplicated and

expanded along the channel dimension to produce the makeup tensors Γ ′ ∈
RC×H×W and B′ ∈ RC×H×W . It is unreasonable because all facial regions shared
the same makeup features and thus the model has trouble in region-level makeup
transfer. Different to PSGAN [11], our RMTs γ ∈ RC×H×W and β ∈ RC×H×W

are tensors with spatial channel. We believe that makeup transfer is a region-to-
region task and each channel of γ or β should focus on different facial regions.
In Fig. 5 (b), we visualize several channels of γ and β. From the figure, we can
observe that different channels of γ or β response to different regions, i.e. our
RMTs γ and β contain more spatial-aware information for region-level makeup
transfer.

Makeup Transfer Decoder. MTDec utilizes a bottleneck-decoder archi-
tecture like StarGAN [6], which is a symmetric model of Feature Extractor. The
transferred feature map ft produced by RSIM is fed to the MTDec to generate
the makeup result ỹx, which can be expressed as:

ỹx = MTDec(ft). (7)

2.3 Objective Function

Adversarial Loss. We employ adversarial loss to improve the quality of gener-
ated images. Given a source image domain X and a reference image domain Y,
we use two discriminators DX and DY to distinguish generated images and real
images and thus help the generator G synthesize realistic outputs. Therefore,
the adversarial loss of discriminators and generator can be computed by
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Fig. 5: (a) Source and reference images. (b) Example channels of γ and β. (c)
An example of Region Matching Loss.

Ladv
D = Ex∼PX [logDX (x)] + Ey∼PY [logDY(y)]

+ E(x,y)∼P(X ,Y)
[log (1−DX (G(y, x)))]

+ E(x,y)∼P(X ,Y)
[log (1−DY(G(x, y)))]

(8)

Ladv
G = E(x,y)∼P(X ,Y)

[log (DX (G(y, x)))]

+ E(x,y)∼P(X ,Y)
[log (DY(G(x, y)))] .

(9)

Makeup Loss. We use the makeup loss proposed in [14] to provide a coarse
guidance for makeup transfer. Specifically, it employs a Histogram Matching
(HM) function to adjust the color histogram distribution of the transferred image
to match the reference one in each facial regions like eye shadows, lips, and facial
skin. The makeup loss is a weighted sum of the regional losses

Lmake
G = λlipsLlips + λeyesLeyes + λskinLskin, (10)

where λskin, λeyes and λlips are tunable hyper-parameters. Specifically, each loss
item is a local histogram loss, which can be written as:

Lk =
∥∥ỹx ⊙mrk

x −HM
(
ỹx ⊙mrk

x , y ⊙mrk
y

)∥∥
2
. (11)

Region Matching Loss. As shown in Fig. 5 (c), given a source image
x, a global makeup image ỹx and a region makeup image ỹrkx . We use Region
Matching Loss (RML) [16,17] to measure the similarity between the kth regions
of ỹx and ỹrkx , and the similarity between other regions of x and ỹrkx . Then, the
RML is defined as follows:

Lrm
G = ∥ỹrkx ⊙mrk

x , ỹx ⊙mrk
x ∥1 + ∥ỹrkx ⊙ (1−mrk

x ) , x⊙ (1−mrk
x )∥1 , (12)

where 1−mrk
x inverts the mask to get the unrelated regions.

Background Loss. When performing region-level makeup transfer, we want
to only change the target region, while keeping the other regions including hair,
background, etc., unchanged. For this reason, we define the background loss as
below

Lbg
G = ∥ỹx ⊙ (1−mrk

x ) , x⊙ (1−mrk
x )∥1 . (13)



RamGAN: Region Attentive Morphing GAN 9

Cycle Consistency Loss. Since we are performing image-to-image trans-
lation with unpaired images, we need an additional loss to ensure that the un-
related regions in source image are not modified. Here, we introduce the cycle
consistency loss proposed in [28] and define the loss function as:

Lcyc
G = ∥G(G(x, y), x)− x∥1 + ∥G(G(y, x), y)− y∥1. (14)

Perceptual Loss. Perceptual loss aims to preserve the identity between
source and generated images. We use the VGG-16 model [21] pre-trained on
ImageNet dataset [7] to compare the activation features of source image and
generated image in the hidden layer. The perceptual loss can be expressed as:

Lper
G = ∥Fl(G(x, y))− Fl(x)∥2 + ∥Fl(G(y, x))− Fl(y)∥2 , (15)

where Fl(·) denotes the output of the lth layer of the VGG-16 model.
Total Loss. The total loss for discriminator and generator of our method

can be expressed as:

LD = λadvL
adv
D

LG = λadvL
adv
G + λmakeL

make
G + λrmLrm

G

+λbgL
bg
G + λcycL

cyc
G + λperL

per
G .

(16)

3 Experiments

3.1 Dataset

Makeup Transfer dataset. We train our RamGAN model on the Makeup
Transfer (MT) dataset [14], which contains 1,115 non-makeup images and 2,719
makeup images. Most of these images consist of aligned faces with a resolution
of 361×361 and provide face segmentation masks. We follow the strategy of [11]
by randomly selecting 100 non-makeup and 250 makeup images as the test set
and use the remaining images for training. For testing, we transfer the 100 non-
makeup images with reference to each of the 250 makeup images and in total
25,000 makeup images can be generated for quality assessment.

Makeup dataset. LADN [9] provides Makeup dataset, which contains 333
non-makeup images, 302 makeup images and 115 extreme makeup images with
great variances on makeup color, style and region coverage. We randomly select
200 non-makeup images and 200 makeup images for experiments and in total
40,000 makeup images can be generated for quality assessment.

Makeup-Wild dataset.Makeup-Wild [11] (M-Wild) dataset has 403 makeup
images and 369 non-makeup images. Most of these images are faces with large
pose variations. We randomly select 200 non-makeup images and 200 makeup
images for experiments.

CPM-Real dataset. CPM-Real [19] dataset has 3895 real face images. Most
of these images have heavy and extreme makeup, including facial gems, face
paintings, hennas, and festival makeups. We select 10 non-makeup images and
10 references with light makeup for user study.
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3.2 Implementation Details

In all experiments, we resize the images to 256×256, and use the relu 4 1 feature
layer of the pre-trained VGG16 for calculating the perceptual loss. The hyper-
parameters of different loss functions are set as λadv=1, λmake=0.2, λrm=5,
λbg=5, λcyc=10, λper=0.005. We use Adam [12] as the optimizer, the maximum
epochs for model training is 50, the learning rate is 0.0002, and the batch size is
4. We implement RamGAN with Pytorch [20] and conduct all the experiments
on a NVIDIA Tesla V100 GPU.

3.3 Qualitative Results

We compare our proposed method with the general image-to-image translation
method, CycleGAN [28] and several state-of-the-art makeup transfer methods
like BeautyGAN [14], BeautyGlow5 [1], PSGAN [11], DMT [25] and CPM [19].

Fig. 6 compares the qualitative result of RamGAN with the above methods
on frontal face makeup transfer. The results generated by CycleGAN have an
unnatural color significantly different with the source image. Both BeautyGAN
and CPM produce artifacts on the background or forehead of generated images.
BeautyGlow seems to have a satisfactory result, but the color of faces, especially
lips and skin, is not similar to the reference image. Comparatively, the results
of PSGAN and DMT are more realistic than other methods. However, the eye
shadows generated by PSGAN are all black, which are different with references.
Only the results of DMT are comparable to our proposed RamGAN. However,
DMT fails to achieve the makeup transfer when source and reference faces have
a large difference in pose.

Fig. 6: Comparasion of frontal face makeup transfer with several state-of-the-art
methods.

We also conduct an evaluation on makeup transfer between faces with large
pose variations in Fig. 7. Since these methods are not equipped with a specific
module to learn the spatial information, the makeup is applied randomly to the
face. For example, in the first row of Fig. 7, DMT transfers the lip region into an
unnatural patch. And in the second row, the makeup image generated by DMT
is irrelevant to reference. In the 5th column of Fig. 7, the faces generated by
CPM are both deformed and blurry. Although the results generated by PSGAN

5 As the source code of BeautyGlow is not available, we directly used the makeup
transfer results posted on https://github.com/BeautyGlow/BeautyGlow.github.

io for the same source and reference images for comparison.

 https://github.com/BeautyGlow/BeautyGlow.github.io
 https://github.com/BeautyGlow/BeautyGlow.github.io


RamGAN: Region Attentive Morphing GAN 11

are relatively satisfactory, the makeup styles are not accurately transferred to
the appropriate regions, like eye shadow and lips, etc. As we analyzed above, the
AMMmodule takes the relative position as the primary concern when calculating
the attention matrix, which is not robust when the face is occluded.

Fig. 7: Makeup transfer between faces with large pose differences.

To further illustrate that our method can not only perform global makeup
transfer, but also has a strong regional controllability. We now compare step-
by-step makeup transfer results with PSGAN [11]. In the first row of Fig. 8,
when PSGAN performs step-by-step makeup transfer, especially changing skin
color, the color of the area around eyes and lips changes simultaneously. This also
proves that PSGAN cannot well disentangle each region. Though the AMMmod-
ule enables pose and expression transfer, PSGAN can’t perform well in region-
level makeup transfer. In the second row of the figure, the proposed RamGAN
succesfully achieves the step-by-step makeup transfer with a smoother and more
natural transition for each region, even when there are large pose between source
and reference faces.

Fig. 8: Step-by-step makeup results.

3.4 Quantitative Results

In this section, we demonstrate a qualitative comparison of the proposed Ram-
GAN and other methods. We first compare Structural Similarity Index (SSIM)
[23] score and Fréchet Inception Distance (FID) [10] with BeautyGAN, DMT,
CPM and PSGAN on MT [14] test set, M-Wild dataset [11] and Makeup [9]
dataset. Then, we conduct a user study on MT test set, M-Wild dataset, Makeup
dataset and CPM-Real [19] datasest, respectively. The result images generated
by all methods are aligned to the same resolution (256× 256).

SSIM. Structural Similarity Index (SSIM) [23] is a metric to measure the
structural similarity (illumination, reflectance etc.) of two images. We use the
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SSIM metric (bigger is better) to evaluate the quality of the makeup images
by comparing them with source images. The average score for each method is
reported in Tab. 1. The SSIM score of our method on MT test set, M-Wild
dataset and Makeup dataset is 0.94, 0.95 and 0.95, respectively, which are
higher than all other methods.

FID. Different from SSIM metric, Fréchet Inception Distance (FID) [10] is
usually used to evaluate the quality and realness of the generated images. There-
fore, we compute the FID score (smaller is better) between generated images and
source images to measure our method. The result is shown in Tab. 1. We can
see that our method achieves the lowest FID score among all methods.

Table 1: The SSIM/FID of different methods.
Dataset BeautyGAN DMT CPM PSGAN Ours
MT 0.85/31.80 0.81/22.23 0.62/33.06 0.90/17.01 0.94/13.20

M-Wild 0.83/50.28 0.82/30.21 0.63/56.76 0.85/22.51 0.95/16.70
Makeup 0.86/38.21 0.90/21.16 0.66/43.68 0.90/14.83 0.95/10.67

User Study. To further measure the quality of images generated by our
RamGAN, a user study is conducted among 65 volunteers (38 females and 27
males) aged from 20 years old to 30 years old. We randomly choose 10 non-
makeup images and 10 makeup images from each of the MT test set, M-Wild
dataset, Makeup dataset and CPM-Real dataset for experiments. For each of the
40 non-makeup images, the 40 makeup images are used as references and input
to our RamGAN, BeautyGAN, DMT, CPM and PSGAN to generate in total
1,600 makeup transferred faces, for each model. We further divided the 1,600
makeup transfer tasks into three categories, i.e. frontal faces, faces with large
pose variations and step-by-step transfer. Each volunteer was presented with the
makeup faces generated by different approaches for each category of the tasks
and asked to choose the best one, in terms of both image quality and identity
preservation. For each category of task, four results (one from each dataset)
transferred by each approach, 4 × 5 = 20 results, are randomly selected and
shown to each of the volunteers. We in total collected 65 questionaires and each
questionaire contain the best models chosen by volunteer for each category of
the tasks.

Table 2: The ratio selected as best (%).
Makeup transfer tasks BeautyGAN DMT CPM PSGAN Ours

Frontal faces 0.18 0.20 0.18 0.15 0.29
Faces with large pose variations 0.03 0.17 0.03 0.10 0.67

Step-by-step — — 0.08 0.15 0.77

Tab. 2 shows the ratio of each model chosen by volunteers and it shows that
our RamGAN is the most frequently chosen model across all of the different
tasks. Especially for makeup transfer across large pose variations and stey-by-
step transfer, the ratio of our approach chosen by volunteers is significantly
higher than other competing approaches. As the stey-by-step makeup transfer
resuts of BeautyGAN and DMT are far from satisfactory, we don’t include them
into the questionaire for the step-by-step task.
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3.5 Ablation Studies

We now test the effectiveness of the proposed RAMM and Region Matching Loss
(RML). As presented in previous sections, our RAMM mainly enables region-
level transfer and RML further reduces the entanglement of different regions to
the target region. Fig. 9. shows the results of two examples for our RamGAN with
and without the proposed RAMM and RML. As shown in the 4th column, the
forehead of the lady’s face in the first row and the mouth region in the second row
are also changed when RamGAN without RML is trying to transfer the makeup
of the mouth and eye regions, respectively. Instead, the target regions transferred
by RamGAN with RML are much more precise and other regions are preserved
much better. In the 5th column, there are obvious transition boundaries in the
makeup faces transferred by RamGAN without RAM, which clearly justifies the
usefulness of the proposed module.

Fig. 9: The performance of RamGAN without RML (4th column) and without
RAMM (5th column).

We now show the quantitative results of SSIM and FID for RamGAN without
RAMM and RML in Tab. 3. One can observe from the table that RamGAN
equipped with the two modules achieves much better results.

Table 3: The SSIM and FID of ablation study.
Metric Dataset W.O. RAMM W.O. RML RamGAN

MT 0.72 0.61 0.94
SSIM M-Wild 0.73 0.63 0.95

Makeup 0.71 0.69 0.95

MT 30.21 45.75 13.20
FID M-Wild 35.73 50.83 16.70

Makeup 32.36 16.19 10.67

3.6 More Visual Results

Based on our RAMM and RSIM, we can actually perform mixed style transfer by
transferring different regions to the styles of different faces. Given three reference
images, y0, y1, y2 ∈ Y, we can obtain the corresponding makeup-related features
fy0

, fy1
and fy2

extracted by Feature Extractor, respectively. Based on the facial
region masks, mrskin

y0
, m

rlip
y1 and m

reye
y2 , we can obtain the corresponding regional
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feature maps frskin
y0

, f
rlip
y1 and f

reye
y2 with Eq. (2). Thereafter, different regions of

a source face can be transferred to the styles of corresponding regions encoded
in the three different feature maps. For example, in middle of the 2nd row of
Fig. 10, the skin, lips and eye shadow of the source image are transferred to the
styles of corresponding regions of the three references shown in the first row,
respectively. The last facial image in the 2nd row shows the results of mixed
transfer by integrating the styles of three regions of different reference faces, i.e.
the skin, lips and eye shadow of the face are similar to the styles of the three
reference faces shown in the first row, respectively. More results of interpolation
between difference references can be found in the supplementary.

Fig. 10: The mixed trasfer of different makeup styles. First rows are different
styles. Second rows are source image, region makeup transfer results (skin, lips
and eye shadow), and mixed result.

4 Conclusions
In this paper, we discuss the makeup transfer task, which aims to render a
non-makeup face image a makeup style without changing the face identity. We
propose a region attentive morphing generative adversarial network (RamGAN)
for facial makeup transfer. Our RamGAN can achieve state-of-the-art results,
which performs region-level makeup transfer and makeup transfer between faces
with large pose variations. Extensive experiments on various datasets further
demonstrate that our method significantly outperforms the latest makeup trans-
fer approaches e.g. BeautyGAN, BeautyGlow, DMT, CPM and PSGAN. More-
over, our method has a great advantage in precise region control. Therefore,
we believe that our method can be applied to other regional image-to-image
translation task.
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