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Abstract. Denoising Diffusion Probabilistic Model (DDPM) is able
to make flexible conditional image generation from prior noise to real
data, by introducing an independent noise-aware classifier to provide
conditional gradient guidance at each time step of denoising process.
However, due to the ability of the classifier to easily discriminate an
incompletely generated image only with high-level structure, the gradient,
which is a kind of class information guidance, tends to vanish early,
leading to the collapse from conditional generation process into the
unconditional process. To address this problem, we propose two simple
but effective approaches from two perspectives. For sampling procedure,
we introduce the entropy of predicted distribution as the measure of
guidance vanishing level and propose an entropy-aware scaling method
to adaptively recover the conditional semantic guidance. For the training
stage, we propose the entropy-aware optimization objectives to alleviate
the overconfident prediction for noisy data. On ImageNet1000 256×256,
with our proposed sampling scheme and trained classifier, the pretrained
conditional and unconditional DDPM model can achieve 10.89% (4.59
to 4.09) and 43.5% (12 to 6.78) FID improvement, respectively. Code is
available at https://github.com/ZGCTroy/ED-DPM.

Keywords: Denoising Diffusion Probabilistic Model · Conditional Gen-
eration · Distribution Entropy · Gradient Vanishing

1 Introduction

Conditional image generation, usually class conditional, aims to generate the
specific class of high-quality images. There are many generative models that
are able to make high-quality conditional generation based on the joint training
scheme, such as Generative Adversial Networks (GAN) [7,2] or Variational
Autoencoder (VAE) [27,38]. However, when the condition requirement is changed,
the generative models will be retrained, which is very inconvenient.

⋆ The first two authors contributed equally to this paper.
⋆⋆ The corresponding author is Xi Li.

https://github.com/ZGCTroy/ED-DPM
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Fig. 1: The visualization of denoising sampling process. The classifier gradient,
a kind of class information in conditional generation, quickly converge to 0 in
the previous method. It will lead to the collapse from conditional generation to
unconditional generation, while our method recovers the gradient guidance and
succeed to generate fine-grained features in the subsequent iterations.

Denoising Diffusion Probabilistic Model (DDPM) [10,23,33] is a class of
iterative generation models, which has achieved remarkable performance in
unconditional image generation recently. The flexibility of DDPM [6,32] is that
it can be easily extended to conditional variants by introducing an independent
noise-aware classifier. Recent researches modeled the prior denoising distribution
by training an unconditional DDPM, following the training scheme of Denoising
Score Matching [39], and computed likelihood score by backwarding the classifier
gradient. Dhariwal et al. [6] further proposed fixed scaling factor to improve
the predicted probability of generated samples for DDPM, achieving superior
performance than GAN on several image generation benchmarks. In conditional
generation process of DDPM, by backwarding the gradient of classification
probability to image, the classifier provides high-level semantic information in
the early stage of iterations, and gradually strengthens fine-grained features in
the subsequent iterations, both of which are indispensable. However, there exists
a huge gap between discriminating the class of a image and generating a specific
class of image with fine-grained textures. As shown in Fig. 1, the predicted
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distribution of the classifier for noisy images tends to quickly converge to the
desired class distribution, which is one-hot distribution, leading to the early
vanishing of conditional gradient guidance. This is because that the incompletely
generated image, which is still a noisy image and lacks fine-grained features, can
be easily classified in the middle of denoising process. In this way, the image
is considered to have been completely generated and will no longer be guided
by classifier gradient containing class information. As a result, the conditional
generation process will degrade into an unconditional generation process in the
later stage.

Therefore, our motivation is to enable the classifier to continuously give
conditional guidance throughout the entire denoising process. We propose two
simple but effective schemes from the procedure of sampling and the design of
classifier training.

From the perspective of sampling procedure, we focus on how to detect the
gradient vanishing and rescale the gradient to avoid the existence of gradient
vanishing or recover the gradient when the vanishing does happen. We propose
Entropy-Driven conditional Sampling (EDS) method, which is able to adaptively
measure the level of gradient vanishing and rescale the gradient guidance to a
appropriate level. In design of training classifier, we propose Entropy-Constraint
Training (ECT), which will penalize the classifier when it gives a overconfi-
dent classification probability to a generated noisy image, thus constraining the
classifier to provide more gentle guidance.

Our contributions can be summarized as follows:

• We are the first to discover the problem of vanishing gradient guidance for
DDPM-based conditional generation methods, and point out that category
information guidance should be continuously provided throughout the entire
generation process.

• We propose EDS to alleviate the vanishing guidance by dynamically measuring
and rescaling gradient guidance. At the classifier training stage, to alleviate
the vanishing gradient caused by one-hot label supervision, we utilize discrete
uniform distribution to build an entropy-aware optimization term, which is
Entropy-Constraint Training scheme (ECT).

• We conduct experiments on ImageNet1000 and achieve state-of-the-art FID
(Fréchet Inception Distance) results at various resolutions. On ImageNet1000
256×256, with our proposed sampling scheme and trained classifier, the
pretrained conditional and unconditional DDPM model can achieve 10.89%
(4.59 to 4.09) and 43.5% (12 to 6.78) FID (Fréchet Inception Distance)
improvement, respectively.

2 Related Work

2.1 Denoising Diffusion Probabilistic Model

Denoising diffusion probabilistic models (DDPM) is the latest generation model
which achieve superior generation performance than traditional generative models
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like Generative Adversial Networks (GAN) [8,7,2], Variational Autoencoders
(VAE) [38,25,27] on several benchmarks about unconditional generation. Its key
idea is to model the diffusion process based on total T time steps, which adds
noise gradually to the clean data, and its reverse process, which denoises the
white noise into the clean sample. Accordingly, its diffusion process is modeled
as a fixed Markov Chain and its transition kernel is formulated as:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

where β1, ..., βT are the fixed variance parameters, which are not learnable.
According to the transition kernel above, when the clean data x0 is given, the
noisy data xt can be sampled with a closed-form distribution:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I), (2)

where αt = 1−βt and ᾱt =
∏t

s=1 αs. When t is close to T , xT can be approximated
as a Gaussian distribution.

Given a prior diffusion process, DDPM aims to model its reverse process to
sample from the data distribution. The optimization objective of the reverse
transition can be derived from a variational bound [13]. Thus, DDPM introduced
the variational solution [13] and assumed that its reverse transition kernel also
subjects to Gaussian distribution, which is the same as the diffusion process.
In this way, the generation process parameterized the mean of the Gaussian
transition distribution and fixed its variance as follows:

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
t I)

µθ(xt) =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt)),
(3)

where ϵθ(xt) is a noise estimator modeled by a neural network. The variance is
designed as the hyperparameters for training diffusion models.

Recently, there were some researches [36,37,34,6] which indicated that the
noise estimator can be regarded as an approximation of score function so that
the sampling process is equivalent to solving a stochastic differential equation.
Based on above, Song.et [34] proposed an effective sampling process that shares
the same training objectives as DDPM and its corresponding denoising process,
which is also the iteration solution to solve the stochastic differential equation, is
designed as follows:

xt−1 =
√
αt−1fθ(xt, t) +

√
1− αt−1 − σ2

t ϵθ(xt) + σ2
t z, (4)

where fθ(xt, t) is the prediction of clean data x0 when noisy data xt is observed
and noise prediction ϵθ(xt) is given. The fθ(xt, t) can be expressed as:

fθ(xt, t) =
xt −

√
1− αtϵθ(xt)√

αt
, (5)

When the variance σt is set to 0, the sampling process becomes deterministic. At
the same time, the non-Markovian diffusion process [34] allows the generation
quality to remain unchanged within fewer denoising steps, which is called the
DDIM sampling process.
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Fig. 2: Pipeline for Entropy-driven Sampling process. Sampler represents a class
of iteration method (DDPM or DDIM), which is non-parametric. All models are
pretrained without gradient updating in the sampling process.

2.2 Conditional Image Generation

Conditional image generation aims to generate samples with desired condition
information. The condition can be extended to multi-modal information, such as
class [20,25,27], text [41,26,40], and low-resolution image [3]. Most previous work
modeled this by the joint training scheme with both condition and random noise,
utilizing generative models like GAN or VAE.

Considering that Denoising Diffusion Probabilistic Model (DDPM) has made
remarkable progress in recent years [34,12,17,11,5,35,21,24], there raised many
researches [6,14,4,30,31,16,18] which applied DDPM to conditional generation.
Due to the ideal theoretical properties of DDPM, it can be extended flexibly
to conditional variants using the Bayes theorem without retraining, which is
similar to score-based generative models [36,37,19]. In this paper, we focus on the
class-conditional generation task, in which the condition is represented by a class
discrete distribution, and design a more effective sampling and training scheme
to improve the generation quality for DDPM, further exploring its potential in
image generation aspects.

3 Proposed Methods

We start by introducing the conditional generation process for diffusion models
with classifier guidance (Sect. 3.1). For ease of description, we will firstly intro-
duce our dynamic scaling technology to recover gradient guidance adaptively
in the sampling process and its motivation (Sect. 3.2). Then, we describe the
entropy-aware optimization loss for alleviating vanishing conditional guidance
from training perspective (Sect. 3.3), utilizing the uniform distribution, which is
a more dense distribution.

3.1 Conditional Diffusion Generation

The goal of conditional image generation is to model probability density p(x|y).
To be specific, in class-conditional image generation, y represents the desired class
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Fig. 3: The various gradient vanishing points for different samples. We randomly
generate 5000 samples and define the time point, whose gradient norm that
is smaller than 0.15 as the gradient vanishing point. Premature vanishing of
gradients occurs in almost every sample.

label, which tends to be one-hot distribution, and x represents the image sample.
For diffusion models, it can be implemented by introducing an independent
classifier, as shown in Fig. 2. Specifically, the goal is converted into modeling
the conditional transition distribution p(xt−1|xt,y), derived from Markov chain
sampling scheme:

pφ(x0|y) =
∫

pφ(x0:T |y)dx1:T ,

pφ(x0:T |y) = p(xT )

T∏
t=1

pφ(xt−1|xt,y),

(6)

where φ represents the model and T is the total length of Markov chain, which
tends to be large. Then, we decompose the conditional transition distribution
into two independent terms:

pφ(xt−1|xt,y) = Zpθ(xt−1|xt)pϕ(y|xt), (7)

where Z is a normalizing constant independent from xt−1 and φ can be seen as the
combination of models θ and ϕ, which is proven theoretically [32,6]. Furthermore,
the log density of Eq. (7) can be approximated as a Gaussian distribution [6]:

log(pφ(xt−1|xt,y)) ≈ log p(z) + logZ

z ∼ N (
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt)) + σ2
t g, σ

2
t I),

(8)

where g = s∇xt
log pϕ(y|xt) and s is the gradient scale. g can be derived by

backwarding the gradient of a pretrained classifier on noisy data xt. Usually,
s is set to a constant [6] to improve the predicted probability. ϵθ(xt) is the
pretrained noise estimator for diffusion models and σ2

t is the hyperparameters
for unconditional DDPM to control the variance.

In this way, unconditional diffusion models with parameterized noise estimator
ϵθ can be extended to conditional generative models by introducing the condition-
aware guidance ∇xt

log pϕ(y|xt), as shown in Fig. 2. Specifically, we start with
the prior noise xT ∼ N (0, I), and utilize DDPM-based (Eq. 8) sampler to make
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transition iteratively to generate the samples conditioned on desired class y. The
sampler can also be extended into DDIM iteration method (Eq. 3). The extension
details for conditional process with classifier guidance can refer to Dhariwal et
al.[37,6].

3.2 Entropy-driven Conditional Sampling

During the conditional generation process, we observe that the guidance provided
from noise-aware classifier tends to vanish prematurely, which could be attributed
to the discrepancy between generative pattern and discriminative pattern. For
example, the noisy samples with high-level semantic information, such as contour
or the color, may be guided iteratively by the classifier with nearly one-hot
distribution, in which situation the gradient guidance tends to be weak or vanish,
while the samples still lack the condition-aware semantic details. In this way,
the condition-aware textures of generated samples are guided by unconditional
denoising process (Eq. 3).

An intuitive solution is to manually select a time step during the sampling
process, after which the semantic details tend to vanish in most instances, and
rescale the conditional gradient by an empirical constant after the selected time
step. However, since the stochasticity in the generation process of diffusion models
[4], the denoising trajectories for generated samples would differ from each other.
It will lead to the various initial vanishing points, as shown in Fig. 3. At the
same time, considering the learning bias of classifier for different conditional
classes, the level of recovery factor for each class may also differ. In summary, the
effective scaling factor can be related to the current time step, the class condition,
and the stochasticity of generation process. The experiment design and results
about more intuitive approaches can be seen in Sect. 4.3.

Algorithm 1 Entropy-driven sampling scheme (DDPM/DDIM)

Require: a pretrained diffusion model ϵθ(xt), classifier pϕ(ŷ|xt), and desired class
condition y

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: s← γ ∗ H(U(ŷ))

H(pϕ(ŷ|xt))
if EDS, else s← γ

4: if use DDPM then
5: z ∼ N (0, I) if t > 1, else z← 0
6: g← s · ∇xt log pϕ(y|xt),

7: xt−1 ← 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt)

)
+ σ2

t g + σtz

8: else if use DDIM then
9: ϵ̂← ϵθ(xt)− s · ∇xt log pϕ(y|xt),

10: xt−1 ←
√
ᾱt−1(

xt−
√
1−ᾱtϵ̂√
ᾱt

) +
√
1− ᾱt−1ϵ̂

11: end if
12: end for
13: return x0
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Motivated from above, we propose an dynamic scaling technology for the
conditional diffusion generation to recover the semantic details adaptively for each
sample. We noticed that, when time step is close to T , the predicted distribution
tends to be dense, which can be nearly approximated as uniform distribution. The
reason is that the noisy data derived from Eq. 1 can be approximated as random
noise, N (0, I), in which state the gradient guidance is obvious. As time step
declines to 0 inversely, the noise hidden in sample will be removed gradually and
the predicted distribution tends to be close to one-hot, in which case the classifier
gradient is invalid to provide semantic details for generation. Statistically, entropy
can represent the sparsity of the predicted distribution, inspiring us to take it
into consideration:

H(pϕ(ỹ|xt)) = −Eỹ|xt
log pϕ(ỹ|xt)

= −
|Y |∑
i=1

pϕ(ỹi|xt) log pϕ(ỹi|xt),
(9)

where pϕ(ỹ|xt) represents the predicted distribution from classifier and Y repre-
sents the set of all class conditions.

In this paper, we utilize H(pϕ(ỹ|xt)) to adaptively fit various gradient van-
ishing time step. Furthermore, the entropy H(pϕ(ỹ|xt)) can also capture bias
caused by different conditions, due to its sample-aware rescaling effect. Thus,
when we sample from a pretrained noise estimator ϵθ in Eq. 8 conditionally, we
reformulate the gradient term g as following, which is shown in Fig. 2:

g′ = s(xt, ϕ) ∗ ∇xt log pϕ(y|xt),

s(xt, ϕ) = γ ∗ H(U(ỹ))
H(pϕ(ỹ|xt))

(10)

where γ is a hyper-parameter to balance the guiding gradient and entropy-aware
scaling factor s(xt, ϕ). In order to maintain the numerical range, we renormalize
the entropy by its theoretical upper bound H(U(ỹ)), where U(ỹ) represents
the uniform distribution of class variable, so that the gradients are almost not
rescaled when t is close to T .

3.3 Training Noise-aware Classifier with Entropy Constraint

From the training perspective, the vanishing gradient can be partly attributed to
the label supervision pattern for noise-aware classifier. Since one-hot distribution is
very sparse and is utilized to supervise the noisy data, the predicted distributions
are inclined to converge to one-hot under noisy samples in the sampling process,
so that the gradient guidances are too weak to generate condition-aware semantic
details at sampling stage.

Specifically, given the dataset (x0,y) ∼ D and a prior diffusion process (Eq. 1),
the classifier will be trained under noisy data xt to build the gradient field in
Eq. 8 of each time step. To alleviate the weak guidance caused by the sparsity,
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Algorithm 2 Entropy-constraint training scheme.

Require: training set D, a neural classifier ϕ, training set D, total time steps T
1: repeat
2: (x0,y)← sample from D
3: t ∼ U({1, . . . , T})
4: xt ∼ q(xt|x0) (Eq. 2)
5: LCE ← y log pϕ(ỹ|xt)
6: if use ECT then
7: LECT ← −H(pϕ(ỹ|xt))
8: Take gradient descent step on ∇ϕ(LCE + ηLECT )
9: else
10: Take gradient descent step on ∇ϕLCE

11: end if
12: until converged

we utilize discrete uniform distribution, which is a dense distribution and has
maximum entropy, as a perturbing distribution and introduce the optimization
term at the training stage of the classifier to constrain the predicted distribution
from the classifier as followed:

LECT (xt,y) = DKL(pϕ(ỹ|xt)||U(ỹ))
= Eỹ|xt

log pϕ(ỹ|xt)− Eỹ|xt
logU(ỹ)

= −H(pϕ(ỹ|xt)) +C,

(11)

where C is a constant term independent from the parameter ϕ. This loss term
is equivalent to maximizing entropy of the predicted distribution p(ỹ|xt). The
whole training loss of guiding classifier is composed of the normal cross-entropy
loss and entropy constraint training loss (ECT), which is formally given by:

Ltot(xt,y) = LCE(xt,y) + ηLECT (xt,y), (12)

where η is a hyper-parameter to adjust the divergence about predicted label
distribution and the uniform distribution.

Different from Entropy-driven Sampling, the proposed training scheme tries to
alleviate the vanishing guidance by adjusting the gradient direction in sampling
process, instead of the gradient scale. Thus, entropy-constrain training scheme
can be complementary with entropy-driven sampling.

4 Experiments

In this section, we present experiments to verify the effectiveness and motivation
of our proposed schemes. More visualization of generated samples and ablation
experiments about hyperparameters can be found in supplementary materials.
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4.1 Experiment Setup

Dataset We perform our experiments mainly on ImageNet dataset [28] at
256×256 resolutions. ImageNet contains 14,197,122 images with 1000 classes in
total, which is a very challenging benchmark for conditional image generation.

Implementation Details. For verifying the effect of proposed schemes, we
apply the neural network architecture, ablated diffusion model (ADM), proposed
by Dhariwal.et al [6]. ADM is mainly based on the UNet, with increased depth
versus width, the number of attention heads, and rescaling residual connections
with 1√

2
. It is also possible to train a conditional diffusion models. We call the

conditional diffusion architecture [6] as CADM for short. Correspondingly, UADM
means unconditional diffusion architecture. UADM-G and CADM-G additionally
use noise-aware classifier guidance to perform conditional generation, separately.

Our training hyperparameters of noise-aware classifier, including batch size,
total number of iterations, and decay rate, are kept the same as those of Dhariwal
et al.[6] for fair comparison. We adopt the fixed linear variance schedule β1, ..., βT

[23,10] for prior noising process Eq. 1 and choose T as 1000. In this paper, we
set η to 0.2 to keep a slight disturbance during training stage of classifier in all
experiments. The selection details of γ can be seen in supplementary materials.
All the experiments are conducted on 16 NVIDIA 3090s.

Evaluation Metrics. We select FID (Fréchet Inception Distance) [9] as our
default evaluation metric, which is the most widely used metric for generation
evaluation. FID [9] measures the KL divergence of two Gaussian distributions,
which is computed by the real reference samples and the generated samples, in
the feature space of Inception-V3. To capture more spatial relationships, sFID
are prposed as a variant of FID, which is more sensitive to the consistent image
distribution with high-level structures.

In addition, we apply several other metrics for more comprehensive evaluations.
Inception Score (IS) was proposed [1], to measure the mutual information between
input sample and the predicted class. Improved Precision and Recall metrics are
proposed [15] for further evaluation of generative models. Precision is computed by
estimating the proportion of generated samples that fall into real data manifold,
measuring the sample fidelity. By contraries, recall is computed by estimating the
proportion of real samples which fall into generated data manifold, measuring the
sample diversity. Following Dhariwal et al. [6], we randomly generated 50k images
to compute all the above metrics based on 10k real images when compared with
previous methods. For consistent comparisons, we use the evaluation metrics for
all methods based on the same codebase as Dhariwal et al.[6].

4.2 Comparison with State-of-the-art Methods

In this section, we show the comparison results of our proposed schemes with
other SOTA methods. based on UADM and CADM architectures [6]. All results
of other previous methods are cited from Dhariwal et al.[6]. As shown in Table 1,
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Table 1: Comparison results with state-of-the-art generative models on Ima-
geNet1000 256×256. Annotation ’(25)’ means the DDIM [34] sampling method
with 25 steps. Otherwise, it means DDPM sampling method with 250 steps.

Method FID ↓ sFID ↓ IS ↑ Prec ↑ Rec ↑ Prec+Rec ↑

DCTransformer [22] 36.51 8.24 - 0.36 0.67 1.03
VQ-VAE-2 [27] 31.11 17.38 - 0.36 0.57 0.93
IDDPM [23] 12.26 5.42 - 0.70 0.62 1.32
SR3 [29] 11.30 - - - - -
BigGAN-deep [2] 6.95 7.36 - 0.87 0.28 1.15

UADM-G(25 steps) [6] 14.21 8.53 83 0.7 0.46 1.16
UADM-G(25 steps)+EDS+ECT 8.28 6.37 163.17 0.76 0.44 1.20
CADM-G(25 steps) [6] 5.44 5.32 194.48 0.81 0.49 1.30
CADM-G(25 steps)+EDS+ECT 4.67 5.12 235.24 0.82 0.47 1.29

UADM-G [6] 12 10.4 95.41 0.76 0.44 1.20
UADM-G+EDS+ECT 6.78 6.56 168.78 0.81 0.45 1.26
CADM [6] 10.94 6.02 100.98 0.69 0.63 1.32
CADM-G [6] 4.59 5.25 186.70 0.82 0.52 1.34
CADM-G+EDS+ECT 4.09 5.07 221.57 0.83 0.50 1.33

we achieve the best results in terms of FID metric. Compared to UADM-G in
ImageNet 256×256, our methods achieve relatively about 40% improvement on
FID metric (from 14.21 to 8.28, from 12.0 to 6.78) based on both DDPM and
DDIM sampling iteration methods, with comparable or even better precision
and recall. For the CADM architecture, our proposed schemes still maintain a
significant improvement margin on FID metric (from 5.44 to 4.67, from 4.59 to
4.09), and comparable precision and recall.

It is worth mentioning that our method based on the UADM architecture
outperformed BigGAN-deep in terms of FID by 0.17 margin (6.78 vs 6.95), with
no dependency on conditional architecture CADM, which has not been achieved
in previous work [6,10,23].

4.3 Ablation Study

Effect of proposed schemes. To further verify the contribution of each
component of proposed schemes, we conduct ablation experiments on both
UADM and CADM architectures, as shown in Table 2. It can be concluded
that EDS and ECT both improve the generation quality. Combining with two
schemes, the generation results can be further improved, with more semantic
details achieved from the improved direction (ECT) and scale (EDS) aspects of
the guidance gradient.
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Table 2: Ablation study of our proposed methods EDS and ECT on ADM-G
under DDIM 25 steps and DDPM 250 steps on ImageNet1000 256×256.

Method +ECT +EDS FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑

UADM-G (25 steps) ✗ ✗ 14.21 8.53 83 0.7 0.46
✗ ✓ 10.09 6.86 133.71 0.73 0.45
✓ ✗ 12.21 8.14 100.95 0.74 0.44
✓ ✓ 8.28 6.37 163.17 0.76 0.44

CADM-G (25 steps) ✗ ✗ 5.46 5.32 194.48 0.81 0.48
✗ ✓ 4.82 5.04 218.97 0.80 0.50
✓ ✗ 5.34 5.3 196.8 0.81 0.49
✓ ✓ 4.67 5.12 235.24 0.82 0.48

UADM-G ✗ ✗ 12.0 10.4 95.41 0.76 0.44
✗ ✓ 7.98 10.61 178.73 0.82 0.40
✓ ✗ 10.79 10.49 117.56 0.79 0.41
✓ ✓ 6.78 6.56 168.78 0.81 0.45

CADM-G ✗ ✗ 4.59 5.25 186.7 0.82 0.52
✗ ✓ 4.01 5.15 217.25 0.82 0.52
✓ ✗ 4.62 5.16 182.48 0.81 0.53
✓ ✓ 4.09 5.07 221.57 0.83 0.50

Effect of entropy-driven sampling. In this part, we design various intuitive
scaling methods and compare them under optimal hyperparameters with EDS.
We select the scaling method with constant recovery factor for all time range [6]
as our baseline. Intuitively, we can manually select vanishing time point through
observing Fig. 3 and Fig. 1 i.e., 700, and finetune the constant rescaling factor
to adjust the weak gradient for all generated samples, which we called Constant
(range 0-700). The constant scale can be further adjusted to time-aware form,
such like T − t. We call this method as Timestep-aware, which can dynamically
adjust the scaling factor according to time step in sampling process. In this way,
the sample-aware vanishing characteristic is ignored and the scale cannot fit the
various vanishing level.

To verify that entropy-aware scaling could better fit the initial time steps
of vanishing guidance, we design another approach which is based on norm of
gradient map. Specifically, we empirically select a norm bound M for gradient.
When the norm of gradient map is smaller than the threshold vanishing norm
bound M , we regard that the gradient guidance is weak and need to be rescaled.
Thus, s in Eq. 10 is rewritten as followed:

s =

{
1, ∥∇xt

log pϕ(y|xt)∥2 < M
C, Otherwise

(13)

The rescaling factor C is a large constant. Compared to the methods above, it
can be experimentally verified that EDS not only fits the sample-aware initial
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Table 3: Sample quality comparison with several intuitive sampling schemes.
Generate 5,000 samples for more efficient comparisons.

Method FID IS Precision Recall

Baseline 20.17 84.53 0.71 0.59
Constant (range 0-700) 19.84 88.42 0.70 0.61
Timestep-aware 19.42 87.42 0.70 0.63
Gradient Norm 19.08 93.14 0.71 0.63
Entropy-driven 16.56 133.26 0.73 0.66

time steps of weak guidance, but also provides a reasonable rescaling factor for
recovery, as shown in Table 3.

4.4 Qualitative Results

Gradient Map Visualization. We collected several gradient maps g derived
from the classifier in the previous sampling process and our EDS process, with
an equal time interval. From Fig. 4, it can be observed that the classifier provides
high-level semantic guidance at the beginning. Gradually, the classifier will
provide condition-aware texture guidance. Compared with EDS, which can
maintain guidance of semantic details throughout the denoising process for
refined generation results, sampling scheme based on the fixed scaling factor lost
a lot of condition-aware details (first line) or introduce unnatural details (third
line) at the later sampling stage.

Fig. 4: Gradient map comparison between UADM-G [6] (the first line of each
image box) and our UADM-G + EDS (the second line of each image box) on
ImageNet1000 256×256, DDIM 25 steps.
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Generation Results Visualization. We visualized various generated images
conditioned on different classes and compared our final generated results with
that of previous SOTA method [6] on UADM architecture. DDIM is adopted as
the deterministic generation process to generate samples with the same initial
noise. From Fig. 5, previous SOTA method cannot generate condition-aware
semantic details such like beaks of birds Fig. 5b or petal texture Fig. 5i, while
our method can generate more refined textures, with similar high-level structure.

5 Conclusion

In this paper, we proposed an entropy-aware scaling technology for the guiding
classifier in sampling and constrain the predicted distribution in training. Exper-
iments demonstrate that our methods can recover textures in generated samples,
achieving state-of-the-art generation results.
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and Development Program of China under Grant 2020AAA0107400, Zhejiang
Provincial Natural Science Foundation of China under Grant LR19F020004,
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(a) class 1: goldfish (b) class 13: junco (c) class 22: eagle

(d) class 5: numbfish (e) class 923: plate (f) class 874: trolleybus

(g) class 984: rapeseed (h) class 970: alp (i) class 985: daisy

Fig. 5: Sample quality comparison between UADM-G [6] (the first line of each box)
and our UADM-G+ECT+EDS (the second line of each box) on ImageNet1000
256×256, DDIM 25 steps.
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