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1 Proofs of theorems

Theorem 1. The steady-state distribution of

dx =
ϵ2

2
▽x log p∗(x)dt+ ϵdw, (1)

and

dx =
ϵ2

2
(MMT + S)▽x log p∗(x)dt+ ϵMdw, (2)

are the same, as long as the linear operator M is invertible and the linear operator
S is skew-symmetric.

Proof. The Fokker-Planck equation of Eq. (2) is

∂p

∂t
= −ϵ2

2
MMT ▽x ·(▽x log p

∗(x)p) +▽x · S ▽x (log p∗(x)p) +
ϵ2

2
MMT∆xp.

(3)

Since S is skew-symmetric, ▽x · (S ▽x log p∗(x)p) = 0. Then, the probabilistic
density function of the steady-state distribution satisfies

▽x · (▽x log p
∗(x)p) = ∆xp, (4)

where we make use of the invertibility of M . This is the same as the steady state
function of Eq. (1)

▽x · (▽x log p
∗(x)p) = ∆xp. (5)

As a result, the theorem is proved.

⋆ Li Zhang (lizhangfd@fudan.edu.cn) is the corresponding author with School of Data
Science, Fudan University. Xiatian Zhu is with Surrey Institute for People-Centred
Artificial Intelligence, CVSSP, University of Surrey.
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Theorem 2. Consider the diffusion process

dx = f(x, t)dt+G(t)dw, (6)

where f : Rd ⊗ R → Rd, G : R → Rd×d. M is an invertible d × d matrix and S
is a skew-symmetric d× d matrix. Denote p∗ as the steady-state distribution of
Eq. (6), then the process

dx = MMTf(x, t)dt+ S ▽x log p∗(x)dt+MG(t)dw, (7)

has the same steady-state distribution as Eq. (6), given G(t)G(t)T and MT are
commutable ∀t.

Proof. The steady-state distribution of Eq. (6) satisfies the following equation

▽x · [pf(x, t)] = G(t)G(t)T

2
∆xp. (8)

The Fokker-Planck equation of Eq. (7) is

∂p

∂t
= −MMT ▽x ·[pf(x, t)] + MG(t)G(t)TMT

2
∆xp, (9)

where we have used the skew symmetry of S so that ▽x · (S ▽x log p(x)p) = 0.
Then, the steady-state distribution of Eq. (7) satisfies the following equation

MMT ▽x ·[pf(x, t)] = MG(t)G(t)TMT

2
∆xp, (10)

which is equivalent to Eq. (8) due to the invertiblity of M and commutability of
G(t)G(t)T and MT. Therefore, the theorem is proved.

2 Preconditioning a diffusion process in the frequency
domain

In this section, we will prove theoretically why we can directly regulate the fre-
quency distribution of a diffusion process through the preconditioning strategy,
and why it is necessary to do so.

We first show that a diffusion process can be directly transformed to another
space (e.g., the frequency domain) via an orthogonal transform. To minimize
ambiguity, we denote p∗(x) as p∗x(x).

Theorem 3. The Langevin dynamics

dx =
ϵ2

2
▽x log p∗x(x)dt+ ϵdw (11)

can be rewritten as

dx̃ =
ϵ2

2
▽x̃ log p∗x̃(x̃)dt+ ϵdw, (12)

where x̃ : s = Bx, given B is an orthogonal transform.
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Proof. Multiplying B on both sides of Eq. (11), we have:

dx̃ =
ϵ2

2
B ▽x log p∗x(x)dt+ ϵBdw. (13)

We have Bdw = dw by the rotational invariance of the standard Wiener process.
Now we only need to verify

B ▽x log p∗x(x) = ▽x̃ log p
∗
x̃(x̃). (14)

Given two d-dimensional random vectors x,y ∈ Rd with their respective differ-
entiable density functions px and py, if g(x) = y, where g ∈ Rd → Rd is an
invertible differentiable transformation, we have

py(y) = px(g
−1(y))

∣∣∣∣det [dg−1(y)

dy

]∣∣∣∣ . (15)

Therefore,

▽x log p
∗
x(x) = ▽x[log p

∗
x̃(x̃)− log

∣∣det [BT
]∣∣] = ▽x log p

∗
x̃(x̃). (16)

Using the chain rule of the calculus, we have

▽x log p
∗
x̃(x̃) = BT ▽x̃ log p∗x̃(x̃). (17)

Combining Eq. (16) and Eq. (17), we have

▽x log p
∗
x(x) = BT ▽x̃ log p∗x̃(x̃), (18)

which is equivalent to Eq. (14) using the orthogonality of B.

Remark 1. The above result is easy to be extended to a more general case where

the drift term ϵ2

2 ▽x log p
∗
x(x) is replaced by f(t)x+▽x log q(x, t), if f is a scalar

function of time and q(·, t) is a distribution function that may vary over time.
Therefore, the theorem can be applied generally to all the diffusion processes
adopted in NCSN [5], NCSNv2 [6], and NCSN++ [7].

Specially, when we set B as a two-dimensional discrete cosine transform [1,2],
the whole diffusion process can be transformed to the frequency domain without
changing its original form. This explains why we can directly implement a pre-
conditioning operator on the original diffusion process to regulate its frequency
distribution.

There exists a general observation that the amplitude of the high-frequency
part of a natural image is dramatically lower than that in the low-frequency
part [2]. This means the distribution of natural images exhibits huge gaps in
quantity between different coordinates in the frequency domain, causing a se-
vere ill-conditioned issue. This explains the necessity to regulate the frequency
distribution of a diffusion process, which is implemented by preconditioning in
this paper.
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3 Parameter settings

We report the settings of the preconditioning operator

M [·] = A⊙ F−1[R⊙ F [·]]. (19)

The parameterized frequency filter R is calculated as follows

R(c, h, w) =

{
1 , if (h− 0.5H)2 + (w − 0.5W )2 ≤ 2r2

λ , otherwise
, (20)

where C is the channel number, H is the height, and W is the width of an image.
1 ≤ c ≤ C, 1 ≤ h ≤ H and 1 ≤ w ≤ W . An example of R is given in Fig. 1.

Fig. 1. Examples of (Left) frequency preconditioning R ((r, λ) = (0.2H, 0.9)) and
(Right) mean of FFHQ [3] dataset used for constructing space preconditioning A used
in proposed preconditioning operator M (Eq. (19)).

Empirically, we find that it is necessary to normalize both space and fre-
quency filter that are calculated by the dataset statistics as follows

A(c, w, h) =
A(c, w, h)

maxA(c, w, h)
, (21)

and

R(c, w, h) =
1

α
(

R(c, w, h)

maxR(c, w, h)
+ α− 1), (22)

where α is the normalization parameter. This allows us to adaptively scale the
frequency coordinates according to the specific amplitudes.

We provide the parameter settings used in our experiments in Table. 1. For
NCSN [5] and NCSNv2 [6], we construct the frequency filter R following Eq. (20).
The two parameters r and λ used in each dataset is shown in Table. 2. For these
two models, we do not apply the space preconditioning.

For NCSN++ [7], we we construct the frequency filter R using the statistics
from the target dataset directly. We apply the space preconditioning calculated
by the dataset statistics for FFHQ dataset, since there is a clear space structure
priors (the layout of human faces), and we do not apply the space preconditioning
for other datasets.
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Table 1. Parameters of PDS used for constructing frequency filter on NCSN [5] and
NCSNv2 [6] following Eq. (20).

Dataset Resolution Model Iterations r λ use space preconditioning?

MNIST 28× 28 NCSN 20 0.2H 1.6 %

LSUN (church) 96× 96 NCSNv2
126 0.2H 1.6 %

157 0.2H 1.6 %

210 0.2H 1.6 %

LSUN (tower) 128× 128 NCSNv2
65 0.2H 1.1 %

81 0.2H 1.1 %

108 0.2H 1.1 %

Table 2. Parameters of PDS used for constructing frequency filter on NCSN++ [7]
following Eq. (22).

Dataset Resolution Iterations α use space preconditioning?

CIFAR-10 32× 32
100 5 %

200 10 %

LSUN (bedroom) 256× 256 166 5 %

LSUN (church) 256× 256 166 5 %
FFHQ 1024× 1024 66 5 ✓

4 Implementation details

We use the public released codebases of NCSN3, NCSNv24 and NCSN++5.
For facilitating the comparisons, we follow the same preprocessing as [5,6,7].
We conduct all the following experiments with PyTorch on NVIDIA RTX 3090
GPUs.

5 More quantitative results

In this section, we report more quantitative results using Clean-FID (Fréchet
Inception Distance) metric [4] to verify that our PDS accelerates the vanilla
diffusion process while generating images with high quality. It is observed in
Table 3 that the Clean-FID scores of our PDS are all dramatically smaller than
those by the original methods in all the cases, consistent with our visualization
results (Fig. 6-8).

3 https://github.com/ermongroup/ncsn
4 https://github.com/ermongroup/ncsnv2
5 https://github.com/yang-song/score_sde

 https://github.com/ermongroup/ncsn
https://github.com/ermongroup/ncsnv2
https://github.com/yang-song/score_sde
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Table 3. Quantitative evaluation with the Clean-FID (Fréchet Inception Distance)
metric [4] for accelerated diffusion process. We generate 50k images for each method.

Model NCSNv2 [6] NCSN++ [7]

Dataset LSUN LSUN LSUN LSUN FFHQ

Class Church Tower Bedroom Church Face

Resolution 96× 96 128× 128 256× 256 256× 256 1024× 1024

Iterations 156 108 166 166 66

Vanilla 217.9 67.2 393.7 393.3 463.2
PDS 65.7 43.8 16.9 15.0 61.2
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6 Solenoidal term analysis

—— S1 S2 S3 S4 S5 S6

Fig. 2. Facial images at a resolution of 1024 × 1024 generated by NCSN++ [7] with
our PDS using different solenoidal items. Sampling iterations: 66. Dataset: FFHQ [3].

In this section, we investigate the effect of the solenoidal term S log p∗(x) to the
diffusion process

dx =
ϵ2

2
(M−1M−T + ωS)▽x log p∗(x)dt+ ϵM−1dw (23)

In Sec. 5 of the main paper, we have shown that using S = Re[F − FT] has no
obvious effect on the diffusion process. Now we study more cases. Denote Pm,n
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as the shift operator that rolls the input image for m places along the height
coordinate and rolls the input image for n places along the width coordinate.
We then test how the skew-symmetric operators in Eq. (24) would affect the
diffusion process.

S1 = P1,1 − PT
1,1 (24)

S2 = P10,10 − PT
10,10

S3 = P100,100 − PT
100,100

S4 = Re[F [P1,1 − PT
1,1]F

−1]

S5 = Re[F [P10,10 − PT
10,10]F

−1]

S6 = Re[F [P100,100 − PT
100,100]F

−1].

The sampling results are shown in Fig. 2, where we set ω = 1000. It is observed
that again all these solenoidal terms do not impose an obvious effect on the
sampling quality. Additionally, as displayed in Fig. 3, these solenoidal terms also
do not make an obvious effect on acceleration. Nevertheless, we only study the
effect of some special cases of the solenoidal terms, which does not mean there
are no solenoidal terms that can accelerate the diffusion process, and the search
for these solenoidal terms is in a further study.

7 Limitations

In general, there are several parameters in the preconditioning matrix of PDS
need to be determined. A further study is needed to enable PDS find the best
parameter settings automatically. Although DDPMs are a variant of SGMs, we
find PDS can not directly used on DDPMs, since the diffusion process of DDPMs
is not a Langevin dynamics. Nevertheless, we find that it is possible to rewrite
this diffusion process to imitate the structure of Langevin dynamics, then use
PDS for acceleration. We leave it for future study.
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Fig. 3. Facial images at a resolution of 1024 × 1024 generated by NCSN++ [7] with
our PDS under different sampling iterations and different solenoidal items described in
Eq. (24). We set R following Eq. (22) and do not apply space preconditioning Dataset:
FFHQ [3].
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8 More examples

Fig. 4. Sampling using NCSN [5] on MNIST (28 × 28). Top: Results by the original
sampling method with 20 sampling iterations. Bottom: Results by our PDS with 20
sampling iterations, where we set (r, λ) = (0.2H, 1.6).
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Fig. 5. Sampling using NCSNv2 [6] on LSUN (church 96 × 96 and tower 128 × 128)
under different iteration numbers.
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Fig. 6. Sampling using NCSN++ [7] on LSUN (church and bedroom) at a resolution
of 256 × 256 under different iteration numbers. It is observed that when the iteration
number decreases, both the original method and our PDS generate samples with high-
frequency noise, but the quality of the samples produced by the original method drops
much more dramatically.
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Fig. 7. FFHQ [3] (facial images) at a resolution of 1024 × 1024 generated by
NCSN++ [7] under a variety of sampling iterations (top) without and (bottom) with
our PDS. It is evident that NCSN++ decades quickly with increasingly reduced sam-
pling iterations, which can be well solved with PDS.
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Fig. 8. Facial images at a resolution of 1024 × 1024 generated by NCSN++ [7] with
our PDS. Sampling iterations: 66. Dataset: FFHQ [3].


