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Abstract. Score-based generative models (SGMs) have recently emerged
as a promising class of generative models. However, a fundamental lim-
itation is that their inference is very slow due to a need for many (e.g.,
2000) iterations of sequential computations. An intuitive acceleration
method is to reduce the sampling iterations which however causes severe
performance degradation. We investigate this problem by viewing the
diffusion sampling process as a Metropolis adjusted Langevin algorithm,
which helps reveal the underlying cause to be ill-conditioned curvature.
Under this insight, we propose a model-agnostic preconditioned dif-
fusion sampling (PDS) method that leverages matrix preconditioning
to alleviate the aforementioned problem. Crucially, PDS is proven the-
oretically to converge to the original target distribution of a SGM, no
need for retraining. Extensive experiments on three image datasets with
a variety of resolutions and diversity validate that PDS consistently ac-
celerates off-the-shelf SGMs whilst maintaining the synthesis quality. In
particular, PDS can accelerate by up to 29× on more challenging high
resolution (1024×1024) image generation.

Keywords: Image synthesis, score-based generative model, matrix pre-
conditioning, ill-conditioned curvature.

1 Introduction

As an alternative framework to generative adversarial networks (GANs) [10],
recent score-based generative models (SGMs) [31,32,33,30] have demonstrated
excellent abilities in data synthesis (especially in high resolution images) with
easier optimization [31], richer diversity [36], and more solid theoretic founda-
tion [5]. Starting from a sample initialized with a Gaussian distribution, a SGM
produces a target sample by simulating a diffusion process, typically a Langevin
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Fig. 1. Facial images at a resolution of 1024 × 1024 generated by NCSN++ [33]
under a variety of sampling iterations (top) without and (bottom) with our PDS. It is
evident that NCSN++ decades quickly with increasingly reduced sampling iterations,
which can be well solved with PDS. In terms of running speed for generating a batch
of 8 images, PDS reduces the time cost from 2030 seconds (the sampling iterations
T = 2000) to 71 seconds (T = 66) on one NVIDIA RTX 3090 GPU, which delivers
29× acceleration. Dataset: FFHQ [18]. More samples in supplementary material.

dynamics. Compared to the state-of-the-art GANs [4,18,17], a significant draw-
back with existing SGMs is drastically slower generation due to the need of
taking many iterations for a sequential diffusion process [33,23,36]. Formally,
the discrete Langevin dynamic for sampling is typically formulated as

xt = xt−1 +
ϵ2t
2

▽x log p∗(xt−1) + ϵtzt, 1 ≤ t ≤ T (1)

where ϵt is the step size (a positive real scalar), zt is an independent standard
Gaussian noise, and T is the iteration number. Starting from a standard Gaussian
sample x0, with a total of T steps this sequential sampling process gradually
transforms x0 to the sample xT that obeys the target distribution p∗. Often, T
is at the scale of 1000s, and the entire sampling process is lengthy.

For accelerating the sampling process, a straightforward method is to reduce
T by a factor and proportionally expand ϵt simultaneously, so that the number
of calculating the gradient ▽x log p

∗(x), which consumes the major time, de-
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creases whilst keeping the total update magnitude. However, this often makes
pretrained SGMs fail in image synthesis. In general, we observe two types of
failure: insufficient detailed structures (left of Fig. 3 and Fig. 4), and dazzling
with heavy noises (left of Fig. 1 and Fig. 5). Conceptually, the sampling process
as defined in Eq. (1) can be considered as a special case of Metropolis adjusted
Langevin algorithm (MALA) [27,35,9]. When the coordinates of a target sample
(e.g., the pixel locations of a natural image) are strongly correlated, the isotropic
Gaussian noises {zt} would become inefficient for the variables x, caused by the
ill-conditioned curvature of the sampling process [9].

x1

x2

Our preconditioned diffusion

y = Mx

y1

y2

Original diffusion

Preconditioning

Fig. 2. Illustration of the preconditioning method for accelerating sampling process.

In light of this insight as above, we propose an efficient, model-agnostic pre-
conditioned diffusion sampling (PDS) method for accelerating existing pre-
trained SGMs without the need for model retraining. The key idea is to make
the rates of curvature become more similar along all the directions [27,21] using
a matrix preconditioning, hence solving the ill-conditioned curvature problem, as
demonstrated in Fig. 2. Formally, we enrich the above Langevin dynamics (Eq.
(1)) by imposing a preconditioning operation into the diffusion process as

xt = xt−1 +
ϵ2t
2
MMT ▽x log p∗(xt−1) + ϵtMzt, (2)

where M is the newly introduced preconditioning matrix designed particularly
for regulating the behavior of accelerated diffusion processes. This proposed
reformulation equips the diffusion process with a novel ability to enhance or
restrain the generation of detailed structures via controlling the different fre-
quency components3 of the noises [2]. Crucially, according to the theorems with
Fokker-Planck equation [8] PDS can preserve the original SGM’s target distribu-
tion. Further, structured priors available with a target distribution can be also

3 More theoretical explanation on why directly regulating the frequency domain of a
diffusion process is possible is provided in Supplementary material .



4 H. Ma, L. Zhang, et al.

accommodated, e.g., the spatial structures of human faces. The computational
cost of calculating M is marginal when using Fast Fourier Transform (FFT) [3].
In this work, we make the following contributions: (1) We investigate the low
inference efficiency problem of off-the-shelf SGMs for high-resolution image syn-
thesis, which is critical yet under-studied in the literature. (2) For sampling
acceleration, we introduce a novel preconditioned diffusion sampling (PDS) pro-
cess. PDS preconditions the existing diffusion process additionally imposed for
adaptively regulating the added noises, whilst keeping the original target dis-
tributions in convergence. (3) With PDS, a variety of pretrained SGMs can be
accelerated significantly for image synthesis of various spatial resolutions, with-
out model retraining. In particular, PDS delivers 29× reduction in wall-clock
time for high-resolution image synthesis.

2 Related work

Sohl-Dickstein et al. [28] first proposed to destroy the data distribution through a
diffusion process slowly and learned the backward process to recover the data, in-
spired by non-equilibrium statistical physics. Later on, Song and Ermon [31] fur-
ther explored SGMs by introducing the noise conditional score network (NCSN).
Song and Ermon [32] proposed NCSNv2 that scaled NCSN for higher resolution
image generation (e.g., 256×256) by scaling noises and improving stability with
moving average. Song et al. [33] summarized all the previous SGMs into a unified
framework based on the stochastic differential equation (SDE) and proposed the
NCSN++ model to generate high-resolution images via numerical SDE solvers
for the first time. Bortoli et al. [5] provided the first quantitative convergence
results for SGMs. Vahdat et al. [34] developed Latent Score-based Generative
Model (LSGM) that trains SGMs in a latent space with the variational autoen-
coder framework. Another class of relevant generative models, mainly trained
by reducing an evidence lower bound (ELBO) called denoising diffusion prob-
abilistic models (DDPMs) [12,24,29,6,13,23,1], also demonstrate excellent per-
formance on image synthesis. Commonly, all of the above works use isotropic
Gaussian distributions for the diffusion sampling.

Recently there are some works proposed on accelerating SGMs. Dockhorn
et al. [7] improved the SGMs with Hamiltonian Monte Carlo methods [22] and
proposed critically-damped Langevin diffusion (CLD) based SGMs that achieves
superior performance. Jolicoeur-Martineau et al. [16] utilized a numerical SDE
solver with adaptive step sizes to accelerate SGMs. However, these methods are
limited in the following aspects: (1) They tend to involve much extra computa-
tion. For example, CLD based SGMs expand the dimension of data by 2 times
for learning the velocity of the diffusion. Jolicoeur-Martineau et al. [16] added a
high-order numerical solver that increases the number of calling the SGM, result-
ing in much more time. In comparison, with our PDS the only extra calculation
relates the preconditioning matrix that can be efficiently implemented by Fast
Fourier Transform. (2) They are restricted to a single specific SGM while our
PDS is model agnostic. (3) Unlike this work, none of them has demonstrated
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a scalability to more challenging high-resolution image generation tasks (e.g.,
FFHQ facial images).

3 Preliminary

Scored-based generative models (SGMs). Score matching is developed
for non-normalized statistical learning [15]. Given i.i.d. samples of an unknown
distribution p∗, score matching allows the model to directly approximate the
score function ▽x log p

∗(x). SGMs aim to generate samples from p∗ via score
matching by simulating a Langevin dynamics initialized by Gaussian noise

dx =
g2(t)

2
▽x log p∗(x)dt+ g(t)dw, (3)

where g : R+ → R+ controls the step size and dw represents a Wiener pro-
cess. With this process, we transform a sample drawn from an initial Gaussian
distribution to approach the desired distribution p∗. A classical SGM, noise
conditional score network (NCSN) [31], is trained by learning how to reverse a
process of gradually corrupting the samples from p∗, and aims to match the score
function. After training, NCSN starts from a Gaussian distribution and travels
to the target distribution p∗ by simulating an annealed Langevin dynamics.

Recent improvements. Song and Ermon [32] presented NCSNv2 that im-
proves the original NCSN by designing better noise scales, iteration number,
and step size. This new variant is also more stable by using the moving average
technique. Song et al. [33] further proposed NCSN++ that utilizes an existing
numerical solver of stochastic differential equations to enhance both the speed of
convergence and the stability of the sampling method. Importantly, NCSN++
can synthesize high-resolution images at high quality.

Limitation analysis. Although SGMs have been able to generate images com-
parable to GANs [10], they are much slower due to the sequential computation
during the sampling phase. For example, to produce 8 facial images at 1024×1024
resolution, a SGM spends more than 30 mins. To maximize the potential of
SGMs, it is critical to solve this slow inference bottleneck.

4 Method

We aim to solve the slow inference problem with SGMs. For easier understanding,
let us start from the most classical Langevin dynamics.

4.1 Steady-state distribution analysis

Consider the classical Langevin dynamics

dx =
ϵ2

2
▽x log p∗(x)dt+ ϵdw, (4)
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where p∗ is the target distribution, and ϵ > 0 is the fixed step size. It is associated
with a Fokker-Planck equation

∂p

∂t
= −ϵ2

2
▽x ·(▽x log p

∗(x)p) +
ϵ2

2
∆xp, (5)

where p = p(x, t) describes the distribution of x that evolves over time. The
steady-state solution of Eq. (5) corresponds to the probabilistic density function
of the steady-state distribution of Eq. (4), i.e., p∗

▽x · (▽x log p
∗(x)p) = ∆xp. (6)

The Fokker-Planck equation tells us how to preserve the steady-state dis-
tribution of the original process when we alter Eq. (4) for specific motivations.
Concretely, we can impose an invertible linear operator M to the noise term dw
and conduct the associated operation on the gradient term so that the steady-
state distribution can be preserved. This design is formulated as:

dx =
ϵ2

2
(MMT + S)▽x log p∗(x)dt+ ϵMdw, (7)

where S is a skew-symmetric linear operator. In fact, we have

Theorem 1. The steady-state distribution of Eq. (4) and Eq. (7) are the same,
as long as the linear operator M is invertible and the linear operator S is skew-
symmetric.

We can extend the above results to a more general case as follows.

Theorem 2. Consider the diffusion process

dx = f(x, t)dt+G(t)dw, (8)

where f : Rd ⊗ R → Rd, G : R → Rd×d. M is an invertible d × d matrix and S
is a skew-symmetric d× d matrix. Denote p∗ as the steady-state distribution of
Eq. (8), then the process

dx = MMTf(x, t)dt+ S ▽x log p∗(x)dt+MG(t)dw, (9)

has the same steady-state distribution as Eq. (8), given G(t)G(t)T and MT are
commutable ∀t.

Remark 1. The conditions of this theorem are all satisfied for the diffusion pro-
cess used in NCSN, NCSNv2, and NCSN++.

Thm. 2 motivates us to design a preconditioning matrix as Eq. (7) while
keeping the steady-state distribution simultaneously. This is also because, pre-
conditioning has been proved to be able to significantly accelerate the stochastic
gradient descent algorithm (SGD) and Metropolis adjusted Langevin algorithms
(MALA) [27]. Besides, SGD provides another view for interpreting our method,
that is, SGMs sequentially reduce the energy (− log p∗(x)) of a sample x via
stochastic gradient descent, with the randomness coming from the Gaussian
noises added at every single step.
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4.2 Preconditioned diffusion sampling

We study how to construct the preconditioning operator using M to accelerate
the sampling phase of SGMs, with S = 0 for Eq. (7). It is observed that when
reducing the iteration number for the sampling process of a SGM and expand the
step size proportionally for a consistent accumulative update, the images gener-
ated tend to miss necessary detailed structures (see left of Fig. 3 and Fig. 4), or
involve high-frequency noises (left of Fig. 1 and Fig. 5). These failure phenom-
ena motivates us to leverage a preconditioning operator M serving as a filter to
regulate the frequency distribution of the samples.

1. Given an input vector x, we first use Fast Fourier Transform (FFT) [3] to
map it into the frequency domain x̂ = F [x]. For images, we adopt the 2D
FFT that implements 1D FFT column-wise and row-wise successively.

2. Then we adjust the frequency signal using a mask R in the same shape as
x: R⊙ x̂, where ⊙ means element-wise multiplication.

3. Lastly, we map the vector back to the original space by the inverse of Fast
Fourier Transform: F−1[R⊙ x̂].

For specific tasks (e.g., human facial image generation), most samples might
share a consistent structural characteristics. This prior knowledge however is
unavailable with the noises added to each step in the diffusion process. To solve
this problem, we further propose a space structure filter A for space precon-
ditioning, constructed by statistical average of random samples. This can be
used to regulate the noise via element-wise multiplication as: A⊙ [·]. Combining
the both operations above, we define a preconditioning operator M as

M [·] = A⊙ F−1[R⊙ F [·]]. (10)

To guarantee the invertibility of M , we set the elements of R strictly positive.
For the tasks without clear space structure priors, we simply do not apply the
space preconditioning by setting all the elements of A to 1. We operate M on the
noise term dw and adjust the gradient term to keep the steady-state distribution
as shown in Eq. (7), utilizing Thm. 1.

Interestingly, we found that the proposed method above is likely to even
cause further model degradation. This is because, if we implement a variable
transformation as y = M−1x, Eq. (7) can be rewritten as

dy =
ϵ2

2
▽y log p∗(y)dt+ ϵdw,

which returns to the same format as the original process. The diffusion process
is made worse since, M−1, the inverse of M , could impose the exactly opposite
effect of M . To overcome this challenge, we further substitute M with M−1 in
Eq. (7) in order to take the positive effect of M as

dx =
ϵ2

2
M−1M−T ▽x log p∗(x)dt+ ϵM−1dw. (11)
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Since in this case, we can rewrite Eq. (11) in the same format as the original
process, after applying the variable transformation y = Mx.
A general formulation. or theory completeness, we further briefly discuss the
possibility to construct preconditioning matrix using the matrix S (Eq. (7)) as
an accelerator of the diffusion process. This is motivated by the theories from
[25,26,20] that the term S ▽x log p∗(x)dt drives a solenoidal flow that makes
the system converge faster to the steady state. According to [14], under the
regularity conditions, |x(t)| usually does not reach the infinity in a finite time,
and the convergence of an autonomous (the right side of the equation does not
contain time explicitly) diffusion process

dx =
ϵ2

2
▽x log p∗(x)dt+ ϵdw

can be accelerated by introducing a vector field C(x) ∈ Rd → Rd

dx =
ϵ2

2
▽x log p∗(x)dt+ C(x)dt+ ϵdw,

where C(x) should satisfy

▽x · (C(x)

p∗(x)
) = 0.

It is easy to show that C(x) = S▽x log p
∗(x) satisfies the above condition. How-

ever, the diffusion process of existing SGMs is typically not autonomous, due
to the step size ϵ varies across time designed to guarantee numerical stability.
Despite this, we consider it is still worth investigating the effect of S for the
sampling process for completeness (see evaluation in Sec. 5). As such, our in-
vestigation of preconditioning matrix is expanded from the invertible symmetric
matrix in form of MMT, to more general cases where preconditioning matrices
can be written as MMT + S.

4.3 Instantiation of preconditioned diffusion sampling

We summarize our preconditioned diffusion sampling (PDS) method for
accelerating the diffusion sampling process in Alg. 1. For generality, we write
the original diffusion process as

xt = h(xt−1, t) + ϕ(t)zt, (12)

where h(xt−1, t) represents the drift term and ϕ(t) the function controlling the
scale of the noise zt. We take the real part whilst dropping the imaginary part
generated every step as it can not be utilized by the SGMs. Now we construct the
space and frequency preconditioning filter. Given a target dataset image with
distribution p∗, its space preconditioning filter A is calculated as

A(c, w, h) = log
(
Ex∼p∗(x) [x(c, w, h)]) + 1

)
, (13)
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Algorithm 1 Preconditioned diffusion sampling

Input: The frequency R and space A preconditioning operators, the target sampling
iterations T ;

Diffusion process:
Drawing an initial sample x0 ∼ N (0, IC×H×W )
for t = 1 to T do

Drawing a noise wt ∼ N (0, IC×H×W )
Applying PDS: ηt ← F−1[F [wt •A] •R] ▷ • means element-wise division
Calculating the drift term dt ← h(xt−1, t, ϵt)
Applying PDS: dt ← F−1[F [F−1[F [dt] •R] •A2] •R]
Calculating the solenoidal term St ← S ▽x log p∗(xt−1)
Diffusion xt ← Re[dt + St + ϕ(t)ηt] ▷ Re[·] means taking the real part

end for

Output: xT

where 1 ≤ c ≤ C, 1 ≤ w ≤ W, 1 ≤ h ≤ H are the channel, width and height
dimensions of image. There are two approaches for calculating the filter R. The
first approach is to utilize the statistics of the dataset. Specifically, we first
define the frequency statistics given a specific image dataset that we are aimed
to synthesize as

R(c, w, h) = log
(
Ex∼p∗(x)

[
F [x]⊙ F [x]

]
(c, w, h) + 1

)
(14)

where F is Discrete Fourier Transform, ⊙ is the element-wise multiplication.
In practice, we normalize both space and frequency filter for stability; see sup-
plementary material for more detail. Empirically, 200 images randomly sam-
pled from the dataset is enough for estimating this statistics, therefore this in-
volves marginal extra computation. We observe that this approach works well
for accelerating NCSN++ [33], but has less effects on accelerating NCSN [31]
and NCSNv2 [32]. The possible reason is that these two models are not so-
phisticated enough as NCSN++ to utilize the delicate information from the
frequency statistics. To address this issue, we propose the second approach
which constructs the filter R simply using two parameters λ and r. λ speci-
fies the ratio for shrinking or amplifying the coordinates located out of the circle
{(h− 0.5H)2 + (w− 0.5W )2 ≤ 2r2}, selected according to the failure behaviour
of the vanilla SGM, and The radial range of the filter is controlled by r. See sup-
plementary material for more details. This method works well on accelerating
NCSN [31] and NCSNv2 [32].

Remark 2. For the computational complexity of PDS, the major overhead is
from FFT and its inverse that only have the complexity of O(CHW (logH +
logW )) [3], which is neglectable compared to the whole diffusion complexity.
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5 Experiments

In our experiments, the objective is to show how off-the-shelf SGMs can be accel-
erated significantly with the assistance of the proposed PDS whilst keeping the
image synthesis quality, without model retraining. See supplementary material
for the detailed parameter settings and the implementation details.

Datasets. For image synthesis, we use MNIST, CIFAR-10 [19], LSUN (the
tower, bedroom and church classes) [37], and FFHQ [18] datasets. Note, for all
these datasets, the image height and width are identical, i.e., H = W .

Baselines. For evaluating the model agnostic property of our PDS, we test
three recent SGMs including NCSN [31], NCSNv2 [32] and NCSN++ [33].

Experiments on MNIST. We use NCSN [31] as the SGM for the simplest
digital image generation (28× 28). The results are shown in Fig. 3. We observe
that when reducing the sampling iterations from 1000 to 20 for acceleration, the
original sampling method tends to generate images that lack the digital structure
(see the left part of Fig. 3). This suggests us to enlarge a band of frequency part
of the diffusion process. Therefore, we set (r, λ) = (0.2H, 1.6). It is observed that
our PDS can produce digital images with the fine digital structure well preserved
under the acceleration rate.

Fig. 3. Sampling using NCSN [31] on MNIST (28× 28). Left: Results by the original
sampling method with 20 sampling iterations. Right: Results by our PDS with 20
sampling iterations. More samples in supplementart material.

Experiments on CIFAR-10. Compared to DDPMs, SGMs have much worse
performance when the number of sample iterations is relatively small. Our PDS
can greatly alleviate this issue as shown in Table. 1, where we evaluate NCSN++
for generating CIFAR-10 (32 × 32) by FID [11] score. We compare PDS with
DDIM [29] and the Analytic-DDIM [1], two representative DDPMs. It is ob-
served that NCSN++ with PDS achieves the best FID scores under different
acceleration cases. We apply filter R described by Eq. (14).
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Table 1. FID scores of vanilla NCSN++ [33], NCSN++ with PDS, DDIM [29], and
Analytic-DDIM [1] under different iterations on CIFAR-10.

T NCSN++ DDIM Analytic-DDIM NCSN++ W/ PDS

100 29.39 6.08 3.55 3.26
200 4.35 4.02 3.39 2.61

Experiments on LSUN [37]. We first evaluate NCSNv2 [32] to generate
church images at a resolution of 96× 96 and tower at a resolution of 128× 128.
For both classes, when accelerated by reducing the iterations from original 3258
to 108 for tower and from original 3152 to 156 for church, we observe that the
original sampling method tends to generate images without sufficient detailed
appearance, similar as the situation on MNIST. Therefore, we also encourage
the frequency part of the diffusion process that responsible for the details. The
results are displayed in Fig. 4. It is evident that PDS can still generate rich fine
details, even when the diffusion process is accelerated up to 20 ∼ 30 times.

Further, we evaluate NCSN++ [33] to generate bedroom and church images
at a resolution of 256 × 256. In this case, we instead observe that the original
sampling method tends to generate images with overwhelming noises once ac-
celerated (left of Fig. 5). We hence set filter R using Eq. (14) to regulate the
frequency part of the diffusion process. As demonstrated in Fig. 5, our PDS
is able to prevent the output images from being ruined by heavy noises. All
these results suggest the ability of our PDS in regulating the different frequency
components in the diffusion process of prior SGMs.

Experiments on FFHQ [18]. We use NCSN++ [33] to generate high-resolution
facial images at a resolution of 1024×1024. Similar as on LSUN, we also find out
that when accelerated, the original sampling method is vulnerable with heavy
noises and fails to produce recognizable human faces. For example, when reduc-
ing the iteration from original 2000 to 100, the output images are full of noises
and unrecognizable. Similarly, we address this issue with our PDS with filter R.
We also apply the space preconditioning to utilize the structural characteristics
shared across the whole dataset. It is shown in Fig. 1, PDS can maintain the
image synthesis quality using only as less as 66 iterations. In summary, all the
above experiments indicate that our method is highly scalable and generalizable
across different visual content, SGMs, and acceleration rates.

Evaluation on running speed. Apart from the quality evaluation on image
synthesis as above, we further compare the running speed between the vanilla
and our PDS using NCSN++ [33]. In this test, we use one NVIDIA RTX 3090
GPU. We track the average wall-clock time of generating a batch of 8 images. As
shown in Table 2, our PDS can significantly reduce the running time, particularly
for high-resolution image generation on the FFHQ dataset.
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Fig. 4. Sampling using NCSNv2 [32] on LSUN (church 96× 96 and tower 128× 128).
Left: The original sampling method with 156 iterations for church and 108 iterations for
tower. Right: PDS sampling method with 156 iterations for church and 108 iterations
for tower. More samples in supplementary material.

Fig. 5. Sampling using NCSN++ [33] on LSUN (church and bedroom) (256 × 256).
Left: The original sampling method with 166 sampling iterations. Right: PDS sam-
pling method with 166 sampling iterations. More examples in supplementary material.

Parameter analysis. We investigate the effect of PDS’s two parameters r and
λ in mentioned Sec. 4.3. We use NCSN++ [33] with the sampling iterations
T = 166 on LSUN (bedroom). It is observed in Fig. 6 that there exists a large
good-performing range for each parameter. If λ is too high or r is too low, PDS
will degrade to the vanilla sampling method, yielding corrupted images; Instead,
if λ is too low or r is too high, which means over-suppressing high-frequency
signals in this case, pale images with fewer shape details will be generated. For
NCSN++ [33], since we directly use the statistics information to construct R,
there is no need to worry about selecting r and λ.

Further analysis. In this section, we study the effect of the solenoidal term
S ▽x log p∗(x) 4 to the diffusion process. As proved in Thm. 2, as long as S is

4 For NCSN++ [33], we use ▽x log pt(x), where pt is the distribution function of x at
t, since ▽x log p∗(x) is inaccessible in NCSN++.
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Table 2. Evaluating the wall-clock time of generating a batch of 8 images. SGM:
NCSN++ [33]. Time unit: Seconds.

Dataset LSUN FFHQ

Vanilla 1173 2030
PDS 90 71

Speedup times 13 29

————–λ = 0.85———λ = 0.9———-λ = 0.91———-λ = 0.92———-λ = 0.95

—
–
r
=

0
.2
5
H
—

—
-r

=
0
.2
H
—

—
-r

=
0
.1
5
H

Fig. 6. Parameter analysis. Sampling produced by NCSN++ [33] w/ PDS on LSUN
(bedroom) (256 × 256) with 166 sampling iterations. We set (r, λ) to a variety of
combination.

skew-symmetric, it will not change the steady-state distribution of the original
process. To verify this claim, we generalize the original process as

dx =
ϵ2

2
(M−1M−T + ωS)▽x log p∗(x)dt+ ϵM−1dw,

where ω is the parameter that controls the scale of S. In Fig. 7, we set S[·] =
Re[F [·]−FT[·]] which is obviously skew-symmetric. We change the scale of ω from
1 to 1000 for evaluating its impact on the output samples. It is observed that ω
does not affect the quality of output images. This verifies that S does not change
the steady-state distribution of the original diffusion process. Additionally, we
perform similar tests with different iterations and other different skew-symmetric
operator S. We still observe no obvious acceleration effect from the solenoidal
term (see supplementary material).
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————-ω = 1——————ω = 10——————ω = 100—————–ω = 1000

Fig. 7. Samples produced by NCSN++ [33] w/ PDS on FFHQ (1024x1024) with differ-
ent solenoidal terms. Sampling iteration: 66. More samples in supplementary material.

6 Conclusion

In this work, we have proposed a novel preconditioned diffusion sampling (PDS)
method for accelerating off-the-shelf score-based generative models (SGMs),
without model retraining. Considering the diffusion process as a Metropolis ad-
justed Langevin algorithm, we reveal that existing sampling suffers from ill-
conditioned curvature. To solve this, we reformulate the diffusion process with
matrix preconditioning whilst preserving its steady-state distribution (the tar-
get distribution), leading to our PDS solution. Experimentally, we show that
PDS significantly accelerates existing state-of-the-art SGMs while maintaining
the generation quality.
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