
Learning to Generate
Realistic LiDAR Point Clouds

Vlas Zyrianov, Xiyue Zhu, and Shenlong Wang

University of Illinois at Urbana-Champaign, IL, USA
{vlasz2,xiyuez2,shenlong}@illinois.edu

Abstract. We present LiDARGen, a novel, effective, and controllable
generative model that produces realistic LiDAR point cloud sensory
readings. Our method leverages the powerful score-matching energy-based
model and formulates the point cloud generation process as a stochastic
denoising process in the equirectangular view. This model allows us to
sample diverse and high-quality point cloud samples with guaranteed
physical feasibility and controllability. We validate the effectiveness of
our method on the challenging KITTI-360 and NuScenes datasets. The
quantitative and qualitative results show that our approach produces more
realistic samples than other generative models. Furthermore, LiDARGen
can sample point clouds conditioned on inputs without retraining. We
demonstrate that our proposed generative model could be directly used
to densify LiDAR point clouds. Our code is available at: https://www.
zyrianov.org/lidargen/

Keywords: LiDAR generation, self-driving, diffusion models

1 Introduction

The past decade witnessed rapid progress in machine perception. Many embodied
systems leverage various sensors and the power of deep learning to perceive
the world better. LiDAR provides accurate 3D geometry of the surrounding
environment, making it one of the most popular sensor choices for various
autonomous systems, including self-driving cars [33,38,77], surveying drones [84],
indoor robots [8], and planetary rovers [9].

Realistic and scalable LiDAR simulation suites are desirable for studying
LiDAR-based perception for various reasons. First, LiDAR is an expensive sensor.
A 64-beam spinning LiDAR costs over 50,000 USD [1]. Not everyone can afford
one, prohibiting physical sensors from being a scalable and customizable solution
for data collection in research. Furthermore, training and testing in safety-critical
situations is crucial for autonomy safety. However, collecting data for extreme
scenarios in the real world is costly, unsafe, and even unethical. Simulations allow
overcoming the above limitations by generating realistic data for long-tail events
and training and testing agents at low cost.

Nevertheless, generating highly realistic and scalable LiDAR data remains
an unsolved challenge. Existing approaches are either unrealistic or not scalable.

https://www.zyrianov.org/lidargen/
https://www.zyrianov.org/lidargen/

2 Zyrianov et al.

The primary paradigm for creating realistic LiDAR data is through model-
based simulation. Early work on LiDAR simulation is purely physics-driven. The
general idea is to mimic the time-of-flight (ToF) sensing process of LiDAR [14].
Specifically, the simulator casts rays in a 3D environment and simulates the
receiver’s returns by measuring the distance of the hitting surface to the sensor.
The reality gap remains substantial because of the imperfect physical model and
artist-designed assets. State-of-the-art simulation [44] combines physical modeling
with learning components to compensate for complicated rendering artifacts. It
produces high realism in both geometry and radiometric appearance. In addition,
such a simulation method also gives complete controllability, allowing us to
rearrange the scene layout and change viewpoint freely. However, the data-driven
approach requires scanning the physical world in advance, which is expensive
and not scalable. Recent approaches [5] investigated asset-free LiDAR generation
using deep generative models to overcome such a limit. Nevertheless, neither
controllability nor realism has yet been achieved.

In this paper, we present LiDARGen, a realistic, controllable and asset-free
LiDAR point cloud generation framework. Following the imaging process of
spinning LiDAR, we treat each LiDAR scan as an equirectangular view image, a
2.5D panoramic representation encoding information about ray angles, reflectance,
and depth range. Generating LiDAR points under this representation guarantees
physical feasibility. Inspired by the success of score-matching diffusion models in
image generation [58], LiDARGen then learns a score function [25,67], modeling
the log-likelihood gradient given a sample in the equirectangular image space.
This score function is trained on real-world LiDAR datasets. In the sampling
stage, our method gradually converts an initial Gaussian random noise point into
a realistic point cloud by progressively applying the score function to remove the
noise via Langevin dynamics [58, 72]. Fig. 1 depicts an overview of our approach.

LiDARGen can be applied to conditional generation, such as LiDAR densifi-
cation, by sampling from a posterior distribution [61]. Specifically, we leverage
Bayes’ rule to calculate the prior gradient based on the score-matching generative
model and the likelihood gradient reflecting the conditions. The generated results
are both realistic and plausible with regard to the controlled input. Notably, we
also enjoy the simplicity – such a controlled generation process does not require
retraining new models.

We validate the effectiveness of our method on the KITTI-360 [38] and
NuScenes [6] datasets. Results demonstrate superior performance compared
to other competing methods in various metrics and visual quality. We further
evaluate LiDAR densification performance, demonstrating LiDARGen’s potential
for downstream tasks.

2 Related Work

This work studies the problem of generating realistic 3D LiDAR point clouds.
It closely relates to point cloud generation and 3D deep learning. We also draw
upon various efforts in energy-based generative models and LiDAR simulation.

Lidar Generation 3

<latexit sha1_base64="0RUc/784gZSrtn1qB9hkwiZymHs=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ae0Q8mkmTY0yYxJpliGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB2MbzO/PaFKs0g+mGlMfYGHkoWMYGMlvyewGQVh+jTre6V+ueJW3TnQKvFyUoEcjX75qzeISCKoNIRjrbueGxs/xcowwums1Es0jTEZ4yHtWiqxoNpP56Fn6MwqAxRGyj5p0Fz9vZFiofVUBHYyC6mXvUz8z+smJrz2UybjxFBJFofChCMToawBNGCKEsOnlmCimM2KyAgrTIztKSvBW/7yKmldVL3Lau2+Vqnf5HUU4QRO4Rw8uII63EEDmkDgEZ7hFd6cifPivDsfi9GCk+8cwx84nz9mPpHd</latexit>x1
<latexit sha1_base64="HV5/FdeQnIbfoIdaUQcvxda2u8Y=">AAACIXicbVDLSsNAFJ34rPUVdelmsAgVpCSlaJdFN7qRCvYBTQ2T6aQdOpOEmYlQQ37Fjb/ixoUi3Yk/Y5JG0NYDA4dzzmXuPU7AqFSG8aktLa+srq0XNoqbW9s7u/reflv6ocCkhX3mi66DJGHUIy1FFSPdQBDEHUY6zvgy9TsPREjqe3dqEpA+R0OPuhQjlUi2Xrc4UiPHjR5j24CWpBxmCkYsuonLxmmqDTmyjfsq/MlexydFWy8ZFSMDXCRmTkogR9PWp9bAxyEnnsIMSdkzjUD1IyQUxYzERSuUJEB4jIakl1APcSL7UXZhDI8TZQBdXyTPUzBTf09EiEs54U6STHeU814q/uf1QuXW+xH1glARD88+ckMGlQ/TuuCACoIVmyQEYUGTXSEeIYGwSkpNSzDnT14k7WrFPKvUbmulxkVeRwEcgiNQBiY4Bw1wBZqgBTB4Ai/gDbxrz9qr9qFNZ9ElLZ85AH+gfX0D0puipg==</latexit>

z0 ⇠ N (0,�2
0I)

<latexit sha1_base64="wb84i9BhQMeC9SnqCscRD+bjgg8=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWakqMuiG5cV7APasWTSTBuayQxJRi1D/8ONC0Xc+i/u/Bsz7Sy09UDgcM693JPjx4Jr4zjfqLCyura+UdwsbW3v7O6V9w9aOkoUZU0aiUh1fKKZ4JI1DTeCdWLFSOgL1vbH15nffmBK80jemUnMvJAMJQ84JcZK972QmJEfpE/TvoNL/XLFqToz4GXi5qQCORr98ldvENEkZNJQQbTuuk5svJQow6lg01Iv0SwmdEyGrGupJCHTXjpLPcUnVhngIFL2SYNn6u+NlIRaT0LfTmYp9aKXif953cQEl17KZZwYJun8UJAIbCKcVYAHXDFqxMQSQhW3WTEdEUWosUVlJbiLX14mrbOqe16t3dYq9au8jiIcwTGcggsXUIcbaEATKCh4hld4Q4/oBb2jj/loAeU7h/AH6PMHvyKSBg==</latexit>x0
<latexit sha1_base64="fGkhywmRQiWLzCCkz0C8X8FGJA8=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwY0mkqMuiG5cV7APaECbTSTt0MgkzN2qJ+RQ3LhRx65e482+ctFlo64GBwzn3cs8cP+ZMgW1/G6WV1bX1jfJmZWt7Z3fPrO53VJRIQtsk4pHs+VhRzgRtAwNOe7GkOPQ57fqT69zv3lOpWCTuYBpTN8QjwQJGMGjJM6uDEMPYD9LHzEvh1Mkqnlmz6/YM1jJxClJDBVqe+TUYRiQJqQDCsVJ9x47BTbEERjjNKoNE0RiTCR7RvqYCh1S56Sx6Zh1rZWgFkdRPgDVTf2+kOFRqGvp6Mg+qFr1c/M/rJxBcuikTcQJUkPmhIOEWRFbegzVkkhLgU00wkUxntcgYS0xAt5WX4Cx+eZl0zurOeb1x26g1r4o6yugQHaET5KAL1EQ3qIXaiKAH9Ixe0ZvxZLwY78bHfLRkFDsH6A+Mzx/2HpPP</latexit>xt�1

<latexit sha1_base64="vTeqz5yVkuyCODTDEZBRztTa2y4=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRIp6rLoxmUF+4AmlMl00g6dTMLMjVhCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATX6DjfVmltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrI0fBeoliJAoE6waT29zvPjKleSwfcJowPyIjyUNOCRrJ8yKC4yDMnmYDHFRrTt2Zw14lbkFqUKA1qH55w5imEZNIBdG67zoJ+hlRyKlgs4qXapYQOiEj1jdUkohpP5tnntlnRhnaYazMk2jP1d8bGYm0nkaBmcwz6mUvF//z+imG137GZZIik3RxKEyFjbGdF2APuWIUxdQQQhU3WW06JopQNDVVTAnu8pdXSeei7l7WG/eNWvOmqKMMJ3AK5+DCFTThDlrQBgoJPMMrvFmp9WK9Wx+L0ZJV7BzDH1ifP5Lakgw=</latexit>xt…

<latexit sha1_base64="XAgfA2uQCUMSjXQTS+0PJxlpBY4=">AAACIXicbVDLSsNAFJ34rPUVdelmsAgVpCSlaJdFN7qRCvYBTQ2T6aQdOpOEmYlQQ37Fjb/ixoUi3Yk/Y5JG0NYDA4dzzmXuPU7AqFSG8aktLa+srq0XNoqbW9s7u/reflv6ocCkhX3mi66DJGHUIy1FFSPdQBDEHUY6zvgy9TsPREjqe3dqEpA+R0OPuhQjlUi2Xrc4UiPHjR5j24SWpBxmCkYsuonLxmmqDTmyzfsq/MlexydFWy8ZFSMDXCRmTkogR9PWp9bAxyEnnsIMSdkzjUD1IyQUxYzERSuUJEB4jIakl1APcSL7UXZhDI8TZQBdXyTPUzBTf09EiEs54U6STHeU814q/uf1QuXW+xH1glARD88+ckMGlQ/TuuCACoIVmyQEYUGTXSEeIYGwSkpNSzDnT14k7WrFPKvUbmulxkVeRwEcgiNQBiY4Bw1wBZqgBTB4Ai/gDbxrz9qr9qFNZ9ElLZ85AH+gfX0D1d6iqA==</latexit>

z1 ⇠ N (0,�2
1I)

<latexit sha1_base64="rULqFdceFdALG9s04drS8Yhz2ZQ=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0WooCUpRV0W3ehGKtgHNLFMppN26EwSZiZCDfkdN/6KGwVF3fojJmkErR4YOJxzLnPvcQJGpTKMd60wN7+wuFRcLq2srq1v6JtbbemHApMW9pkvug6ShFGPtBRVjHQDQRB3GOk447PU79wSIanvXatJQGyOhh51KUYqkfp6w+JIjRw3uov7kTo0Y2hJymGmYsSiy7hiHKTakKNp4KYGv2cu4v1SXy8bVSMD/EvMnJRBjmZff7YGPg458RRmSMqeaQTKjpBQFDMSl6xQkgDhMRqSXkI9xIm0o+zSGO4lygC6vkiep2Cm/pyIEJdywp0kme4oZ71U/M/rhco9sSPqBaEiHp5+5IYMKh+mtcEBFQQrNkkIwoImu0I8QgJhlZSblmDOnvyXtGtV86hav6qXG6d5HUWwA3ZBBZjgGDTAOWiCFsDgHjyCF/CqPWhP2pv2MY0WtHxmG/yC9vkFkxymKg==</latexit>

zt�1 ⇠ N (0,�2
t�1I)

Equirectangular Range and Intensity

3D LiDAR Point Cloud

Fig. 1: Overview. We sample a LiDAR point cloud by progressively denoising the
equirectangular view using a trained score function and Langevin dynamics.

2.1 Point Cloud Generation

Our task of generating LiDAR point clouds belongs to the broad category of
3D point cloud generation [2, 15,17,55,64,66,82,83]. Various works successfully
apply deep generative models to advance this task. Representative works include
variational autoencoder [15,20,83], generative adversarial networks [2,35,55,66,82],
flow-based methods [64,78], and diffusion processes [7, 43,79].

Most previous methods on point cloud generation treat point clouds as fixed-
size data [2,15,55,66,82,83], restricting their practicability in handling real-world
data, where the number of points varies significantly. Recent works [43, 78] start
to look into point cloud generation with a diverse size. However, to achieve this,
these approaches require an additional resampling step from an implicit surface
distribution or an expensive auto-regressive procedure. In our work, inspired
by the physics of LiDAR sensing, we explicitly generate a mask from the range
image, mimicking the ray-drop patterns of LiDAR. This masking operation allows
us to generate point clouds with various sizes and guaranteed physical feasibility.

Most aforementioned point cloud generation methods are developed and
evaluated on clean, synthetic object shapes, such as ShapeNet [10]. Due to several
unique challenges, it remains unclear whether we can directly transfer this success
to LiDAR point clouds. First, LiDAR scans are generated through a time-of-flight
sensing process. An ideal generator should produce a point cloud following light
transport physics. Additionally, LiDAR point clouds are partial observations of
a large scene, making the data highly unstructured, sparse, and non-uniform.
It is therefore much more challenging to generate realistic LiDAR point clouds.
Several recent works explore this direction with moderate success [5, 52]. The
pioneering work [5] applies a variational autoencoder and generative adversarial
network on LiDAR point clouds. Another line of work also leverages GANs but
exploits a hybrid representation [52]. However, the level of realism is still limited.

4 Zyrianov et al.

Fig. 2: LiDARGen sampling output. Left: equirectangular view. Right: 3D point
cloud colored by intensity. Our method learns to generate cars with highly detailed
structures, drop rays around transparent region,and produce reflectance intensity
for specular objects.
2.2 Deep Learning for Point Clouds

One of the core challenges for generating a 3D point cloud is to select a good
representation.

This subsection briefly categorizes them according to the representation.
Voxelization methods build a dense volumetric representation in the form

of a 3D grid [12,18, 41, 42,49, 77]. 3D convolution could then be directly applied
to such representation. It is simple and straightforward. However, the dense
voxel representation suffers from resolution loss and inefficient memory. Hence,
researchers also improve the 3D voxel method with sparse convolutions [12,18],
hierarchical structures [81] and hybrid representations [41,42].

Many neural networks directly learn to represent the raw point cloud. The
pioneering work PointNet [39, 48, 50] leverages aggregation to collect context
information. Other lines of research propose novel convolutional operators that
can be directly applied on point clouds [24,36,45,56,62,65,69,74,76]. Graph-based
methods explicitly create graph structures from the point cloud and exploit graph
neural networks onto the structures [56,68,71,85].

Another popular line of research models 3D data by projecting it onto 2D
perspectives [11,28,33,34,46,63,77]. One can then directly apply 2D deep learning
algorithms for 3D tasks. In these works, the depth value is often encoded in the
2D map, providing partial yet compact information about 3D. Bird’s eye view
representation [33,77] is established through orthographically projecting the
3D point cloud along the vertical direction. Perspective projection obtains
a 2D representation that resembles human vision. Several early works exploit
perspective projection to produce images from multiple views and fuse the
decision in 3D [11, 63]. The most closely related representation to us is the
equirectangular view representation, which encodes the polar coordinate
into a 2.5D image [13,46,73]. It provides a panoramic view of the surrounding
scene that closely resembles the imaging process of LiDAR.

2.3 LiDAR Simulation

LiDAR simulation aims to produce a realistic LiDAR point cloud by mimicking
the physical process of its imaging [3,14,23,30,44,47,57,70,75,75]. Physical-based
LiDAR simulation uses raycasting methods to simulate LiDAR. Ray intersections
are calculated by shooting rays from the origin sensor position outwards onto a
geometry surface of the environment. Most self-driving and robotics simulators

Lidar Generation 5

(e.g., CARLA [14] and Gazebo [30]) typically use this approach. However, physical-
based approaches can suffer from a lack of realism because it requires very
high-quality 3D assets (e.g., car models with material reflectance information,
detailed maps with realistic foliage, etc.), and many LiDAR effects are difficult
to simulate (e.g., atmospheric noise or LiDAR ray drop, which occurs when a
LiDAR ray reflects off a surface and never gets a reading back). To approach
this problem, research has recently focused on building data-driven LiDAR
simulations [3, 23, 44, 70]. The representative work, LiDARSim [44] leverages
machine learning models to learn ray-dropping patterns and exploits 3D assets
that are built from modeling the urban environment. Many cut-and-paste data
augmentation techniques could also be treated as a special form of LiDAR
simulation, where objects are removed, inserted, or rearranged into a real LiDAR
point cloud to create new ones. However, these methods build upon manipulating
real-world point cloud data, restricting their scale and controllability. Furthermore,
object insertion often aims to improve the performance of specific perception
methods with little consideration for physical plausibility and realism [16,19,37].

3 Background

3.1 Energy-based Models

Given a dataset {x1, ...xN}, where each data sample xi is assumed to be indepen-
dently sampled from an underlying distribution, energy-based generative models
aim to find a probability model in the following form that best fits the dataset:
p(x) = e−Eθ(x)

Zθ
where the energy function Eθ(x) : RD → R is a real-valued

function and θ represents its learnable parameters. Zθ is the normalization term
Zθ =

∫
e−Eθ(x)dx that ensures the p(x) to be a valid probability. Energy-based

modeling is a family of expressive yet general probabilistic models that capture
underlying dependencies among associated variables in high-dimensional space.
Many generative models are instantiations of energy-based models, such as re-
stricted Boltzmann machine [22], conditional random field [32], factor graphs [31]
and recent deep energy-based generative models [58, 60]. Nevertheless, learning a
generic energy model by maximizing log-likelihood is difficult, since computing
the partition function Zθ or estimating its gradient ∇θ logZθ is computationally
intractable due to the integration over a high-dimensional space.

3.2 Score-based Energy Models

To alleviate this problem, researchers try to approximate the computation of the
log-likelihood (or the gradient of the partition), with methods such as pseudo-
likelihood [4], variational inference [29], and contrastive divergence [22]. Other
methods bypass it using other learning objectives to train energy-based models,
such as structured loss minimization [21]. Among them, score matching [26]
recently became a popular choice thanks to its simplicity. Formally speaking, the

6 Zyrianov et al.

goal of score matching is to minimize the following objective:

Epdata(x)

[
tr(∇2

x log pθ(x)) +
1

2
∥∇ log pθ(x)∥22

]
(1)

As shown in this equation, the objective only involves the first and second-order
gradient w.r.t. the x, both of which are independent of the partition function.

Based on this, Hyvarinen [26] proposes the score-based model. It directly
models the gradient of log-likelihood log p(x) with a parametric score function
sθ(x) = ∇x log p(x) : RD → RD. However, minimizing the original score match-
ing in Eq. 1 involves calculating the Hessian of log-likelihood (gradient of the
score) ∇θsθ(x), which is computationally expensive. Vincent et al. [67] further
reformulates the score matching energy and shows that score-based models could
be more efficiently trained with the following denoising objective:

1

2
Epdata(x)Ex̃∼N (x,σ2I)

[∥∥∥∥s(x̃) + x̃− x

σ2

∥∥∥∥2
2

]
(2)

where x̃ is the Gaussian-noise perturbed sample and σ is the standard deviation.
Sampling from a score-based model sθ(x) = logx pθ(x) can be done with

Langevin dynamics [72]. It is a Markov chain Monte Carlo (MCMC) process that
can be interpreted as a noisy form of gradient ascent. For each step, Langevin
dynamics sums the value of the previous step, the current gradient estimation
based on the score function, and a Gaussian-distributed random noise:

xt = xt−1 +
ϵ

2
∇x log p(xt−1) +

√
ϵzt (3)

where z ∼ N (0, I) and ϵ is the learning rate, which is usually decreased
(annealed) with a schedule [58]. When ϵ → 0 and t → +∞ Langevin dynamics
is convergent to a true samples from the distribution p(x) under certain mild
conditions [58]. The denoising score-matching model and its variants have shown
state-of-the-art performance in data generation [60,79].

4 Method

Our goal is to model the underlying distribution of LiDAR point clouds in an
urban driving scenario. We could then leverage such a generative model to sample
new point clouds or use it for downstream MAP inference tasks. The challenge
of LiDAR generation is to model the diverse structures that exist in the real
world while still maintaining physical plausibility. Towards this goal, we leverage
the denoising score-matching generative model [58] to model the gradient of its
log-probability. Formally speaking, our training dataset consists of a list of raw
LiDAR point clouds {(x1, ri), ...(xN , rN)}, where xi ∈ RDi×3 represents the 3D
location and ri ∈ R is a scalar representing the reflectance intensity value for each
point. Our method learns a score function sθ(x) to approximate ∇x log p(x) with
score-matching [67]. Sampling can then be conducted with Langevin dynamics,

Lidar Generation 7

Ground-Truth LiDARGAN [5] ProjectedGAN [53] Ours

Fig. 3: Qualitative Results for LiDAR Point Cloud Generation on KITTI-360.

which gradually denoises an initial random Gaussian point cloud and returns a
clean and realistic point cloud. Inspired by LiDAR’s imaging process, we leverage
the equirectangular representation as our underlying representation to ensure
physical feasibility and develop an encoder-decoder network on top of it as the
score function. Fig. 1 gives an overview of our approach.

4.1 LiDAR Generation

Input Representation Our model starts by converting the input parameteriza-
tion from an unstructured point cloud sparsely distributed in euclidean space
into a dense multi-channel equirectangular perspective image, with one channel
representing depth and the other representing intensity. More specifically, we
first convert each point from the Cartesian coordinate x = (x, y, z) ∈ R3 into the
spherical coordinate z ∈ (θ, ϕ, d): d =

√
x2 + y2 + z2, θ = arccos z√

x2+y2+z2
, ϕ =

atan2(y, x), where θ is the inclination, ϕ is azimuth and d is the depth range; atan2
is the standard 2-argument arctangent function taking into account the disconti-
nuity across quadrant boundaries of atan(y/x). Furthermore, we remap the depth
range so that it is normalized from 0 to 1: The two-channel rectangular image is
then produced through quantizing the two angles and rasterization. Concretely,
for each point zi = (θi, ϕi, di), ri: I(⌊θi/sθ⌋, ⌊ϕj/sϕ⌋) =

(
1
6 log2(di + 1), 1

255ri
)
.

Both channels of the image are normalized to the range (0, 1) and we use a
logarithm mapping to esure nearby points have a higher geometry resolution. For
simplicity, throughout the rest of section we will also use x to represent the point

8 Zyrianov et al.

cloud in its equirectangular representation. Fig. 2 demonstrates one example of
the range view representation. Our input representation enjoys several benefits.
Firstly, it encodes information into a dense and compact 2D map, allowing us to
exploit efficient network architecture transferred from the 2D image generation
domain. Secondly, due to the ray casting nature, most spinning LiDAR scans will
only return the peak pulse for each beam1. In other words, encoding the point
cloud into this representation will not lose any information, and the generated
point cloud properly reflects the scanning and ray-casting nature of the sensor.
Network Architecture Our score-based network sθ uses a U-Net architec-
ture [51] following its success in image generation [27,59]. Specifically, at each
step, it takes a W ×H × 2 input image and outputs a W ×H × 2 score map at
the same size. We also make important changes suitable for our LiDAR point
cloud generation task. Firstly, standard 2D images have disconnected left and
right boundaries. Hence zero-padding or symmetry padding is often sufficient
for dense prediction. However, equirectangular images are inherently circular.
Applying standard convolutions does not take into account such constraints. To
alleviate this issue, circular convolution [54] treats left and right boundaries
as connected neighbors in its topology. Inspired by this, we substitute all the
convolution and pooling layers in our network with circular versions. Second,
LiDAR point clouds collected from urban driving environments have a highly
structured geometry. And this geometric structure is often viewpoint-aware. For
instance, the depth range of the lower beam might have a strong bias due to the
ground height; the depth range of the frontal facing positions tends to be larger
since the car is mostly driving forward along a straight road. To better encode
this prior, our model takes the angular coordinate as an additional input
to the convolution, similarly to CoordConv [40].
Training One of the difficulties for training denoising score matching models is
the choice of a proper noise level for Eq. 2, which heavily influences the accuracy
of score estimation. In practice, we find that having a noise-conditioned extension
is crucial for its success. More specifically, we expand our score network sθ(x, σi)
to be dependent on the current noise perturbation level σi. At the training stage,
following the noise-conditioned score-matching model [58], we adopt a multi-scale
loss function, with a re-weighting factor for the loss at each noise level:

1

2L

L∑
i=1

σ2
i Epdata(x)Ex̃∼N (x,σ2

i I)

[∥∥∥∥sθ(x̃, σi) +
x̃− x

σ2
i

∥∥∥∥] (4)

where x̃ is the randomly perturbed noisy signal at each level, and σi is the
standard deviation of the noise distribution.
Sampling We exploit annealed Langevin dynamics sampling [59] for our point
generation task to increase sampling efficiency. Specifically, we start from the
highest pretrained noise level and gradually reduce the noise level:

xt = xt−1 + γ
σ2
i

2σ2
L

∇x log sθ(xt−1, σi) + γ
σi

σL
zt (5)

1some sensors return two beams for a small fraction of beams

Lidar Generation 9

where γ is the learning rate and σL is the smallest noise level. The final step of
Langevin dynamic sampling gives us a clean equirectangular range image. We
unproject this resulting image back into 3D Cartesian space to recover the 3D
point cloud. Please refer to Fig. 1 for the full sampling procedure.

4.2 Posterior Sampling

Learning the unconditional prior distribution p(x) of LiDAR point clouds enables
many applications. In particular, we often expect our generated LiDAR point
cloud to satisfy a specific property or to be consistent with certain conditions. For
instance, we might want to create a LiDAR point cloud that agrees with some
partial observation; or we might generate a LiDAR point cloud conditioned on
its semantic layout. Conventional methods, such as GANs, often require training
different conditional generative models for each task. However, thanks to the
gradient-based approach used in score-based models, we could efficiently conduct
the tasks mentioned above with only the pretrained unconditional generation
model p(x). Next, we will show how to achieve this in LiDARGen.

Specifically, given a pretrained generation model p(x) and an input condition
y, we formulate the agreement between the condition y and the LiDAR point
cloud x as a likelihoood function p(y|x). Our goal is to sample new point cloud
that reflect the input condition p(x|y). According to the Bayes’ rule we have:

p(x|y) = p(y|x)p(x)/p(y),∇x log p(x|y) = ∇xp(y|x) +∇xp(x) (6)

where ∇x log p(x) is our pretrained score function sθ(x). In many situations, the
likelihood model has an analytical gradient or is a neural network; hence calcu-
lating the gradient with respect to x is straightforward. We, therefore, leverage
the following Langevin dynamics to sample from the posterior distribution:

xt = xt−1 +
ϵ

2
(∇xsθ(xt−1) +∇x log p(y|xt−1)) +

√
ϵzt. (7)

Next, we will discuss three concrete applications of posterior sampling.
LiDAR Densification Spinning LiDAR used on autonomy is expensive due
to its complicated mechanical design. In particular, the price of LiDAR sensors
grows exponentially as the number of beams increases. Therefore, there is a
practical need to produce high-beam LiDAR readings with a low-beam model.
Given a low-beam LiDAR point cloud y, our goal is to recover its high-beam
version x. Assuming that m is the visibility mask denoting pixels with a provided
gt ray, the gradient of the posterior can be computed as follows:

∇x log p(x|y) = ∇x

(
log p(x) +

λ

2
||(x− y)⊙m||2

)
= sθ(x) + λ [(x− y)⊙m] ,

where ⊙ is the Hadamard product. Intuitively, each Langevin dynamic step
pushes the samples towards the direction of being both realistic and consistent
with the partial observation y.

10 Zyrianov et al.

Reference 16-Beam Input Ours

Reference 4-Beam Input Ours

Fig. 4: Qualitative Results for Unsupervised LiDAR Densification.

5 Experiments

5.1 Experimental Setup

Datasets We train and test our model’s performance on the challenging KITTI-
360 [38] and nuScenes [6] datasets. KITTI-360 contains 81,106 LiDAR readings
from 9 long sequences around the suburbs of Karlsruhe, Germany. The scenes
KITTI-360 covers are diverse, consisting of driving on highways and through
residential and commercial districts. We split the dataset into two parts, where
the first two sequences (30,758 frames) are the testing set, and the rest are used
for training and cross-validation. nuScenes contains 297,737 LiDAR sweeps in
the training set and 52,423 LiDAR sweeps in the testing and cross-validation set.
The LiDAR sweeps were collected in the cities of Boston and Singapore. The two
datasets provide different sensors (64 and 32 beams), geographic regions (EU
and NA), and content (suburbs and cities).
Metrics Quantitatively measuring generative models is known to be difficult. In
our work, we leverage three different metrics for evaluation. Maximum Mean
Discrepancy (MMD) is a non-parametric distance between two sets of samples.
It compares the distance between two sets of samples by measuring the mean
squared difference of the statistics of the two. MMD could be measured through
the kernel trick:

MMD =
1

N2

N∑
i

N∑
i′

k(xi,xi′)−
2

NM

N∑
i

M∑
j

k(xi,xj) +
1

M2

M∑
j

N∑
j′

k(xj ,xj′).

For each point cloud we compute a 50× 50 spatial histogram along the ground
plane (x and y coordinates) then use a Gaussian kernel to measure the similarity

Lidar Generation 11

Table 1: Quantitative Results on KITTI-360 [38].Bold is Best; Blue is Second.
MMDBEV ↓ FIDrange ↓ JSDBEV ↓

LiDAR GAN [5] 3.06 × 10−3 3003.8 −
LiDAR VAE [5] 1.00 × 10−3 2261.5 0.161

Projected GAN [53] 3.47 × 10−4 2117.2 0.085

Ours 3.87 × 10−4 2040.1 0.067

between the two. Additionally, inspired by the FID score for image generation,
we evaluate a new Frechet Range Distance (FRD score) on KITTI-360. It
evaluates the squared Wasserstein metric between mean and the covariance of
a LiDAR perception network’s activations from the synthetic samples and true
samples. We choose RangeNet++, which is a encoder-decoder based network
for segmentation pretrained on KITTI-360. To trade-off between quality and
and preserve locality, we randomly choose 4,096 activation from the feature map
of its bottleneck layer to fit the Gaussian distribution. Finally, we report the
Jensen–Shannon divergence (JSD) between the empirical distributions of two
sets of point clouds. We approximate the distribution through a birds-eye view
2D histogram at a resolution 100× 100 for both reference sets and generated sets.

Baselines We have 3 baseline comparisons. The first baseline is the range-view
based VAE-based LiDAR generation model proposed by Caccia et al. [5]. We
have added additional layers and increased the generated range image size to
1024 × 64. We train the models for 165 epochs until convergence. The second
baseline is the GAN-based model from Caccia et al. [5]. The GAN was pre-trained
at a resolution of 256×40 following the original paper2, followed by a upsampling
layer to 1024×40. The last baseline is Projected GAN [53], one of the state-of-art
GAN models for image generation. We adapt ProjectedGAN into our setting and
train it for 3,000 epochs. All the generated range image samples are converted to
a 3D point cloud in Cartesian coordinates for quality comparison.

Implementation Details We use a UNet-like model for the score function.
It takes in a 64x1024x2 (KITTI) or 32x1024x2 (Nuscenes) tensor as input and
outputs the same size, denoting the gradient of log-prob. The U-Net comprises
a stack of 6 down-sampling and a stack of 6 upsampling blocks, with skip
connections in between. Each block has two convs. Each conv is preceded by
InstanceNorm++ and an ELU activation. Number of channels is 32-64-64-64-
128-128-128-128-64-64-64-32. Our model was trained with Adam optimizer with
a learning rate of 1e-4. For sampling, we use a gradient update step of 2e-6 and 5
iterations per noise level. The initial σ0 is 50, the final σL is 0.01, and the number
of levels is 232. To train Caccia et al.’s [5] models, we used a learning rate of
1e-4. All the models are trained and tested with an Nvidia RTX A4000 GPU.

2we did not manage to make training converge in higher resolution

12 Zyrianov et al.

Table 2: Human Study Results on KITTI-360
Method Percent Prefer Ours

Ours vs. VAE 97%
Ours vs. GAN 96.6%
Ours vs. ProjectedGAN 100%

5.2 KITTI-360 Evaluation

Quantitative Results Tab. 1 shows quantitative results among all the competing
algorithms. From the table we could see that our method produces superior
performance on the FRD score compared against other methods. In terms of
MMD our approach is also ranking high. It is slightly lower than projected GAN,
however both match the histogram well with an MMD score smaller than 1e-4.
As we mention in metric subsection, every metric is a partial evaluation of the
sampling quality, and urge the readers to consider all quantitative metrics, the
human study, and the qualitative results as a holistic evaluation.
Qualitative Results Fig. 3 demonstrates some randomly selected samples from
all the competing algorithms. We also list the true point cloud samples from KITTI
as a reference. From the figure, we could see our approach produces significantly
higher quality samples than the competing algorithms. Specifically, LiDARGAN
captures the overall layout, but fails in producing high-detailed structures, such
as cars, trees, sidewalks, pedestrians, etc. Projected GAN generates reasonable,
detailed structures at near range, but brings significant artifacts at far range.
Ours excel in terms of both realism in layout and geometry details, as well as
diversity in content. Additionally, we provide a zoom-in visualization of our 3D
point cloud in Fig. 2, highlighting the high quality geometric details our method
could offer.
Human Study To evaluate the perceptual quality, we perform an A/B test on
a team of students. Our test system shows a pair of randomly chosen images of
two point cloud sampled from two different methods. Human judges then choose
which one is more realistic. Participates also have access to real KITTI point
clouds for reference. The raw results are shown in Tab. 2. In total, 5 participants
labeled 600 image pairs. At a confidence level of 99% the two-sided test p-value
is smaller than 1e-4, demonstrating statistical significance.

5.3 NuScenes Results

Fig. 5 depicts the qualitative comparison results. From this figure, we can see
that our method still achieves superior results compared to both VAE [5] and
projected GAN [53]. An AB test on a group of four human subjects suggests
that our method is significantly favored over other competing algorithms in 89%
of cases. While achieving superior human study performance, we notice that our
method tends to generate point clouds that concentrate their mass closer to the
viewpoint. As a result, despite superior visual quality, our MMD score at BEV is

Lidar Generation 13

Ground-Truth VAE [5] ProjectedGAN [53] Ours

Fig. 5: Qualitative Results on the nuScenes dataset.

Table 3: LiDAR Densification.
MAE ↓

PUNet [80] 6.88
NN 2.18

Ours 1.23

Table 4: Ablation Study
Coord-aware CircConv FRD MMD

No No 2422.3 7.60× 10−4

Yes No 2251.1 3.94× 10−4

Yes Yes 2040.1 3.87× 10−4

GT Input PUNet Bicubic NN Ours

Fig. 6: Densification Results.

worse than VAE and Projected GAN (2e-3 vs. 1.1e-3 and 6e-5). We will leave
this shrinking effect for future investigation.

5.4 Posterior Sampling

We also evaluate our LIDAR generation model on the task of LiDAR densification.
More specifically, we simulate low-beam LiDAR sensor readings as our sparse
input by selecting a subset of the beams from the raw 64-beam sensors. In this
example, we create 4-beam and 16-beam input as shown in Fig. 4. Following
the posterior sampling procedure described in Eq. 6 and Eq. 7. Fig. 4 depicts
the sparse input, a dense ground-truth reference and our qualitative posterior
sampling results. As shown in the figure, the resulting point cloud is realistic and
reflects the input guidance.

Qualitative Comparison We compare PUNet [80], bicubic interpolation, and
nearest neighbor interpolation with ours on KITTI-360. Quantitative results are
shown in Tab. 3. Qualitative results are shown in Fig. 6. PUNet is B/W as it
does not upsample intensity. Our results suggest that the proposed densification
method is superior to both learned and interpolation approaches.

Downstream Applications We run RangeNet++ semantic seg on densified
point cloud without fine-tuning. (Fig. 7). Applying LiDARGen to densify a sparse
(16 Beam) LiDAR helps RangeNet++ create cleaner results (e.g., the road) and
recover lost details (e.g., the cars in the distance). Our method also achieves
better quantitative results compared to nearest-neighbour up-sampling. Per-point
accuracy is 0.546 (NN) and 0.608 (ours). IOU is 0.394 (NN) and 0.449 (ours).

14 Zyrianov et al.

True Reference Nearest-Neighbor Ours
Fig. 7: RangeNet++ segmentation on densified LiDAR.

5.5 Discussions

Ablation Studies We conduct ablation studies to justify the design choice of our
algorithms. We compare the same score function model in three different settings
(w/o circular conv and w/o coordinate-encoding). As shown in Tab. 4, both help
improve the performance in terms of FRD and MMD. For more information and
qualitative comparison, please refer to the supplementary material.
Limitations Despite producing superior performance and flexibility, LiDARGen
still has several limitations. First, sampling efficiency is one of the major drawback
– LiDARGen takes approximately 12min to sample 36 LiDAR samples in a batch.
We leave it as future work and anticipate that leveraging recent acceleration
techniques for diffusion-based models is a promising direction to alleviate this issue.
In addition, our approach cannot yet pass the Turing test for experienced LiDAR
perception researchers. There are a few artifacts: our samples have degraded
geometric details at far range and tended to have less straight walls than real
samples. We plan to explore multi-modal networks (e.g. hybrid equirectangular
view and bird’s eye view) in the future.

6 Conclusion

We propose LiDARGen, a score-based approach for LiDAR point cloud generation.
Our method samples a realistic point cloud by progressively denoising a noisy
input. We demonstrate that our unconditional generation model could be directly
applied for various conditional generation tasks through posterior sampling. A
human study and perceptional similarity evaluation on the challenging KITTI-360
dataset validates the effectiveness of our method. We hope this approach will
open up the research to provide easy access to realistic LiDAR sensory data
directly from machine learning. We also expect to explore potential applications
of LiDARGen in 3D environment generation and self-driving.

7 Acknowledgement

The authors thank Wei-Chiu Ma and Zhijian Liu for their feedback on early
drafts and all the participants in the human perceptual quality study. The project
is partially funded by the Illinois Smart Transportation Initiative STII-21-07. We
also thank Nvidia for the Academic Hardware Grant.

Lidar Generation 15

References

1. Google’s waymo invests in lidar technology, cuts costs
by 90 percent. https://arstechnica.com/cars/2017/01/
googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/,
accessed: 2012-03-07 1

2. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: ICML (2018) 3

3. Amini, A., Wang, T.H., Gilitschenski, I., Schwarting, W., Liu, Z., Han, S., Karaman,
S., Rus, D.: Vista 2.0: An open, data-driven simulator for multimodal sensing and
policy learning for autonomous vehicles. arXiv preprint arXiv:2111.12083 (2021) 4,
5

4. Besag, J.: Statistical analysis of non-lattice data. Journal of the Royal Statistical
Society: Series D (The Statistician) 24(3), 179–195 (1975) 5

5. Caccia, L., van Hoof, H., Courville, A.C., Pineau, J.: Deep generative modeling of
lidar data. IROS pp. 5034–5040 (2019) 2, 3, 7, 11, 12, 13

6. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. arXiv preprint arXiv:1903.11027 (2019) 2, 10

7. Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie, S., Snavely, N., Hariharan,
B.: Learning gradient fields for shape generation. In: European Conference on
Computer Vision. pp. 364–381. Springer (2020) 3

8. Cao, C., Zhu, H., Choset, H., Zhang, J.: Tare: A hierarchical framework for efficiently
exploring complex 3d environments. In: Robotics: Science and Systems Conference
(RSS), Virtual (2021) 1

9. Carle, P.J., Furgale, P.T., Barfoot, T.D.: Long-range rover localization by matching
lidar scans to orbital elevation maps. Journal of Field Robotics 27(3), 344–370
(2010) 1

10. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An Information-
Rich 3D Model Repository. Tech. Rep. arXiv:1512.03012 [cs.GR], Stanford Univer-
sity — Princeton University — Toyota Technological Institute at Chicago (2015)
3

11. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network
for autonomous driving. In: CVPR (2017) 4

12. Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In: ECCV (2016) 4

13. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical cnns. arXiv preprint
arXiv:1801.10130 (2018) 4

14. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning. pp. 1–16 (2017) 2, 4, 5

15. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object recon-
struction from a single image. In: CVPR (2017) 3

16. Fang, J., Zhou, D., Yan, F., Zhao, T., Zhang, F., Ma, Y., Wang, L., Yang, R.:
Augmented lidar simulator for autonomous driving. IEEE Robotics and Automation
Letters 5(2), 1931–1938 (2020) 5

17. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3d point
cloud processing. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 103–118 (2018) 3

https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/
https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/

16 Zyrianov et al.

18. Graham, B., Engelcke, M., Van Der Maaten, L.: 3d semantic segmentation with
submanifold sparse convolutional networks. In: CVPR (2018) 4

19. Gusmão, G.F., Barbosa, C.R.H., Raposo, A.B.: Development and validation of lidar
sensor simulators based on parallel raycasting. Sensors 20(24), 7186 (2020) 5

20. Han, Z., Wang, X., Liu, Y.S., Zwicker, M.: Multi-angle point cloud-vae: Unsupervised
feature learning for 3d point clouds from multiple angles by joint self-reconstruction
and half-to-half prediction. In: 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV). pp. 10441–10450. IEEE (2019) 3

21. Hazan, T., Keshet, J., McAllester, D.: Direct loss minimization for structured
prediction. Advances in neural information processing systems 23 (2010) 5

22. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural
networks. science 313(5786), 504–507 (2006) 5

23. Hu, J.S., Waslander, S.L.: Pattern-aware data augmentation for lidar 3d object de-
tection. In: 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC). pp. 2703–2710. IEEE (2021) 4, 5

24. Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A.:
Randla-net: Efficient semantic segmentation of large-scale point clouds. In: CVPR
(2020) 4

25. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research 6, 695–709 (2005) 2

26. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research 6(Apr), 695–709 (2005) 5, 6

27. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017) 8

28. Kanezaki, A., Matsushita, Y., Nishida, Y.: Rotationnet: Joint object categorization
and pose estimation using multiviews from unsupervised viewpoints. In: CVPR
(2018) 4

29. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014) 5
30. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source

multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). vol. 3, pp. 2149–2154.
IEEE (2004) 4, 5

31. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on information theory 47(2), 498–519 (2001) 5

32. Lafferty, J.D., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: ICML (2001) 5

33. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast
encoders for object detection from point clouds. In: CVPR (2019) 1, 4

34. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3d lidar using fully convolutional
network. In: RSS (2016) 4

35. Li, C.L., Zaheer, M., Zhang, Y., Poczos, B., Salakhutdinov, R.: Point cloud gan.
arXiv preprint arXiv:1810.05795 (2018) 3

36. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on
X -transformed points. In: NIPS (2018) 4

37. Li, Y., Wen, C., Juefei-Xu, F., Feng, C.: Fooling lidar perception via adversarial
trajectory perturbation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 7898–7907 (2021) 5

38. Liao, Y., Xie, J., Geiger, A.: KITTI-360: A novel dataset and benchmarks for urban
scene understanding in 2d and 3d. arXiv preprint arXiv:2109.13410 (2021) 1, 2, 10,
11

Lidar Generation 17

39. Lin, Z., Feng, M., Santos, C.N.d., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A
structured self-attentive sentence embedding. In: ICLR (2017) 4

40. Liu, R., Lehman, J., Molino, P., Petroski Such, F., Frank, E., Sergeev, A., Yosinski,
J.: An intriguing failing of convolutional neural networks and the coordconv solution.
Advances in neural information processing systems 31 (2018) 8

41. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3d deep learning.
CoRR abs/1907.03739 (2019) 4

42. Liu, Z., Tang, H., Zhao, S., Shao, K., Han, S.: Pvnas: 3d neural architecture search
with point-voxel convolution. IEEE Transactions on Pattern Analysis and Machine
Intelligence pp. 1–1 (2021) 4

43. Luo, S., Hu, W.: Diffusion probabilistic models for 3d point cloud generation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2021) 3

44. Manivasagam, S., Wang, S., Wong, K., Zeng, W., Sazanovich, M., Tan, S., Yang,
B., Ma, W.C., Urtasun, R.: Lidarsim: Realistic lidar simulation by leveraging the
real world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11167–11176 (2020) 2, 4, 5

45. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3d point cloud
understanding. In: ICCV (2019) 4

46. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: Fast and accurate lidar
semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 4213–4220. IEEE (2019) 4

47. Nakashima, K., Kurazume, R.: Learning to drop points for lidar scan synthesis.
In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 222–229. IEEE (2021) 4

48. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: CVPR (2017) 4

49. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.: Volumetric and
multi-view cnns for object classification on 3d data. In: CVPR (2016) 4

50. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In: NeurIPS (2017) 4

51. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical image computing and
computer-assisted intervention. pp. 234–241. Springer (2015) 8

52. Sallab, A.E., Sobh, I., Zahran, M., Essam, N.: Lidar sensor modeling and data
augmentation with gans for autonomous driving. arXiv preprint arXiv:1905.07290
(2019) 3

53. Sauer, A., Chitta, K., Müller, J., Geiger, A.: Projected gans converge faster. In:
Advances in Neural Information Processing Systems (NeurIPS) (2021) 7, 11, 12, 13

54. Schubert, S., Neubert, P., Pöschmann, J., Protzel, P.: Circular convolutional neural
networks for panoramic images and laser data. 2019 IEEE Intelligent Vehicles
Symposium (IV) pp. 653–660 (2019) 8

55. Shu, D.W., Park, S.W., Kwon, J.: 3d point cloud generative adversarial network
based on tree structured graph convolutions. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 3859–3868 (2019) 3

56. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In: CVPR (2017) 4

57. Sobczak, Ł., Filus, K., Domański, A., Domańska, J.: Lidar point cloud generation
for slam algorithm evaluation. Sensors 21(10), 3313 (2021) 4

18 Zyrianov et al.

58. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. In: Advances in Neural Information Processing Systems. pp. 11895–
11907 (2019) 2, 5, 6, 8

59. Song, Y., Ermon, S.: Improved techniques for training score-based generative models.
In: Advances in Neural Information Processing Systems (NeurIPS) (2020) 8

60. Song, Y., Garg, S., Shi, J., Ermon, S.: Sliced score matching: A scalable approach
to density and score estimation. arXiv preprint arXiv:1905.07088 (2019) 5, 6

61. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.:
Score-based generative modeling through stochastic differential equations. In: 9th
International Conference on Learning Representations (ICLR) (2021) 2

62. Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.:
Splatnet: Sparse lattice networks for point cloud processing. In: CVPR (2018) 4

63. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.G.: Multi-view convolutional
neural networks for 3d shape recognition. In: ICCV (2015) 4

64. Sun, Y., Wang, Y., Liu, Z., Siegel, J.E., Sarma, S.E.: Pointgrow: Autoregressively
learned point cloud generation with self-attention. arXiv preprint arXiv:1810.05591
(2018) 3

65. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: ICCV (2019) 4

66. Valsesia, D., Fracastoro, G., Magli, E.: Learning localized generative models for 3d
point clouds via graph convolution (2018) 3

67. Vincent, P.: A connection between score matching and denoising autoencoders.
Neural computation 23(7), 1661–1674 (2011) 2, 6

68. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set
feature learning. In: ECCV (2018) 4

69. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric contin-
uous convolutional neural networks. In: CVPR (2018) 4

70. Wang, T.H., Amini, A., Schwarting, W., Gilitschenski, I., Karaman, S., Rus, D.:
Learning interactive driving policies via data-driven simulation. arXiv preprint
arXiv:2111.12137 (2021) 4, 5

71. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. TOG (2019) 4

72. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics.
In: Proceedings of the 28th international conference on machine learning (ICML-11).
pp. 681–688 (2011) 2, 6

73. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: Convolutional neural nets with
recurrent CRF for real-time road-object segmentation from 3d lidar point cloud.
CoRR abs/1710.07368 (2017) 4

74. Wu, W., Qi, Z., Fuxin, L.: Pointconv: Deep convolutional networks on 3d point
clouds. In: CVPR (2019) 4

75. Xiao, A., Huang, J., Guan, D., Zhan, F., Lu, S.: Synlidar: Learning from syn-
thetic lidar sequential point cloud for semantic segmentation. arXiv preprint
arXiv:2107.05399 (2021) 4

76. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: Spidercnn: Deep learning on point sets
with parameterized convolutional filters. In: ECCV (2018) 4

77. Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3d object detection from point
clouds. In: Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. pp. 7652–7660 (2018) 1, 4

78. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3d
point cloud generation with continuous normalizing flows. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 4541–4550 (2019) 3

Lidar Generation 19

79. Yang, M., Dai, B., Dai, H., Schuurmans, D.: Energy-based processes for exchangeable
data. In: International Conference on Machine Learning. pp. 10681–10692. PMLR
(2020) 3, 6

80. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-net: Point cloud upsampling
network. In: CVPR (2018) 13

81. Yuan, Y., Wang, J.: Ocnet: Object context network for scene parsing.
arXiv:1809.00916 (2018) 4

82. Zamorski, M., Zieba, M., Nowak, R., Stokowiec, W., Trzcinski, T.: Adversarial
autoencoders for generating 3d point clouds. arXiv preprint arXiv:1811.07605 2
(2018) 3

83. Zamorski, M., Zieba, M., Nowak, R., Stokowiec, W., Trzciński, T.: Adversarial
autoencoders for generating 3d point clouds. arXiv preprint arXiv:1811.07605 (2018)
3

84. Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics:
Science and Systems. vol. 2, pp. 1–9. Berkeley, CA (2014) 1

85. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: Enhancing local neighborhood
features for point cloud processing. In: CVPR (2019) 4

	Learning to Generate Realistic LiDAR Point Clouds

