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A Inter-dimensional independence of Inception features

Fig. A shows the histogram of the PCC value between each pair of dimensions of
Inception features, which shows near independence between feature dimensions
(Section 3). The scatter plots in Fig. B also confirm approximate independence
between dimensions.

Fig. A: Histogram of PCCs between pairs of Inception feature dimensions.

B Experimental Setup

For target images, we use the CIFAR10 [8], CelebA [9], Flicker-Face-HQ (FFHQ) [6],
and ImageNet [2] datasets. We use the validation split of the datasets or the test
split only if the validation split is not provided. For evaluation of generative mod-
els, we generate images using the pre-trained models as follows: DCGAN [10]
trained on the CIFAR10 dataset, ProGAN [5] trained on the CelebA dataset,
BigGAN-deep-256 [1], ADM [3], E-VDVAE [4], trained on the ImageNet dataset,
and StyleGAN [6], StyleGAN2 [7], and E-VDVAE [4] trained on the FFHQ
dataset.
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Fig. B: Scatter plots showing the inter-dimensional relationships of Inception
features for selected feature dimensions (200th, 800th, 1400th, and 2000th). The
corresponding PCC values are also shown. The histogram of each dimension is
shown on the diagonal.

We use the pre-trained DCGAN [10] model1 trained on CIFAR10 to generate
32×32 images. We generate 256×256 images using the pre-trained BigGAN [1]
model2 trained on ImageNet. Since BigGAN is trained on the conditional class
label of ImageNet, we generate a fixed number (50) of images for each class. We
also apply the truncation trick for BigGAN with varying the threshold value
of latent vectors. In general, a smaller threshold value yields a lower level of
diversity of the generated images. We use five different threshold values: 0.2, 0.4,
0.6, 0.8, and ∞ (i.e., no truncation trick). We use StyleGAN [6] that is trained on
FFHQ to generate high-resolution face images having a resolution of 1024×1024
pixels. We use samples downloaded from its official website3. For StyleGAN2,
We use the pre-trained model4 [7] that is also trained on the FFHQ dataset. We
use the pre-trained ADM-C and ADM-U [10] models5 trained on ImageNet with
classifier guidance and up-sampling, respectively. For E-VDVAE [4], we use the
pre-trained models6 trained on ImageNet and FFHQ datasets.

1 https://github.com/csinva/gan-vae-pretrained-pytorch
2 https://tfhub.dev/deepmind/biggan-deep-256/1
3 https://github.com/NVlabs/stylegan
4 https://github.com/NVlabs/stylegan2-ada-pytorch
5 https://github.com/openai/guided-diffusion
6 https://github.com/Rayhane-mamah/Efficient-VDVAE
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(a) CIFAR10

(b) CelebA

(c) ImageNet

(d) FFHQ

Fig. C: Histograms of the estimated parameters (µ, σ, β) for the 2048 dimensions
of the Inception features for images from (a) CIFAR10, (b) CelebA, (c) Ima-
geNet, and (d) FFHQ datasets.

The initial values of the parameters in our method are so determined that fast
convergence of the maximum likelihood estimation using (10) is achieved. The
initial value of µ is set to the peak location of the histogram of Inception features
for each dimension. The initial values of σ and β are empirically set to 1.5σ̂ and
0.67, respectively, where σ̂ is the sample standard deviation. It takes about 1.5
hours to estimate the distributions of 2048-dimensional Inception features for
50000 images using a 3.7GHz quad-core Intel Xeon® CPU.

C More Results of Density Estimation

To supplement the results in Section 5.3, Fig. C shows the histograms of the
parameters for all feature dimensions.
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Fig.D: Example of disturbed images.

D Disturbed Images

An example of disturbed images used in Section 5.4 is shown in Fig. D.
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