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1 Computational Cost Analysis

In this section, we provide an example of time complexity reduction induced by
the local glimpse proposal scheme. Generative models without the local glimpse
proposal scheme span each mixture component across the entire observation
[1][3][4][8]. For point cloud data, this formulation leads to a huge computational
cost. In particular, the computational cost is mainly from the computation of
the Chamfer mixture loss, which requires the bidirectional closest point search
between the ground truth and the estimated point cloud. For a scene consisting
of 10,000 points, the mixture loss requires the computation of distances between
50 million (50,000,000) unique pairs of points per component. By contrast, the
local glimpse proposal scheme reduces the time complexity by confining the
matching computation within each glimpse since the weights for points outside
of the glimpse are set as 0. In general, a glimpse containing 1,000 points (10%
of 10,000) leads to 500k (1% of 50,000,000) unique pairs of points, which is
much less compared with the computation on the entire point cloud. Thus, with
non-overlapping voxel grid cells, the total time complexity should be much lower
compared to a full-scope mixture component, which is the key to scalability. The
exact time complexity reduction is determined by both glimpse size and point
density.

2 Hyperparameters and Prior Distributions

In this section, we present hyperparameters and the prior distributions of latent
variables. We use a quadruple (n,m, p, q) to denote annealing of hyperparameter
values from n to m, starting from iteration p to iteration q. Glimpse-related
hyperparameters are shown in Table 1. Priors are specified in Table 2. Other
hyperparameters are specified in Table 3.
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Term Value

spatial attention grid cell size 1
glimpse max apothem 1
glimpse min apothem 0.25
glimpse max center offset 0.75

Table 1: Glimpse related hyperparameters.

Term Value

µapothem (2,−1, 10000, 20000)
βpres (0.01, 0.0001, 0, 15000)

zwhere prior N (0, 0.5)

zapothem prior N (µapothem, 0.5)
zpres prior Bernoulli(βpres)

zwhat prior N (0, 1)

zmask prior N (0, 1)

Table 2: Prior distributions.

Term Value

CML σc (0.1, 0.05, 10000, 15000)
CML dist. N (0, σc)
relaxed Bernoulli temp (2.5, 0.5, 0, 10000)
PGD initial distribution N (0, 0.3)

Table 3: Other hyperparameters.

Mixing Weight. Recall that the mixing weight defined in our main paper for
the forward Chamfer Likelihood implies the segmentation of the point cloud. To
encourage the mixing weight to approach 0 or 1, we include a temperature factor
10 into the computation of αx

i , and the mixing weight is implemented as

αx
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i )
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Weights on KL Divergence. Here, we introduce the detailed formulation of
LKL, the second term of the evidence lower bound, in the following.
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LKL(z
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DKL(p(z
what)||q(zwhat|x))+

DKL(p(z
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(2)

Note that the weight w for KL Divergence of zpres is to encourage glimpse
rejection. More specifically, w is set to 10 for UOR dataset and is annealed
from 10 to 20 in the first 15000 steps for UOT dataset in our experiments.
Following the SPAIR model [2], we also set the weight for KL divergence of
the rest latent variables with zpres so that the rejected glimpses won’t produce
penalties encouraging glimpse rejection.
Training. We use Adam [6] optimizer with the learning rate set to 0.0001 during
our training process.

3 Soft Boundary

(a) Weight function. (b) Gradient.
(c) Glimpse bound-
ary structure.

Fig. 1: Visualization of glimpse boundary structure, glimpse boundary weights
and the corresponding gradients. Fig. 1c illustrates the glimpse structure where
c is the glimpse center and x is an point living in the glimpse boundary. The
linear decay function (orange) and parabola decay function (blue) are plotted in
Fig. 1a with the corresponding gradients shown in Fig. 1b.

As shown in Fig 1c, we divide a glimpse into glimpse interior of apothem r

and glimpse boundary of width w. For an input point x in glimpse Gi with center
location ci, its boundary weight bxi ∈ (0, 1] is defined as

bxi =

{

1, x ∈ glimpse interior;

f(d, w), x ∈ glimpse boundary,
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where f is a continuous function and d = ∥x− ci − r∥inf .
One example of f is a linear decay function f(d, w) = 1− d

w
. Another example

is a parabola decay function f(d, w) = ( d
w
)2−2( d

w
)+1, which generates a larger

gradient compared with the linear one when d ≤ w
2 , and a smaller gradient,

otherwise. For the case where the distance between two objects is smaller than
w but larger than w

2 , the parabola decay function is preferred to prevent overly
large glimpses. In this work, we use the parabola decay function and set the
width of the glimpse boundary as w = 0.75r.

From Fig. 1a and Fig. 1b, we observe that both types of boundary decay func-
tion f provide a negative gradient when points are being excluded (increasing
d
w

value) from a glimpse.

4 Model Structure

In this section, we introduce the detailed model structure. To make our work
self-contained we briefly introduce the PointConv layer [10] and PointGNN layer
[9] below. PointConv generalizes convolution operation from discrete domain to
continuous domain. One PointConv layer is specified with (cmid, cout) (See Fig. 2
for structure illustration). To make PointConv invariant of the total number of
input points, we divide the output feature value by the total number of input
points.

One PointGNN layer contains three two-layer MLPs which areMLPh,MLPf

and MLPg, respectively and the structure can be summarized by

souti = g(max
j∈Ni

{f(xj − xi + h(sini ), sini )}, sini ), (3)

where sini and souti are the features of the point i before and after PointGNN
layer, Ni defines the points connected to i, xi indicates the 3D coordinate of the
point i. The max operation is performed over all points j that are connected
to the point i. For all PointGNN layers, we consistently set hhidden = 32 and
hout = 3. Thus, we define the structure of a PointGNN layer with parameters
as (fhidden, fout, ghidden, gout). We also list the parameters for other operations
such as the radius for radius graph operation, the voxel cell size for voxel pooling
operation, and the output size for linear layers in following tables. Table 10 shows
the structure of voxel grid encoder. The structure of glimpse VAE including the
glimpse encoder, the mask decoder, the glimpse Point Graph Flow, and the
Multi-layer PointGNN is presented in Table 4, Table 7, Table 6 and Table 9,
respectively. The structure of global VAE including the Global encoder and
the Global Point Graph Flow is detailed in Table 8 and Table 5. Input point
coordinates are reduced by a factor of 16.
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Layer/Operation Parameter

Radius Graph 0.25
PointGNN (8, 8, 8, 8)
LayerNorm
Voxel Pool 0.25
PointConv (16, 32)
Celu
Radius Graph 0.5
PointGNN (32, 32, 32, 32)
LayerNorm
Voxel Pool 0.25
PointConv (64, 128)
Celu
Radius Graph 1.0
PointGNN (128, 128, 128, 128)
LayerNorm
PointConv (128, 256)
Celu
Linear 256

Table 4: Glimpse encoder.

Layer/Operation Parameter

Random Sampling
Radius Graph 0.2
PointGNN (128, 128, 128, 64 + 3)
Radius Graph 0.1
PointGNN (64, 64, 64, 32 + 3)
Radius Graph 0.05
PointGNN (16, 16, 16, 3)

Table 5: Global Point Graph Flow.

Layer/Operation Parameter

Random Sampling
Radius Graph 0.2
PointGNN (128, 128, 128, 64 + 3)
Radius Graph 0.1
PointGNN (64, 64, 64, 32 + 3)
Radius Graph 0.05
PointGNN (16, 16, 16, 3)

Table 6: Glimpse Point Graph Flow.

Layer/Operation Parameter

PointConv (64, 32)
Celu
PointConv (16, 16)
Celu
PointConv (8, 8)
Celu
Linear 1

Table 7: Mask decoder.

Layer/Operation Parameter

Radius Graph 0.25
PointGNN (8, 8, 8, 8)
LayerNorm
Voxel Pool 0.25
PointConv (16, 32)
Celu
Radius Graph 0.5
PointGNN (32, 32, 32, 32)
LayerNorm
Voxel Pool 0.25
PointConv (64, 128)
Celu
Radius Graph 1.0
PointGNN (128, 128, 128, 128)
LayerNorm
PointConv (128, 256)
Celu
PointConv (256, 512)

Table 8: Global encoder.

Layer/Operation Parameter

Random Sampling
Radius Graph 1.0
PointGNN (128, 64, 64, 64)
PointGNN (32, 32, 32, 32)
PointGNN (16, 16, 16, 8)
Linear 1

Table 9: Multi-layer PointGNN.
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Layer/Operation Parameter

Radius Graph 0.0625
PointConv (8, 8)
Celu
PointConv (16, 16)
Celu
PointConv (32, 32)
Celu
Voxel Pool 0.03125
PointConv (32, 64)
Celu
Radius Graph 0.03125
PointGNN (64, 64, 64, 64)
LayerNorm
Voxel Pool 0.0625
PointConv (64, 128)
Celu
Radius Graph 0.125
PointGNN (128, 128, 128, 128)
LayerNorm
Voxel Pool 0.125
PointConv (128, 256)
Celu
Radius Graph 0.25
PointGNN (256, 256, 256, 256)
PointGNN (256, 256, 256, 256)
PointGNN (256, 256, 256, 256)
LayerNorm
PointConv (256, 256)
Linear 12

Table 10: Voxel grid encoder.

Fig. 2: Structure of PointConv.
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5 Dataset Spec

We provide more details about the UOR and UOT dataset in this section. For
both datasets, in each scene, 2-5 objects are uniformly randomly selected (with
replacement) from the candidate set and placed at random locations in the
scene with the constraint that they cannot largely overlap with each other (slight
overlapping and touching are permitted). All objects are randomly rotated along
y-axis.

For the point cloud construction, we convert the 10 depth frames for each
scene into 10 partial point clouds. We then merge the 10 partial point clouds
into a complete scene point cloud. To down sample the point clouds, we apply
voxel grid pooling with cell size 0.15 on the scene point clouds. For all points in
one cell, the coordinates are aggregated by average pooling operation.

The intrinsic parameters of cameras are shown in Table 11. The object pool
for UOR and UOT are presented in Table 12 and Table 13, respectively, where
we also specify the detailed dimension range of each object.

Term Value

focal length 10 mm
sensor size x 16 mm
sensor size y 16 mm
clipping plane 20 m

Table 11: Camera intrinsic parameters

Fig. 3: Data captured by each camera in UOR dataset (top) and UOT dataset
(bottom). From left to right are RGB, depth, normal, instance label, seman-
tic label and constructed point cloud. Point clouds are obtained by merging
multi-view depth images. Instance labels and semantic labels are used to train
PointGroup [5] baseline. RGB images and normal maps are not used in this
work.
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To show that our dataset is indeed challenging for models capturing spatial
structure correlations, we plot the empirical closest neighbor distance dis-

tribution of our data generation process. To obtain the distribution, for each
object in each scene, we note down the distance between the center of this
object and the center of its closest neighbor (the surface to surface distance is
hard to compute). Thus, distance zero means a complete overlapping between
two objects, which is not physically plausible. In our UOR and UOT dataset
the minimum distance is set to one (not applicable to Object Matrix layout).
With object dimensions specified in Table 12 and Table 13, we consider distance
below 2 to be extremely close. Thus, reading from Fig.4, for scenes containing
2-5 objects, 25 percent of objects are spawned close to at least one other object.
For scenes containing 6-12 objects, the number goes up to more than 60 percent.
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Fig. 4: Closest neighbor distance distribution of our data generation process for
2-5 objects (above), and for 6-12 objects (below)
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geometry figure
min
length/max
length

min
width/max
width

min
height/max
height

Capsule (standing) 0.75/1.25 0.75/1.25 1.5/2.5

Capsule (flat) 1.5/2.5 1.5/2.5 0.75/1.25

Cube 0.75/1.25 0.75/1.25 0.75/1.25

Cylinder (standing) 0.75/1.25 0.75/1.25 1.5/2.5

Cylinder (flat) 1.5/2.5 1.5/2.5 0.75/1.25

Hexagonal Prism 1/1.33 1/1.33 0.5/0.83

Sphere 0.75/1.25 0.75/1.25 0.75/1.25

Rhombicosidodecahedron 0.75/1.25 0.75/1.25 0.75/1.25

Square Antiprism 1/1.5 1/1.5 0.67/1

Triangular Prism (standing) 0.75/1.5 0.75/1.5 0.75/1.5

Triangular Prism (flat) 0.75/1.5 0.75/1.5 0.75/1.5

Table 12: UOR object pool.
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object figure
min
length/max
length

min
width/max
width

min
height/max
height

Chess piece 0.69/0.86 0.69/0.86 1.43/1.80

Bear 1.1/1.46 0.71/0.95 1.06/1.41

Box 0.98/1.23 0.98/1.23 0.67/0.84

Car 1.17/1.96 0.74/1.24 0.70/0.78

Cup 0.87/1.10 0.70/0.87 0.92/1.16

Kettle 0.85/1.13 0.69/0.91 1.01/1.35

Pot 1.06/1.42 0.88/1.17 0.80/1.07

Tissue 1.05/1.31 0.95/1.18 1.16/1.44

Toaster 0.58/0.78 1.01/1.36 0.61/0.81

Table 13: UOT Object pool. Some object meshes are obtained from ai2thor [7]
environment.
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6 More results

We show more segmentation results on UOR in Fig. 5 and UOT in Fig. 6.
To provide a more comprehensive inspection, we further display examples of
failure segmentation on UOR in Fig. 7, and UOT in Fig. 8, respectively. More
segmentation results on scenes with 6 − 12 objects are shown in Fig. 9 and
Fig. 10. In Fig. 11, we show more examples on Object Matrix scenes to further
demonstrate the scalability of our model.

(a) (b) (c) (d)

Fig. 5: UOR segmentation results. Column (a) and column (c) are instance labels.
Column (b) and column (d) are the corresponding SPAIR3D segmentation.
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(a) (b) (c) (d)

Fig. 6: UOT segmentation results. Column (a) and column (c) are instance la-
bels. Column (b) and column (d) are the corresponding SPAIR3D segmentation
results.

(a) (b) (c) (d)

Fig. 7: UOR failure cases. Column (a) and column (c) are instance labels. Col-
umn (b) and column (d) are the corresponding SPAIR3D segmentation. Failed
cases reflect that (1) objects clustered together are more vulnerable to mis-
segmentation, and (2) objects with extreme dimensions, e.g. cylinder, are vul-
nerable to over-segmentations.
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(a) (b) (c) (d)

Fig. 8: UOT failure cases. Column (a) and column (c) are instance labels. Column
(b) and column (d) are the corresponding SPAIR3D segmentation results.

(a) (b) (c) (d)

Fig. 9: More results on UOR scenes with 6-12 objects. Column (a) and column (c)
are instance labels. Column (b) and column (d) are the corresponding SPAIR3D
segmentation.
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(a) (b) (c) (d)

Fig. 10: More results on UOT scenes with 6-12 objects. Column (a) and col-
umn (c) are instance labels. Column (b) and column (d) are the corresponding
SPAIR3D segmentation.
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(a) (b) (c) (d)

Fig. 11: More results on UOR and UOT Object Matrix scenes. Column (a) and
column (c) are instance labels. Column (b) and column (d) are the corresponding
SPAIR3D segmentation results.
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To provide further analysis of our framework, we train our model on the UOR
dataset but with different point densities or with noise (but without further hy-
perparameter tunning). First, we set the point density to 2

3 of the standard
density. Our model achieves AIR: 0.921, SC: 0.827, and mSC: 0.836. Quali-
tative results are shown in Fig. 12. Then, we set the point density to 4

3 of that of
the standard density Our model achieves AIR: 0.914, SC: 0.831, and mSC:

0.833. Qualitative results are shown in Fig. 13. Finally, we add Gaussian dis-
tributed small perturbations to point coordinates. In particular, the standard
deviation for the noise is 0.08, which corresponds to objects with the average
object radius around 1. Our model achieves AIR: 0.903, SC: 0.817, and mSC:

0.825. Qualitative results are shown in Fig. 14. The three results demonstrate
the robustness of our model against input data with varying point density and
noises.

(a) (b) (c) (d)

Fig. 12: Segmentation results on UOR low density variant. Column (a) and col-
umn (c) are instance labels. Column (b) and column (d) are the corresponding
SPAIR3D segmentation results.
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(a) (b) (c) (d)

Fig. 13: Segmentation results on UOR high density variant. Column (a) and
column (c) are instance labels. Column (b) and column (d) are the corresponding
SPAIR3D segmentation results.

(a) (b) (c) (d)

Fig. 14: Segmentation results on UOR noisy variant. Column (a) and column (c)
are instance labels. Column (b) and column (d) are the corresponding SPAIR3D
segmentation results.



18 TY. Wang et al.

Below we show more we show more reconstruction visualization in individual
glimpses.

(a) (b) (c)

Fig. 15: Reconstruction results on UOT dataset. Column (a) is the raw input.
Column (b) is the complete reconstruction. Column (c) is the visualization of
all foreground glimpses with zpres > 0.5.
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Below we show more segmentation results on S3DIS dataset.

(a) (b) (c) (d)

Fig. 16: S3DIS segmentation results. Column (a) and column (c) are instance
labels. Column (b) and column (d) are the corresponding SPAIR3D segmentation
results.

Those qualitative results show that chairs are largely segmented with high
accuracy except for the ones that are placed under the table with incomplete
structure. Long tables are over-segmented into multiple parts as their sizes are
larger than the maximum glimpse size. Small round tables are well segmented.
Note that the sizes of scenes vary from small offices to large meeting rooms. The
spatially invariant property allows our model to perform stably regardless of the
scene size.
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The SPAIR line of work focuses on learning object-centric representations in
their canonical coordinate systems, not capturing the distribution of the scene.
Our model thus cannot be used as-is to sample a complete scene satisfying
the training set statistics. However, there is no problem in sampling individual
objects from the prior, following the left branch of Fig. 1 (b)(main paper), and
arranging them randomly into a complete scene as shown below.

(a) (b)

Fig. 17: Scene generation example. Each object is sampled from the prior distri-
bution and randomly placed on a scene layout sampled also from the prior.
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