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Abstract. We tackle the problem of object-centric learning on point
clouds, which is crucial for high-level relational reasoning and scalable
machine intelligence. In particular, we introduce a framework, SPAIR3D,
to factorize a 3D point cloud into a spatial mixture model where each
component corresponds to one object. To model the spatial mixture
model on point clouds, we derive the Chamfer Mixture Loss, which fits
naturally into our variational training pipeline. Moreover, we adopt an
object-specification scheme that describes each object’s location relative
to its local voxel grid cell. Such a scheme allows SPAIR3D to model
scenes with an arbitrary number of objects. We evaluate our method
on the task of unsupervised scene decomposition. Experimental results
demonstrate that SPAIR3D has strong scalability and is capable of
detecting and segmenting an unknown number of objects from a point
cloud in an unsupervised manner.

Keywords: Deep Generative Model, Variational Inference, Unsuper-
vised Scene Understanding

1 Introduction

3D scenes can exhibit complex and combinatorially large observation spaces even
when there are only a few basic elements. Motivated in part by cognitive psychol-
ogy studies [26] that suggest human brains organize observations at an object
level, recent advances in physical prediction [§], and the superior robustness
demonstrated by object-oriented reinforcement learning agent[12I27], we tackle
in this paper the problem of deep object-centric learning on point clouds, which
is crucial for high-level relational reasoning and scalable machine intelligence.
There is a good body of existing literature on unsupervised object-centric
generative models for images and videos. The spatial mixture models are widely
adopted to model observations in an object-oriented way [BITOJT4IT630]. These
approaches effectively define objectness as a region with strong appearance cor-
relations, and Variational Autoencoders (VAE) [I9I28] play a critical role in
exploiting such correlations. More precisely, the encoder-decoder structure of
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VAE effectively creates an information bottleneck [2I6J36] limiting the amount
of information passing through. To reconstruct the observation under a limited
information budget, highly correlated information must be encoded together.
Thus, objectness emerges from the encoding strategy. The above-mentioned pa-
pers mainly exploit appearance correlations on objects that are colored uni-
formly. In this paper, we show that this paradigm is also applicable to structural
correlations conveyed by point clouds without appearance information, as long
as we can overcome some irregularities in point cloud data as described in sec-
tion Specifically, inspired by SPAIR, [10], we propose in this paper a VAE-based
model named Spatially Invariant Attend, Infer, Repeat in 3D (SPAIR3D), a
model that generates spatial mixture distributions on point clouds to discover
3D objects in static scenes. Here we summarize the key contributions:

— We propose, to the best of our knowledge, the first unsupervised object-
centric learning pipeline for point cloud data, named SPAIR3D.

— We also propose a new Chamfer Mizture Loss function tailored for learning
mixture models over point cloud data with a novel graph neural network
that can be used to model and generate a variable number of 3D points.

— We provide qualitative and quantitative results to show that SPAIR3D learns
meaningful object-centric representation and decomposes point clouds scene
with an arbitrary number of objects in an object-oriented manner.

2 Related Work

Generative Unsupervised Object-centric Learning. Unsupervised object-
centric learning based on generative models has attracted increasing attention in
recent times. Such approaches focus on joint object representation-learning and
scene decomposition based on single or multiple views [BIOTOT3IT6I29/30035]. A
spatial Gaussian mixture model is typically defined on 2D images consisting of
K mixture components that correspond to K objects. Each component spans
the entire image and places an isotropic Gaussian on the RGB value of all pixels
with a predicted mean and a constant covariance. Each component also assigns
each pixel a non-negative mixing weight that sums to one across all components.
The definition can be easily extended to voxel and neural radiance fields.

Under the spatial mixture model formulation, different inference methods
are proposed. IODINE [I6] employs iterative amortized inference to refine latent
variable posteriors for all components in parallel. GENESIS [13] and MONET [5]
sequentially infer the latent representation, one component at a time. Slot at-
tention [31I] and Neural Expectation Maximization (NEM) [I7] can be regarded
as differentiable clustering algorithms.

Instead of treating each component of the mixture model as a full-scale obser-
vation, Attend, Infer, Repeat (AIR) [14] confines the extent of each component
to a local region. In AIR, one network is trained to propose a set of candidate
object regions in the form of 2D bounding boxes. Each region is then cropped
out and processed by a VAE. The final reconstruction is obtained by placing
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the reconstructed patches back in the inferred locations. Pixels that are not cov-
ered by any patches are deemed background. While AIR fails in scenes of dense
objects, SPAIR [10] addresses the challenge with a grid spatial attention mech-
anism with which bounding boxes are proposed locally from each grid cell. This
extension is also proven effective in object-tracking tasks [II]. By confining the
extent of each component, constraints on maximum object sizes are imposed.
SPACE [30] employs MONET to model background components that are nor-
mally much larger than foreground objects.

Graph Neural Network for Point Cloud Generation. Generative models
such as VAEs [15] and generative adversarial networks [I] have been successfully
used for point cloud generation but with a pre-defined number of points per-
object. It is shown that a point cloud generation process can be modeled as a
latent variable conditioned Markov chain [32]. PointFlow [38] is a normalizing
flow-based approach that models object shapes as continuous distributions and
allows the generation of a variable number of points. It could not be naturally
integrated into our framework due to the need for an ODE solver.
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Fig.1: (a) Structure of SPAIR3D. For clarity, we adopt 2D abstraction and use
colors to highlight important correspondence. (b) Structure of Glimpse VAE.
Glimpse encoder encodes foreground glimpses and produce zhat, zmesk and
2P for each glimpse. Point Graph Decoder takes z’"% and reconstructs input
points (left branch). Mask Decoder takes z%** and generates masks for each
point (middle branch). The dashed line represents the dependency on the coordi-
nates of the intermediate points in the hierarchy and G;. Multi-layer PointGNN

enable message passing between (c;, f;) and produces 2"“® (right branch).

%

3 SPAIR3D

While the application of generative-model-based object-centric learning on im-
age [BI16], voxel [I8], and mesh [I8] shows encouraging results, its application
on point cloud has not been explored up till now. Unlike point cloud data, the
reconstructions of images, and voxels are all coordinate-dependent. For each
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mixture component, given a coordinate, a mixing weight (defining mask) and
a feature vector (RGB value) are generated at that coordinate to form a well-
defined mixture model. For image data, the coordinate dependency can be im-
plicitly embedded in the network structure since the input and output are of
fixed sizes [21]. The coordinate thus provides the correspondence between input
and reconstruction, inducing a natural likelihood function.

However, a point cloud takes the form of an unordered set with irregular
structures. Each point cloud may have a varying number of points. More im-
portantly, the point coordinates carrying structural information becomes the
reconstruction target, and there is usually no natural correspondence between
the input and the reconstruction. While Chamfer Distance commonly serves as
a loss function for point cloud reconstruction, it does not support mixture model
formulation directly. Such data irregularity makes defining a mixture model over
point cloud a non-trivial task.

To overcome the issues outlined above, we extend the SPAIR framework and
introduce SPAIR3D, a deep generative model for 3D object-centric learning
and 3D scene decomposition via object-centric point-cloud generation. There
are two main reasons for choosing the SPAIR framework over others. Firstly,
as a consequence of the lack of correspondence between input and reconstruc-
tion, the likelihood computation commonly involves a bi-directional matching
between the generated point cloud and the ground truth, leading to quadratic
time complexity. The local object proposal and reconstruction mechanism allow
us to confine the matching computation in each local region, which significantly
reduces the algorithm’s time complexity (see Supp. Sec. 1 for further analysis).

Secondly, 3D point cloud reconstruction commonly requires the target object
to be centered [32I38]. While it is straightforward to center objects in single-
object reconstruction tasks, it is difficult to center all objects in the same co-
ordinate system in the 3D scene reconstruction setup. In contrast, thanks to
the local object proposal mechanism proposed in this paper, each object can be
naturally centered in a local coordinate system.

Below we first introduce our generative model formulation over key latent
variables (§3.1). Then we detail the inference model implementation (§3.3). We
discuss the particular challenges arising in handling a varying number of points
with a novel Chamfer Mizture Loss (§3.2) and Point Graph Decoder (§3.3).

3.1 Local Object Proposal and Generative Model

As shown in Fig. SPAIR3D first divides a 3D scene into a spatial attention
voxel grid with possible empty voxel cells covering no points. We discard empty
cells and associate a bounding box with each non-empty voxel cell. The set of
input points captured by a bounding box is termed an object glimpse. Besides
object glimpses, SPAIR3D also defines a scene glimpse covering all points in an
input scene. Later, we show that we encode and reconstruct each glimpse and
generate a mixing weight on each point to form a probability mixture model.
Similar to SPAIR, each grid cell generates posterior distributions over a set of

. th
latent variables defined as ze!! = {zhere 7P where z@¢¢ € R3 encodes



SPAIR3D for Object-Centric Learning and Scene Decomposition 5

the relative position of the center of the i** bounding box to the center of the
it cell, zP°™ ¢ R3 encodes the apothem of the bounding box. Thus, each
zell mduces one object glimpse associated with the i” cell. Each object glimpse
is then associated with posterior distributions over latent variables specified as
70t — [gwhat gmask Presy ghere zhat € R4 encodes the structure informa-
tion of the corresponding ob Ject ghmpse z"2k ¢ RE encodes the mask for each
point in the glimpse, 2" € {0,1} is a bmary variable indicating whether the
proposed object should exist (z"“* = 1) or not (2/"“* = 0). The scene glimpse is
associated with only one latent variable z*°"¢ = {z{ht} We assume 2!"* fol-
lows a Bernoulli distribution. The posteriors and priors of other latent variables
are all set to isotropic Gaussian distributions.

Given latent representations of objects and the scene, the complete likeli-
hood for a point cloud X is p(X) = [ p(z)p(X|z)dz, where z = (|, z5*") U

(U, 227ty U zseene. As maximlzmg the obJectlve p(X) is intractable, we resort

to the variational inference to maximize its evidence lower bound (ELBO).

3.2 Chamfer Mixture Loss

Unlike generative model-based unsupervised 2D segmentation methods that re-
construct the pixel-wise appearance conditioning on its spatial coordinate, the
reconstruction of a point cloud lost its point-wise correspondence to the original
point cloud. Chamfer distance is commonly adopted to measure the discrep-
ancy between the generated point cloud (X) and the input point cloud (X). For-
mally, Chamfer distance is defined by dop(X,X) = Y wex Ming o [z — a:H; +
Y sep Mingex ||z — i:||g We refer to the first and the second term as the forward
loss and the backward loss, respectively.

Unfortunately, the Chamfer distance does not fit naturally into the mix-
ture model framework. To get around that, we propose a Chamfer Mixture Loss
(CML) tailored for training probability mixture models defined on point clouds.
The Chamfer Mizture Loss is composed of a forward likelihood and a backward
reqularization corresponding to the forward and backward loss, respectively.

Denote the it" glimpse as G;, i € {0,...,n} and its reconstruction as Gi,
i € {0,...,n}. Specifically, we treat the scene glimpse as the 0"* glimpse that
contains all input points, that is, Gy = X. Note that one input point can be a
member of multiple glimpses. Below we use N (x|u, o) to denote the probability
density value of point = evaluated at a Gaussian distribution of mean p and
variance o. For each input point x in the i*" glimpse, the glimpse-wise forward
likelihood of that point is defined as LI (z) = imaxieg N(z|%,0.), where
u; = waX max, g N(z|z, ac)dx is the normalizer and o, is a hyperparameter.
For each glimpse G;, i € {0 .,n}, af €[0,1] defines a mixing weight for point

in the glimpse and Y. jaf =1.In partlcular af, i€ {l,...,n}, is determined
pres
by af %zﬁ”es ¥ where 77 is the predicted mask value and 7¥ = 0 if

i= 1z]

x ¢ G;. The mixing weight for the scene layout points completes the distribution
through af = 1 — > 1" af for # € Gy. Thus, the final mixture model for an

e
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input point z is £ (z) = Y1 a?LE (z). The total forward likelihood of X is
then defined as LF(X) =[], cx L ().

The forward likelihood alone leads to a trivial sub-optimal solution with X
distributed densely and uniformly in the space. To enforce a high-quality recon-
struction, we define a backward regularization term. For each predicted point Z,
the point-wise backward regularization is L7 (&) = max,cg, ,, N'(Z|z, o), where
i(#) returns the glimpse index of #. We denote (%) = arg max,eg, ,, N (|z, oc)
and X = U, Gi. The backward regularization is then defined as £LB(X) =
[Tio Mg, £7(0)
As each predicted point # € X belongs to one and only one glimpse, it is difficult
to impose a mixture model interpretation on the backward regularization. The
exponential weighting encourages the generated points in object glimpse to be
close to input points with a high probability belonging to G;. Combining the
forward likelihood and the backward regularization together, we define Chamfer
Migture Loss as Lop (X, X) = LF(X) - £LB(X). During inference, the segmenta-
tion label for each point x is naturally obtained by argmax; o7 .

The overall loss function is £ = —log Lep (X, X)) + L1 (2!, gobiect gscene)
where L, is the KL divergence between the prior and posterior of the latent
variables (Supp. Sec. 2 for details). In general, one cannot find a closed-form
solution for the normalizer in Chamfer Mixture Loss. However, the experiments
below show that we can safely ignore it during optimization.

' The exponential weighting, i.e. ozf(j) € [0,1], is crucial.

3.3 Model Structure

We next introduce the encoder and decoder network structure for SPAIR3D.
The building blocks are based on graph neural networks and point convolution
operations (See Sec. 4 in the Supp. for details).

Encoder network. We design an encoder network g4(z|z) to obtain the la-
tent representations {z?}7_; and {z°*/““’}7_, from a point cloud. To achieve

i i=
the spatially invariant property, we group one PointConv [37] layer and one
PointGNN [34] layer into pairs for message passing and information aggregation
among points and between cells.
(a) Voxel Grid Encoding. The voxel-grid encoder takes a point cloud as
input and generates for each spatial attention voxel cell C; two latent variables
zhere ¢ R® and zg? othem ¢ R3 40 propose a glimpse G; potentially occupied by
an object. To better capture the point cloud information in C;, we build a voxel
pyramid within each cell C; with the bottom level corresponding to the finest
voxel grid. We aggregate information hierarchically using PointConv-Point GNN
pairs from bottom to top through each level of the pyramid. For each layer of
the pyramid, we aggregate the features of all points and assign them to the point
spawned at the center of mass of the voxel cell. Then PointGNN is employed
to perform message passing on the radius graph built on all spawned points.
The output of the final aggregation block produces z*""® and z;" othem ia the
re-parametrization trick [28].
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We obtain the offset distance of a glimpse center from its corresponding
grid cell center using Ag; = tanh(z?""¢) . L, where L is the maximum off-
set distance. The apothems of the glimpse in the x,y, 2z direction is given by
AgPO = T(ziP0themy(pmaz _ pmin) L pmin where T/(-) is the sigmoid function
and [r™ r™%] defines the range of apothem.

(b) Glimpse Encoding. The predicted glimpse center offset and the apothems
uniquely determine one glimpse for each spatial attention voxel cell. We adopt
the same encoder structure to encode each glimpse G; into one point a; = (c;, f;),
where c; is the glimpse center coordinate and f; is the glimpse feature vector.
We then generate z"%* and z"*** from a; via the re-parameterization trick.
The variable 2" governs the glimpse rejection process and is crucial to the
final decomposition quality. Unlike previous work [I0I30], SPAIR3D generates
zP¢® from glimpse features instead of cell features based on our observation that
message passing across glimpses provides more benefits in the glimpse-rejection
process. To this end, a radius graph is first built on the point set {(c;,f;)}7; to
connect nearby glimpse centers, which is followed by multiple Point GNN layers
with decreasing output channels to perform local message passing. The 2"
of each glimpse is then obtained via the re-parameterization trick. Information
exchange between nearby glimpses can help avoid over-segmentation that would

otherwise occur because of the high dimensionality of point cloud data.

(c) Global Encoding. The global encoding module adopts the same encoder
as the object glimpse encoder to encode scene glimpse Gy. The learned latent
representation is z&% with 25" = 1.

Decoder network. We now introduce the decoders used for point-cloud and
mask generation.

(a) Point Graph Decoder (PGD). Given the z7%“ of each glimpse, the de-
coder is used for point-cloud reconstruction as well as segmentation-mask gen-
eration. In reconstruction, the number of generated points has a direct effect
on the magnitudes of the forward and backward terms in the Chamfer Mix-
ture Loss. An unbalanced number of reconstruction points can lead to under- or
over-segmentation. To balance the forward likelihood and the backward regular-
ization, the number of predictions for each glimpse should be approximately the
same as the number of input points. We propose a graph network based point
decoder to allow setting the size of X in run time.

PGD treats the point cloud reconstruction as a point diffusion process [32].
The input to the PGD is a set of 3D points with coordinates sampled from
a zero-centered Gaussian distribution, with the population determined by the
number of points in the current glimpse. Features of the input points are set
uniformly to the latent variable z"%*. PGD is composed of several PointGNN
layers, each of which is preceded by a radius graph operation. The output of each
PointGNN layer is of dimension f + 3, with the first f dimensions interpreted
as the updated features and the last 3 dimensions interpreted as the updated
3D coordinates for estimated points. Since we only focus on point coordinates
prediction, we set f = 0 for the last PointGNN layer.
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(b) Mask Decoder. The Mask Decoder decodes (c;, z***) to the mask value,
¥ € [0,1], of each point within a glimpse G;. The decoding process follows the
exact inverse pyramid structure of the Glimpse Encoder. To be more precise, the
mask decoder can access the spatial coordinates of the intermediate aggregation
points of the Glimpse Encoder as well as the point coordinates of G;. During
decoding, PointConv is used as deconvolution operation.

Glimpse VAE and Global VAE. The complete Glimpse VAE structure is
presented in Fig. The Glimpse VAE is composed of a Glimpse Encoder,
Point Graph Decoder, Mask Decoder and a multi-layer PointGNN network. The
Glimpse Encoder takes all glimpses as input and encodes each glimpse G; indi-
vidually and in parallel into feature points (c;, f;). Via the re-parameterization
trick, z’"* and z"*** are then obtained from f;. From there, we use the Point
Graph Decoder to decode z*"? to reconstruct the input points, and we use the
Mask Decoder to decode z;mwk to assign a mask value for each input point within
G;. Finally, z"°® is generated via message passing among neighbour glimpses.
All glimpses are processed in parallel. The Global VAE consisting of the Global
Encoder and a PGD outputs the reconstructed scene layout.

3.4 Soft Boundary

The prior of z*P°te™ ig set to encourage apothem to shrink so that the size of

the glimpses will not be overly large. However, if one point is excluded from one
glimpse, its gradient is disconnected from the size and location of the glimpse
anymore, and this can lead to over-segmentation. To solve this problem, we
introduce a soft boundary weight b7 € [0,1] which decreases as a point = € G;
moves away from the bounding box of G;. Taking b7 into the computation of o, we
obtain an updated mixing weight af = %zf " r¥h?. By employing
such a boundary loss, the gradual exclusion of points from glimpses will be

reflected in gradients to counter over-segmentation.

4 Experiments

4.1 Simulated Datasets

Dataset Generation. While many benchmark datasets have been established
[23125] for unsupervised object-centric learning, they do not come in the form
of a point cloud. Thus, we introduce two new point-cloud datasets Unity Object
Room and Unity Object Table built on the Unity platform [24]. The Unity Object
Room (UOR) dataset is built to approximate the Object Room [25] dataset but
with increased scope and complexity. In each scene, objects sampled from a
list of 8 regular geometries are randomly placed on a square floor. The Unity
Object Table (UOT) dataset approximates the Robotic Object Grasping scenario
where multiple objects are placed on a round table. We populate each scene with
objects from a pool of 9 objects with challenging irregular structures. For both
datasets, the number of objects placed in each scene varies from 2 to 5 with
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equal probabilities. During the scene generation, the size and orientation of the
objects are varied randomly within a pre-defined range.

We capture the depth, RGB, normal frames, and pixel-wise semantics as well
as instance labels for each scene from 10 different viewpoints. This setup aims to
approximate the scenario where a robot equipped with depth and RGB sensors
navigates around target objects. The point cloud data for each scene is then
constructed by merging these 10 depth maps. For each dataset, we collect 50K
training scenes, 10K validation scenes and 5K testing scenes.

Baseline. Due to the sparse literature on unsupervised 3D point cloud object-
centric learning, we could not find a generative baseline to compare with. Thus,
we compare SPATR3D with PointGroup (PG) [22], a recent supervised 3D point
cloud segmentation model. PointGroup is trained with ground-truth semantic
labels and instance labels and performs semantic prediction and instance pre-
dictions on a point cloud. To ensure a fair comparison, we assign each point the
same color (white). The PointGroup network is fine-tuned on the validation set
to achieve the best performance.

Performance Metric. For UOR and UOT datasets, we use the Adjust Rand
Index (ARI) [20] to measure the segmentation performance against the ground
truth instance labels. We also employ foreground Segmentation Covering (SC)
and foreground unweighted mean Segmentation Covering (mSC) [I3] for perfor-
mance measurements as ARI does not penalize object over-segmentation [13].

%8? PG Ours zgii :22 ?;g; 6 — 12 objects|object matrix
ARIt 0.976 [0.915 4+ 0.03 0.932 0.912 0.872
0.923 [0.901 £ 0.02 0.922 0.892 0.879
SCt 0.907 {0.832 4 0.04 0.853 0.846 0.856
0.917 [0.835 4+ 0.03 0.857 0.843 0.877
mSCt 0.900 {0.836 & 0.04 0.850 0.842 0.861
0.907 [0.831 &= 0.03 0.861 0.834 0.886

Table 1: 3D point cloud segmentation results on UOR (blue) and UOT (red).

Evaluation. Table[I]shows that SPAIR3D achieves comparable performance to
the supervised baseline on both UOT and UOR datasets. As demonstrated in
Fig. [4, each foreground object is proposed by one and only one glimpse. The
scene layout is separated from objects and accurately modelled by the global
VAE. It is worth noting that the segmentation errors mainly happen at the
bottom of objects. Without appearance information, points at the bottom of
objects are also correlated to the ground. In Fig. 2] we sort the test data based
on their performance in ascending order and plot the performance distributions.
As expected, the supervised baseline (Orange) performs better but SPAIR3D
manages to achieve high-quality segmentation (SC score > 0.8) on around 80%
of the scenes without supervision. The reported quantitative (Table|[l)) and qual-
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itative results (Fig. [fa)—(d)) show that our method achieves stable performance
for those challenging scenes.
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Fig. 2: Performance distributions on UOR (row one) and UOT (row two).

Object Centric Representation
One advantage of our model is simul-
taneous segmentation and representa-
tion learning. To show that our model
learns meaningful representations, we
collect the z*" of 200 instances per-
type and visualize them with the t-SNE
algorithm [33]. Fig [3| shows the z*ha!
of different object types occupy differ-
ent regions. Note the embeddings of pot
and boz instances occupy the same area
since they have almost identical spatial
structure.

Voxel Size Robustness and Scalability In the literature, the cell voxel size,
an important hyperparameter, is chosen to match the object size in the scene
[T0J30]. To evaluate the robustness of our method w.r.t voxel size, we train our
model on the UOR dataset with voxel size set to 0.75] and 1.25] with [ being the
average size of the objects. Results in Table [I] show that our method achieves
stable performance w.r.t the voxel size. To demonstrate scalability, we evaluate
our pre-trained model on 1000 scenes containing 6 — 12 randomly selected ob-
jects and report performance in Table[I] Due to the spatial invariance property,
SPAIR3D suffers no performance drop on 6 — 12 object scenes.
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(a) UOR input (b) reconstruction (c) UOT input (d) reconstruction

(g) instance label (h) segmentation
- .
<
X
AR
(i) UOR close-up glimpses visualiza- (j) UOT close-up glimpses visualiza-
tion, foreground alpha and scene layout tion, foreground alpha and scene layout
reconstruction. reconstruction.

Fig. 4: Visualization of segmentation results on UOR and UOT dataset.

We also evaluated our approach on scenes termed as Object Matriz, which
consists of 16 objects placed in a matrix form. We fixed the position of all 16
objects but set their size and rotation randomly. For each dataset, SPAIR3D is
evaluated on 100 Object Matriz scenes. The results are reported in Table[I] Note
that our model is trained on scenes with 2 to 5 objects which is less than one-
third of the number of objects in Object Matriz scenes. Fig[F|c)-(d) is illustrative
of the results.

(a) instance label (b) segmentation (c) instance label (d) segmentation

Fig.5: Segmentation on 6 - 12 object scenes (a,b) and object matrix (c,d)
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4.2 Real Dataset

To demonstrate the performance of our approach on real data, we apply our
model to the S3DIS [3] dataset, which contains point clouds of 6 large-scale
indoor areas with 271 rooms (scenes).

Data Preprocessing. While the dataset contains objects from 13 semantic
categories, we focus on objects with regular structures, including chairs, tables,
and sofas. As our approach focuses on object-centric learning, we thus manually
inspect the dataset and remove rooms that are too empty (such as hallways),
containing clutter (such as storage rooms), and connected objects (such as lecture
theater with connected chairs). Finally, we kept 174 scenes in total. We then
downsample the dense point cloud of each scene for computational efficiency.
Baseline. Besides Point Group [22] as a supervised baseline, we use Mean-shift
as a rule-based as well as an unsupervised baseline. Floors are removed before
applying Mean-shift and the bandwidth parameter is determined by grid-search.
Performance Metric. Due to the scene diversity, instead of reporting the
average per-scene ARI, SC, or mSC, we report the per-class mloU on test sets.
For our model and Point Group, we perform 6-fold cross-validation on the 6
areas and report the average.

Chair 1|Table T|Sofa 1|macro-avg 1
PG |S| 0.61 0.69 | 0.52 0.60
MS 0.06|U| 0.75 0.34 | 0.36 0.48
MS 0.15|U| 0.33 0.46 | 0.38 0.39
Ours |U| 0.59 0.43 | 0.49 0.50
Table 2: Segmentation results on S3DIS. ’S’ and U’ denote the corresponding
models are trained in supervised and unsupervised manner, respectively.

Evaluation. Per-class mloU are reported in Table[2] Since the number of objects
of different types varies greatly, we thus additionally report macro-average to
show the overall performance of different models. Not surprisingly, Point Group
(PG) achieves the highest mIoU across all categories. Similar to our model, Point
Group misclassifies object points that are close to the floor as floor category
(row 1 Fig. [6). Mean-shift (MS) does not share the same vulnerability since
floors are manually detected and removed. However, Mean-shift is sensitive to
the bandwidth value. The bandwidth reflects the prior object sizes. With the
bandwidth tuned for Chair (MS 0.06) whose sizes are small on average, tables
and sofas are largely over-segmented. With the bandwidth tuned for Table (MS
0.15), chairs tend to be under-segmented.

As demonstrated in row 3 Fig. [6 chairs are successfully segmented by our
model even when multiple chairs are clustered together. The segmentation of
tables presents a challenge for our model since their sizes are commonly larger
than our maximum glimpses sizes. However, SPAIR3D still tries to expand the
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glimpses sizes to better model larger objects while keeping the total number of
glimpses low (row 2 Fig. E[) The experimental results in Table |2[ demonstrate
the potential of applying a generative model to more complicated scenarios.

(a) GT Label (b) PG (c¢) Ours (d) MS 0.06 (e) MS 0.15

Fig. 6: S3DIS segmentation results.

4.3 Ablation Study of Multi-layer Point GININ

To evaluate the importance of multi-layer PointGNN in z!"“® generation (right
branch in Fig. [Ib), we remove the multi-layer PointGNN and generate z!™*°
directly from f;. The ablated model on the UOR dataset achieves ARI:0.841,
SC:0.610, and mSC:0.627, which is significantly worse than the full SPATR3D
model. The performance distribution of ablated SPAIR3D (Fig [2| first row)
indicates that removing the multi-layer PointGNN has a negative influence on
the entire dataset. Fig. [7] shows that the multi-layer PointGNN is crucial to

preventing over-segmentation.

4.4 Empirical Evaluation of PGD

3D objects of the same category can be modeled by a varying number of points.
The generation quality of the point cloud largely depends on the robustness of
our model against the number of points representing each object. To demonstrate
that PGD can reconstruct each object with a dynamic number of points, we train
the global VAE on the ShapeNet dataset [7], where each object is composed of
roughly 2000 points, and reconstruct the object with a varying number of points.
For reference input point clouds of size NV, we force PGD to reconstruct a point
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cloud of size 1.5N, 1.25N, N, 0.75N, and 0.5N, respectively. As shown in Fig. 8]
while with fewer details compared to the input, the reconstructions capture the
overall object structure in all 5 settings.

Fig.7: The comparison
between models with (left)

S Sk and without (right) multi-

@ ﬁ R layer PointGNNs. It shows
E igggg that objects are over-

gig i segmented severely without

multi-layer PointGNNs.
(a) With PointGNNs (b) w/o PointGNNs

NN N
(a) (b) (c) (d) (e) ()

Fig.8: PGD trained on ShapeNet. (a) Input point cloud with N points. Recon-
struction with (b) 1.5N, (¢) 1.25N, (d) N, (e) 0.75N , and (f) 0.5N points.

5 Limitations

Similar to SPAIR, the good scalability in SPAIR3D stems from the local atten-
tion and reconstruction mechanisms. By design, each voxel cell can only propose
one object. Thus, it is difficult to detect multiple objects that exist in the same
voxel cell. If one object is much larger than the size of the voxel cells, no voxel
cells can accurately infer complete object information from its local perceptive
field. One can alleviate the problem with overlapping voxel cells and make the
mixture model hierarchical, which we leave as future work.

6 Conclusion and Future Work

Our proposed SPAIRS3D algorithm is, to the best of our knowledge, the first gen-
erative unsupervised object-centric learning model on point cloud with applica-
tions to 3D object segmentation task. The experimental results demonstrate that
SPAIR3D can generalize well to previously unseen scenes with a large number
of objects without performance degeneration. The spatial mixture interpreta-
tion of SPAIR3D opens up the possibility to other extensions including memory
mechanism [4] or iterative refinement [16], which is left as our future work.
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