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Abstract. In this supplementary material, we first present more qualita-
tive results with additional analysis on the diversity, background impact,
an additional comparison to text-guided image synthesis (Section 1). We
then provide an additional ablation study on our discriminator design
(Section 2) along with complementary details of our user study (Section 3).
Finally, we describe in detail our proposed architecture (Section 4) and
its implementation (Section 5).

1 Qualitative Results

1.1 Diversity of generated images

Our method achieves diversity in the following ways. First, the input layout
controls the output diversity. One can change the input layout to change how the
scene is decorated. Second, given the same background and layout, diversity in
the appearance of scene objects can still be obtained. Technically, this is achieved
by changing the initial latent code of the generator and finetune the generator.

A current limitation is that our model ignores the noise vector, limiting
diversity. This problem is also reported in pix2pix [2]. Revising our network
architecture for greater diversity would be a future work, e.g., use the noise
injection by OASIS [10].

Same background with different layouts. We show qualitative results of our
method using different layouts on the same background image, demonstrating the
diversity of generated contents. Several results of this experiment are presented
in Figure 1. As can be seen, our model can provide plausible renderings given
different layouts.

Same background with same layouts. Here we show results of our method using
the same background and layout. The diversity is now controlled by the initial
latent code of the generator. The results are presented in Figure 2. As can be
seen, our model can provide plausible diversity in the object appearance.
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Fig. 1: Diversity evaluation. Generation results under same background image X
with different object layouts.

Fig. 2: Diversity evaluation. Generation results from same background image X
with different model weights.

1.2 Impact of background to furniture generation.

We analyze the effect of the background to the generation of the furniture. The
diagram below shows a simple example where we modify the background image by
enlarging the left white backdrop. In Figure 3, we see that objects like paintings
can conform to this structural change in the background. Other objects like beds
only have appearance change. The quantization of the impact of background
images is left for future work.

1.3 Iterative decoration

Our model is designed for inferring the decoration at once. While not designed
for iterative object insertion, our method can add one object at a time to a
limited extent, thanks to the diversity of the scenes and images in the dataset,
as shown in the example in Figure 4. In future work, we could consider using
object removal with image inpainting to augment the training data.
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Fig. 3: Impact of background to furniture generation.

Fig. 4: Generation results by adding the objects one at a time.

1.4 Comparisons with text-guided image synthesis

We provide an additional comparison of our method with text-guided image
synthesis, which also use coarse layout descriptions similar to ours, unlike fine-
grained semantic maps. For text-guided methods, we chose GLIDE [8] and
generated objects by masking target regions and providing a text prompt for each
object. Specifically, we used released GLIDE (filtered) model for image inpainting
in a masked region conditioned on a text prompt. We generate objects one by one
iteratively via masking each object box with target object text to realize semantic
spatially generation (Fig. 5 GLIDE-iter column). We also inpaint all areas of
same boxes of given empty scene once with one text prompt (Fig. 5 GLIDE
column). Compared to our method, GLIDE failed to preserve the background
(e.g., windows) properly while the generated objects are unaware of the context,
making their results not semantically consistent, e.g., the fireplace in the last
image. Additionally, GLIDE takes 4 to 8 seconds to inpaint a 256×256 image
which is much slower than our method.

1.5 Visual results of more scenes

We provide more qualitative results of our method and all baselines (SPADE [9],
BachGAN [5], He et al. [1]) in Figure 6 and Figure 7. In general, we visually found
that bedroom images are often generated in higher quality compared with living
room images. This is because bedroom scenes have less variation in their structure,
and there are typically less objects decorated in the scenes, leading to lower
complexity in scene generation compared to living room scenes. Additionally,
we observed that box label format shows more advantages in generating small
and relatively fixed size objects. Point label format, on the other hand, allows
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Fig. 5: Comparison to text-guided image synthesis method GLIDE [8].

flexibility in determining the object size and thus works well with large and
shape-variable objects.

2 Ablation Study

In addition to the ablation study provided in the main paper, here we further
explain our discriminator in detail. In the main paper, we take the generated
image Y as input to the discriminator. This is known as the unconditional
discriminator as it does not depend on the input X. In fact, image translation
methods like pix2pix [2], pix2pixHD [11] and SPADE [9] showed that a conditional
version of the discriminator can have better image fidelity. Particularly, the
conditional discriminator takes a channel-wise concatenation of the original and
generated image (background X and generated image Y in our case) as input
to the discriminator. Here we provide an experiment to compare the use of
unconditional and conditional discriminator in our case. Comparison results are
reported in Table 1. As shown in the results, the unconditional discriminator
has better results in most cases. The major difference between our method and
image translation methods lies in our data, where the domain gap between the
background and the decorated scene is less significant compared to data tested
in image translation methods, i.e., sketch or semantic maps vs. real images.
Therefore, we adopted the unconditional discriminator in our work.

3 User Study

Our user study has 26 participants; each participant was asked with 48 questions.
For each question, we presented two decorated images, one image was generated
with our method and the other one was generated by a baseline. Both images
were generated from the same input scene. We asked each participant to choose
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Bedroom Living room
Boxes Points Boxes Points

Discriminator FID ↓ KID×103 ↓ FID ↓ KID×103 ↓ FID ↓ KID×103 ↓ FID ↓ KID×103 ↓

Without X 20.596 11.609 15.108 6.797 18.478 10.113 17.986 9.421
With X 20.511 12.490 16.038 12.564 21.640 14.850 21.653 14.974

Table 1: Comparison between unconditional discriminator (without X) and
conditional discriminator (with X).

the image that they considered to be more natural and realistic. Each question
belongs to one of 12 test settings, which is a combination of the following factors:
3 baselines to compare, 2 label formats (box label / point label), and 2 test cases
(bedroom / living room). We randomly picked 4 samples for each setting, i.e.,
each participant was presented with a total of 48 image pairs in random order.
The order that two images in a pair were shown in each question was also made
randomly.

In general, our model is often preferred on images generated with point label
format, especially in the bedroom test case with fewer objects and clutter. When
using box label format, our method still produces results with on par quality
compared with the baselines.
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Fig. 6: Additional generation results for box label format.
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Fig. 7: Additional generation results for point label format.



8 Pang et al.

4 Network Architecture

4.1 Generator

Table 2 describes the input and output dimensions used in the sequence of
generator blocks in our generator. For each generator block with vi input and
vo output channels, the object layout L first modulates the feature map using
a SPADE residual block similar [9], which consists of two consecutive SPADE
layers with ReLU activations, as well as a skip connection across the block.
Unlike [9], we do not add a convolutional layer after each SPADE layer in the
residual blocks. The number of channels remains to be vi before and after the
SPADE block, and the number of hidden channels in SPADE layers is set to
vi/2. Following the SPADE block, we upsample the feature map by a factor of 2,
pass through a convolutional layer with 2co output channels, batch norm layer
and finally through a gated linear unit (GLU), following the convolutional block
implementation in [6]. All aforementioned convolutional layers have a kernel size
of 3 and padding size of 1.

The last two generator blocks use the SLE module in [6] to modulate the
feature maps with earlier, smaller-resolution feature maps. We pass the output
of the source generator block through an adaptive pooling layer to reduce its
spatial size to 4× 4, then use a 4× 4 convolutional layer of kernel size of 4 to
collapse the spatial dimensions, reducing the feature map to a 1D vector. This
is passed through a LeakyReLU (0.1) activation, 1× 1 convolutional layer and
sigmoid function to obtain a 1D vector of size vo, where vo is the number of
output channels of the destination generator block. This vector is multiplied
channel-wise with the feature map inside the destination generator block, right
after the upsample operation.

4.2 Discriminator

The main discriminator Dadv consists of five discriminator blocks, followed by
an output convolution module. Each discriminator block consists of two sets of
convolutional layers. The first set has a kernel size of 4 and stride of 2, and is
responsible for downsampling feature maps by a factor of 2. The second one has
a kernel size of 3 and padding size of 1, and transforms the feature maps from
vi to vo channels, where vi and vo are the numbers of channels listed in Table
3. The output convolution module downsamples the feature map to 4× 4, and
is followed by a final 4 × 4 convolution layer reducing the feature map to one
single logit. The object layout discriminator Dobj takes the 32× 32 feature map
output from Dadv and repeatedly downsamples the feature map by a factor of 2,
using convolutional layers with kernel size of 4 and stride of 2. Like Dadv, the
final feature maps are reduced to a single logit via a final convolutional layer.
Each convolutional layer in Dadv and Dobj - except the final layer - is followed
by batch norm and LeakyReLU (0.1) activations.
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Block # Resolution SLE source block Features

2 4 → 8 – 12 → 512
3 8 → 16 – 512 → 512
4 16 → 32 – 512 → 256
5 32 → 64 – 256 → 128
6 64 → 128 2 128 → 64
7 128 → 256 3 64 → 32

Table 2: List of generator blocks and their properties.

Block # Resolution Features

7 256 → 128 3 → 32
6 128 → 64 32 → 64
5 64 → 32 64 → 128
4 32 → 16 128 → 256
3 16 → 8 256 → 512

Output 8 → 1 512 → 1

4 32 → 16 64 → 128
3 16 → 8 128 → 256
2 8 → 4 256 → 256
1 4 → 2 256 → 256

Output 2 → 1 256 → 1

Table 3: List of discriminator blocks in Dadv and convolution layers in Dobj .

5 Implementation Details

5.1 Dataset

As presented in the main paper, the semantic labels for images in the Struc-
tured3D dataset are retrieved from the NYU-Depth V2 dataset [7]. Five classes:
window, door, wall, ceiling, and floor are considered as “background” and
appear in both both empty and decorated scenes. The remaining classes repre-
sent “foreground” and are used in decorated scenes only. In addition, since the
distribution of the foreground classes is highly unbalanced, and some classes do
not really exist in the Structured3D dataset, only a subset of these foreground
classes were used in our experiments. We show the list of the foreground classes
used in our work in Table 4.

We carried out experiments on two subsets of the Structured3D dataset -
bedrooms and living rooms, as those sets contain enough samples for training
and testing. Note that each scene in the Structured3D dataset is associated with
a room type label, that allows us to identify bedroom and living room scenes.
To provide enough clue for a scene type, we filtered out images that contain less
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Name Color Name Color

cabinet picture

bed curtain

chair television

sofa nightstand

table lamp

desk pillow

Table 4: Foreground classes used in our work.

(a) (b)

Fig. 8: (a) Sample image with corresponding object layout map where each dot
shows the location and semantic label (via the color) for an object. (b) Same
sample after translation and horizontal flipping.

than 4 objects. For each source image, we resized the image from the original
size 1280× 720 to 456× 256, then cropped two images with size 256× 256 from
each source image. Images were cropped such that, for foreground object pixels,
at least 60% were still present in cropped regions. We report the total number of
training and test samples for each set in Table 5.

5.2 Data augmentation

A direct consequence of training on smaller subsets of the Structured3D dataset
is that the number of usable training samples the model observes is greatly
reduced. To deal with this issue, we implemented the DiffAugment technique [12]
in our training process. DiffAugment improves generation quality by randomly

Data split No training images No test images

Bedroom 28,038 4,931
Living room 19,636 3,976

Table 5: Statistics of data used for training and testing.
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perturbing both the generated and real images with differentiable augmentations
when training both G and D, and is reported to significantly boost the generation
quality of state-of-the-art unconditional StyleGAN2 [4,3] architecture when
training data is limited to a few thousand samples. Thus, we adopt this technique
when training on our architecture, in order to compensate for the reduction of
training samples.

While the authors of DiffAugment proposed multiple augmentation methods,
we only applied translation augmentation to the images. This is because other
methods (e.g., random square cutouts) may affect the integrity of decorated
scene images. We set the translation augmentation probability to 30%, and also
horizontally flipped the images for 50% of the time. For each augmented image,
its corresponding object layout was also perturbed in the same manner. Figure 8
shows an example of our augmentation scheme.

5.3 Implementation Notes

While our proposed model can make plausible object locations, we notice that
the arrangement of the objects currently lacks flexibility. For example, supplying
an object label L with only one to two objects is less likely to result in realistic
decorated scenes. This is probably due to the fact that the training dataset only
contains fully decorated rooms, and therefore the generator is not trained to
produce partially decorated rooms. Likewise, our model also tends to perform
fairly on object arrangements that rarely occur in the training dataset.

Additionally, we found that multiple object instances in an image are oc-
casionally labelled by Structured3D with the same object ID, e.g., paintings
and curtains. This explains why a single picture object label can result in two
(or more) generated paintings. Reflections and highlights caused by foreground
objects (e.g., lights) are also present in empty scene images, which could hinder
the ability of our approach when generalizing to real-life empty scene images
that are not lit up.
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