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Abstract. Image outpainting, which is well studied with Convolution
Neural Network (CNN) based framework, has recently drawn more atten-
tion in computer vision. However, CNNs rely on inherent inductive biases
to achieve effective sample learning, which may degrade the performance
ceiling. In this paper, motivated by the flexible self-attention mechanism
with minimal inductive biases in transformer architecture, we reframe
the generalised image outpainting problem as a patch-wise sequence-
to-sequence autoregression problem, enabling query-based image out-
painting. Specifically, we propose a novel hybrid vision-transformer-based
encoder-decoder framework, named Query Outpainting TRansformer
(QueryOTR), for extrapolating visual context all-side around a given
image. Patch-wise mode’s global modeling capacity allows us to extrap-
olate images from the attention mechanism’s query standpoint. A novel
Query Expansion Module (QEM) is designed to integrate information
from the predicted queries based on the encoder’s output, hence accel-
erating the convergence of the pure transformer even with a relatively
small dataset. To further enhance connectivity between each patch, the
proposed Patch Smoothing Module (PSM) re-allocates and averages the
overlapped regions, thus providing seamless predicted images. We exper-
imentally show that QueryOTR could generate visually appealing results
smoothly and realistically against the state-of-the-art image outpainting
approaches. Code is available at https://github.com/Kaiseem/QueryOTR
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1 Introduction

Image outpainting, usually known as image extrapolation, is a challenging task
that requires extending image boundaries by generating new visually harmonious
contents with semantically meaningful structure from a restricted input image.
It could be widely applied in the real world to enrich humans’ social lives based
on limited visual content, such as automatic creative image, virtual reality, and
video generation [31]. Different from image inpainting [3,2,35,45], which could
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take advantage of visual contexts surrounding an inpainting area, generalised im-
age outpainting should extrapolate the unknown regions in all directions around
the sub-image. As the unknown pixels farther from the image borders are less
constrained, they have a greater chance of accumulating expanded-errors or gen-
erating repetitive patterns than those closer to the borders. Consequently, the
challenges of this task include: (a) determining where the missing features should
be located relative to the output’s spatial locations for both nearby and faraway
features; (b) guaranteeing that the extrapolated image has a realistic appearance
with reasonable content and a consistent structural layout with the conditional
sub-image; and (c) the borders between extrapolated regions and the original
sub-image should be smooth and seamless.

Convolutional architectures have been proven successful for computer vision
tasks nowadays. Existing image outpainting methods utilize kinds of variants
of CNN-based methods to conduct image extrapolation. CNNs rely on inher-
ent inductive biases to achieve effective sample learning, which may degrade
the performance ceiling. Although the existing CNN-based outpainting methods
achieve solid performance [40,44,43,22,31], they still suffer from blunt structures
and abrupt colours when extrapolating the unknown regions of the images. The
potential reason might be that the inductive biases of convolution in such CNN-
based architectures are hard-coded in the form of two strong constraints on
the weights: locality and weight sharing [10]. These constraints may degrade the
model’s ability to represent global features and capture long-range dependencies.

Transformer architectures have competitive performance in areas such as im-
age and video recognition. The transformer dispenses with the convolutional in-
ductive bias by performing self-attention across embeddings of patches of pixels,
which breaks through the limitation of capturing long-range dependencies. How-
ever, in the pure transformer, the model converges very slowly with a relatively
small dataset [10]. On the ImageNet benchmark, Dosovitskiy et al. [8] developed
the Vision Transformer (ViT) interpreting a picture as a sequence of tokens,
which can achieve comparable image classification accuracy while requiring less
computational budgets. ViT relies on globally-contextualized representation, in
which each patch is attended to all patches of the same image, as opposed to
local-connectivity in CNNs. ViT and its variants have shown promising superior-
ity in modeling non-local contextual relationships as well as good efficiency and
scalability, though they are still in their infancy. In light of the global interaction
and the generation of distant features with conditional sub-image, these benefits
could enhance image extrapolation in a beneficial fashion.

To better cope with image long-range dependencies and spatial relationships
between predicted regions and conditional sub-images, we reconsider the out-
painting problem as a patch-wise sequence-to-sequence autoregression problem
inspired by the original transformer [41] in natural language processing. We
develop a novel hybrid query-based encoder-decoder transformer framework,
named Query Outpainting TRansformer (QueryOTR), to extrapolate vi-
sual context all-side around a given image taking advantages of both ViT [8]
and pure transformer [41] in the image outpainting task, as shown in Fig. 1.
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Fig. 1: Demonstration of recursive outpainting by our QueryOTR. Our method
generates a sequence of extrapolated image patches by querying the sequence of
input image patches, enabling a remarkable perceptual consistency.

Specifically, we design two special modules, Query Expansion Module (QEM)
and Patch Smoothing Module (PSM), to conduct feature forecasting from the
perspective of the query in the attention mechanism. In contrast to the query
learning in pure transformer, our designed query in QEM is predicted by the
stacked CNN-based blocks based on the output of the transformer encoder. The
predicted query is easy to learn and has better flexibility by drawing on the
advantages of CNNs’ inductive biases to accelerate query prediction converge in
pure transformer for approximately three times faster than that without QEM
in training, which is shown in Fig. 2(a). The developed PSM re-allocates the
predicted patches around the conditional sub-image and averages the overlap-
ping parts to make the generated image smoothly and seamlessly. Also, PSM
contributes to alleviate the problem of checkerboard artifact caused by the in-
dependent procession among the output image patches. In this way, the model
could focus more on the connections between each patch and enhance the repre-
senting ability as shown in Fig. 2(b) and (c). Our QueryOTR is the first hybrid
transformer as a sequence-to-sequence modeling, which is able to extend image
borders seamlessly and generate unseen images smoothly and realistically.

The main contributions of this work are three-fold:

– We rephrase the image outpainting problem as a patch-wise sequence-to-
sequence autoregression problem and develop a novel hybrid transformer
encoder-decoder framework, namedQueryOTR, for query-based prediction
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Fig. 2: (a) Training a pure transformer encoder-decoder with and without QEM
to regress unseen image patches. QEM significantly speeds up the convergence
(about 3.3 times faster than that without QEM: w/ QEM at 300 epoch v.s. w/o
QEM at 1,000 epoch). (b) QueryOTR without PSM. (c) QueryOTR with PSM.

of extrapolated images, and minimization of degradation from the inductive
biases in CNN-structures.

– We propose Query Expansion Module and Patch Smoothing Module to solve
the slow convergence problem in pure transformers and to generate realistic
extrapolated images smoothly and seamlessly.

– Experimental results show that the proposed method achieves state-of-the-
art one-step and multi-step outpainting performance as compared to recent
image outpainting methods.

2 Related Work

2.1 Image Outpainting

Generative Adversarial Networks (GANs) [12] have been widely applied in many
research fields, such as image super-resolution, image synthesis, and image de-
noising [14,25,4,32,15]. Efforts have been made for image generation with GAN
under certain conditions. Image extrapolation aims to generate the surrounding
regions from the visual content, which can be considered as an image-conditioned
generation task [16]. Sabini and Rusak [36] brought the image outpainting task
into public attention with a deep neural network framework inspired by the
image inpainting methods. This effort focused on enhancing the quality of gen-
erated images smoothly by using GANs and the post-processing methods to
perform horizontal outpainting. Van et al. [40] designed a CNN-based encoder-
to-decoder framework by using GAN for image outpainting. Wang et al. [43]
proposed a Semantic Regeneration Network to directly learn the semantic fea-
tures from the conditional sub-image. Han et al. [28] developed a 3-stage deep
learning model with an edge-guided generative network to produce semantically
consistent output from a small image input. Although these methods avoid the
bias in the general padding and up-sampling pattern, they still suffer from blunt
structures and abrupt colours issues, which tend to ignore the spatial and se-
mantic consistency. To tackle these issues, Yang et al. [44] proposed a Recurrent
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Content Transfer (RCT) block for temporal content prediction with Long Short
Term Memory (LSTM) networks as the bottleneck. To increase the contextual
information, Lu et al. [30] and Kim et al. [22] rearranged the boundary region by
switching the outer area of the image into its inner area. These latest models are
based on convolutional neural networks. As global information is not well cap-
tured, they all have limitations in explicitly modelling long-range dependency.

2.2 Transformer

Recently, transformer has attracted much attention in computer vision. Trans-
former was first proposed to solve NLP tasks by replacing the traditional CNN
and Recurrent Neural Network (RNN) structures [41]. The Self-Attention mech-
anism helps the model learn the global representation from the input which could
improve the performance for basic visual feature extraction [41]. Jacob et al. [7]
introduced a very deep network to pretrain deep bidirectional representations
from unlabeled text by jointly conditioning on both left and right context in
all layers. It can be fine-tuned with just one additional output layer for better
performance. ViT [8] is a convolution-free Transformer that conducts image clas-
sification over a sequence of image patches. The superiority of the Transformer
architecture is presented in ViT fully utilizing the advantage of pretraining on
large-scale datasets compared with the CNN-based methods. Many ViT-based
variants also demonstrated the success in computer vision tasks [47,19,13], such
as object detection [5], video recognition [1], and image synthesis [26]. Moreover,
Liu et al. [29] proposed Swin Transformer to extend vision tasks for object de-
tection and semantic segmentation. Gao et al. [11] designed a transformer-based
framework for image outpainting with an encoder-decoder architecture. They
used Swin Transformer which involved shifted window attention to bridge the
windows of the preceding layer, which significantly enhanced modelling power
as well as achieved lower latency.

3 Methodology

3.1 Problem Statement

Given an image x ∈ RH×W×3, we aim to extrapolate outside contents be-
yond the image boundary with extra M -pixels. The generator will produce
a visually convincing image x̂ ∈ R(H+2M)×(W+2M)×3. Different from previous
work which is almost based on convolutional operations, we rephrase the prob-
lem as a patch-wise sequence-to-sequence autoregression problem. In particular,
we partition the image x into regular non-overlapping patches with the patch
size P × P (P is typically empirically set to 16), resulting in a sequence of

patch tokens {x1p, x2p, · · · , xLp }, where xip ∈ R(P 2·3) and the sequence length is

L = H×W
P 2 . Our goal is to predict the extra sequence {xL+1

p , xL+2
p , · · · , xL+R

p }
representing the extrapolated regions, where xip ∈ R(P 2·3) and the expanded se-

quence length is R = (H+2M)×(W+2M)−H×W
P 2 . The extrapolated image x̂ can
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Fig. 3: (a) Main architecture of hybrid transformer generator in QueryOTR con-
sists of transformer encoder and decoder, QEM and PSM. (b) Structure of Query
Expansion Module.

be obtained by reshaping the new sequence of patch tokens into image patches,
and then rearranging the image patches around the input image, leading to
x̂ = F(x, {xL+1

p , xL+2
p , · · · , xL+R

p }).

3.2 Hybrid Transformer Autoencoder

The architecture of the proposed QueryOTR generator is presented in Fig. 3,
which is a hybrid transformer autoencoder. The overall architecture is com-
posed of four major components: a transformer encoder extracting patch tokens’
representation, a CNN-based Query Expansion Module (QEM) predicting the
expanded queries, a transformer decoder processing the expanded queries, and
a Patch Smoothing Module (PSM) generating the expanded patches and rear-
ranging them around the original images.

Transformer Encoder Our encoder is a standard ViT [8]. Inspired from ViT,
the input image is first converted to several non-overlapping patches represented
as a sequence of patch tokens Xp. The encoder module embeds the patch tokens
through a linear projection E with the added positional embeddings Epos. Then
the encoder processes the set of patch tokens via a series of Transformer Blocks
with a length of N . The transformer-based encoder can be described as follows:
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h0 = [x1pE; x2pE; ...; xLpE] +Epos, E ∈ R(P 2·3)×D,Epos ∈ RL×D (1)

h′n = MSA(LN(hn−1)) + hn−1, n = 1, ..., N (2)

hn = FFN(LN(h′n)) + h′n, n = 1, ..., N (3)

henc = LN(hN ), (4)

where D is the hidden dimension of transformer block, FFN is a feed forward
network, LN denotes layer normalization, hn are the intermediate tokens’ rep-
resentations, henc denotes the output patch tokens of the transformer encoder,
and MSA represents the multi-headed self-attention.

Given the learnable matrices Wq, Wk, Wv corresponding to query, key, and
value representations, a single self-attention head (indexed with h) is computed:

Attentionh(X,Y) = softmax(QK⊤/
√
dh)V, (5)

where Q = XWq, K = YWk, V = YWv. Multi-headed self-attention aggre-
gates information with linear projection operation on the concatenation of the
H self-attention heads:

MSA(X) = concatHh=1[Attentionh(X,X)]W + b, (6)

where W and b are learnable matrices for the aggregated features.

Query Expansion Module The proposed QEM is designed to speed up the
convergence of pure transformer by generating the expanded queries for the
transformer decoder. We predict the decoders’ queries conditioned on encoders’
features, and take advantage of CNN’s inductive bias to accelerate the conver-
gence. As shown in Fig. 3(b), the input tokens henc are first reshaped to the
feature map with the size of H

P × W
P ×D. Then the reshaped feature maps are

extrapolated with extra M
P pixels along width and height, where the padded

tokens are generated by Multi-layer Perceptual (MLP) with input of Gaussian
noise. After that, we utilize stacked residual blocks [18] equipped with deformable
convolutional layers [48] to process the queries, which is commonly practiced to
capture local and long-term dependencies. Finally, the expanded queries are ex-
tracted and transformed as sequence, followed by one Normalization Layer and
one Linear Layer. This process can be described as:

qexpand = QEM(henc, z), z ∼ N (0, 1). (7)

Transformer Decoder Inspired from the original transformer [41], the decoder
equips one extra sub-layer which performs the multi-head cross attention (MCA)
similar to the encoder with two sub-layers. Specifically, in MCA the queries come
from the previous decoder layer and the keys and values come from the output of
the encoder. This allows each position in the decoder to attend over all positions
in the input sequence, leading to significant improvements of the generating
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performance. The process can be described as follows:

q0 = qexpand +E′
pos, E′

pos ∈ RR×D (8)

q′m = MSA(LN(qm−1)) + qm−1, m = 1, ...,M (9)

q′′m = MCA(LN(q′m),henc) + q′m, m = 1, ...,M (10)

qm = FFN(LN(q′′m)) + q′′m, m = 1, ...,M (11)

The multi-headed cross-attention in Eq. 10 aggregates information from H cross
attention heads, as follows:

MCA(X,Y) = concatHh=1[Attentionh(X,Y)]W + b. (12)

Patch Smoothing Module The linear module is prone to generate artifacts
if predicting output patches using predefined patch size of P ×P . The reason is
that the output tokens are processed independently without explicit constraints.
These arbitrary grid partitions could make the image contents discontinuous
across the border edge of each patch. In order to mitigate this issue, we allow
some overlaps among image patches. For each border edge of one patch, we
extend it by o pixels generating the output image patch size as (P+2o)×(P+2o).
This operation involves the decoder with the neighboring patches’ content having
a better sense of locality in the transformer architecture, thus enabling the output
sequence to have same length but less effect as the predefined grids. PSM can
be described as:

x̂ =S(x, qMWproj), Wproj ∈ RD×((P+2o)2·3), (13)

where S is a function to place the extrapolated overlapped patches around the
input image, and average the pixel values in the overlapped areas.

3.3 Loss Functions

Our loss function consists of three parts: a patch-wise reconstruction loss, a per-
ceptual loss, and an adversarial loss. The reconstruction loss is responsible for
capturing the overall structure of predicted patches, whilst the perceptual loss
and adversarial loss are coupled to maintain good perceptual quality and pro-
mote more realistic prediction.

Patch-wise Reconstruction Loss We utilize an L2 distance between the se-
quence of ground truth image patches {yL+1

p , yL+2
p , · · · , yL+R

p } and the sequence

of predicted image patches {xL+1
p , xL+2

p , · · · , xL+R
p }:

Lrec =
1

R

∑L+R

i=L+1
∥yip − xip∥22, (14)

where the patch size is (P+2o)×(P+2o). We engage a per-patch normalization to
enhance the patch contrast locally, where the mean and std of the image patches
are pre-computed.
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Perceptual Loss Perceptual loss provides a supervision on the intermediate
features that can help retain more semantic information. Following previous
work [9,21,24], we extract the features from a VGG-19 [38] network pretrained
on ImageNet [6], which is denoted as ϕ. The perceptual loss is devised as follows:

Lperceptual =
1

5

∑5

j=1
(wj × (ϕj(x̂)− ϕj(y))), (15)

where the superscript j is the index of feature map scales from ϕ, and wj is set
to 1/32, 1/16, 1/8, 1/4, 1 as the scale decreases.

Adversarial Loss We utilize the same multi-scale PatchGAN discriminator D
used in pix2pixHD [42] except that we replace the least squared loss term [32]
with the hinge loss term [27]. Since the PatchGAN discriminator has a fixed
receptive field of patch, we take the whole generated images instead of image
patches to train the GAN. The extrapolated images generated by our QueryOTR
should be indistinguishable from real images by the discriminator. Given the
extrapolated images x̂ ∼ Pg generated by QueryOTR and real images y ∼ Py,
the adversarial loss for the discriminator is

LD
adv = min

D
Ex̂∼Pg (min(1 +D(x̂))) + Ey∼Py (min(1−D(y))). (16)

Additionally, the adversarial loss for the generator is

LG
adv = min

G
−Ex̂∼Pg

D(x̂). (17)

We jointly train the hybrid transformer generator and CNN discriminators and
optimize the final objective as a weighted sum of the above mentioned loss terms:

min
G

max
D

Ladv + λrecLrec + λperceptualLperceptual, (18)

where λrec, λperceptual are weights controlling the importance of loss terms. In
our experiments, we set λrec = 5, and λperceptual = 10.

4 Experiments

4.1 Datasets, Implementation and Training Details

We use three datasets with {Scenery [44], Building Facades [11], andWikiArt [39]}
for the experiments. Details about the three datasets could be found in the sup-
plementary materials.

We implement our framework with PyTorch [34] equipped with a NVIDIA
GeForce RTX 3090 GPU 1.9.0. Hybrid transformer generator contains 12 stacked
transformer encoder layers and 4 stacked transformer decoder layers. We ini-
tialise the weights of generator encoder by utilizing the pre-trained ViT [17].
Adam [23] is used as the optimizer to minimize the objective function with the
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Methods
Scenery Building Facades WikiArt

FID↓ IS↑ PSNR↑ FID↓ IS↑ PSNR↑ FID↓ IS↑ PSNR↑

1×

SRN 47.781 2.981 22.440 38.644 3.862 18.588 76.749 3.629 20.072
NSIPO 25.977 3.059 21.089 30.465 4.153 18.314 22.242 5.600 18.592
IOH 32.107 2.886 22.286 49.481 3.924 18.431 40.184 4.835 19.403
Uformer 20.575 3.249 23.007 30.542 4.189 18.828 15.904 6.567 19.610
QueryOTR 20.366 3.955 23.604 22.378 4.978 19.680 14.955 7.896 20.388

2×

SRN 83.772 2.349 18.403 74.304 3.651 15.355 137.997 3.039 16.646
NSIPO 45.989 2.606 17.733 58.341 3.669 15.262 51.668 4.591 15.679
IOH 44.742 2.655 18.739 76.476 3.456 15.443 75.070 4.289 16.056
Uformer 39.801 2.920 18.920 63.915 3.798 15.612 41.107 5.900 15.947
QueryOTR 39.237 3.431 19.358 41.273 4.547 16.213 43.757 6.341 17.074

3×

SRN 115.193 2.087 16.123 110.036 2.938 13.693 181.533 2.504 14.609
NSIPO 64.457 2.405 15.606 81.301 3.431 13.791 75.785 4.225 14.257
IOH 58.629 2.432 16.307 95.068 2.790 13.894 108.328 3.728 13.919
Uformer 60.497 2.638 16.379 93.888 3.388 14.051 72.923 5.904 13.464
QueryOTR 60.977 3.114 16.864 64.926 4.612 14.316 69.951 5.683 15.294

Table 1: Quantitative results of one-step and multi-step outpainting. Best and
second best results are boldface and underlined. 1× represents one step out-
painting, while 2× and 3× denote two- and three-step outpainting respectively.

mini-batch of 64, β1 = 0.0, β2 = 0.99, and weight decay of 0.0001. The o is
set to 8 considering the complexity and precision. Our QueryOTR is trained for
300, 200 and 120 epochs on Scenery, Building Facades, and WikiArt datasets
respectively with the learning rate of 0.0001. The warm-up trick [18] is utilized
in the first 10 epochs with the reconstruction loss only. For discriminator regu-
larization, DiffAug [46] and spectral normalization [33] are used to stabilise the
training dynamics.

We conduct generalised image outpainting for experimental comparison fol-
lowing the previous work. In the training stage, the original images are resized
to the size 192 × 192 as the ground truth images. Then the input images with
the size 128× 128 are obtained by the center cropping operation. In the testing
stage, all images are resized to 192 × 192 as the ground truth, and then the
input images are obtained by center cropping to the sizes 128×128, 86×86, and
56×56 for 1×, 2×, and 3× outpainting respectively. Excepted for horizontal flip
and image normalization, no other data augmentation is used for ease of setup.
The total output sizes are 2.25, 5, and 11.7 times of the input in terms of 1×,
2×, and 3× outpainting, indicating that over half of all pixels will be generated.

4.2 Experimental Results

We make comparisons with three SOTA CNN-based image outpainting meth-
ods, NSIPO [44], SRN [43], and IOH [40], and one transformer-based method
Uformer [11] to demonstrate the effectiveness of QueryOTR. For all the experi-
ments, we set the input and output sizes as 128× 128 and 192× 192.
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We use Inception Score (IS) [37], Fréchet Inception Distance (FID) [20], and
peak signal-to-noise ratio (PSNR) to measure the generative quality objectively.
The upper-bounds of IS are 4.091, 5.660 and 8.779 for Scenery, Building Facades
and WikiArt, respectively, which are calculated by real images in test set.
Quantitative Result Tab. 1 shows quantitative results. Our QueryOTR out-
performs the competition on almost all metrics on 1-step and multi-step out-
painting. In particular, QueryOTR shows obvious superiority in all entries com-
pared with CNN-based methods, e.g., SRN, NSIPO, and IOH. These results show
that transformer structure succeeds in capturing global dependencies for image
outpainting compared with CNN’s inductive biases. Meanwhile, our QueryOTR
outperforms the very competitive Swin-based Uformer which uses an image-to-
image translation approach for image extrapolation, mainly because our query-
based method allows to generate image patches attended to all the visual loca-
tions, yielding a better perceptual consistency. It is noted that our results for
1× outpainting are very close to the IS upper-bound for all the datasets, indi-
cating realistic image generation and good perceptual consistency. Extra results
of replacing the center region with input sub-images are in the supplementary.
Qualitative Result Some examples of visual results on all the datasets are
shown in Fig. 4. Our QueryOTR effectively extrapolates the images by querying
the global semantic-similar image patches. Seen from the 1× outpainting results,
our QueryOTR could generate more realistic images with vivid details and enrich
the contents of the generated regions marked in white box. Furthermore, our
method could weaken the sense of edges between the generated regions and input
sub-image. Compared with other baselines, our QueryOTR could generate water
containing more realistic ripples in the 3rd row and intact trees in the 5th row of
Fig. 4, which could be seen in the white dotted box. In the 7th row of Fig. 4, the
whole skyscraper generated by QueryOTR indicates the success of our query-
based method which predicts the detailed contents with global information by
queries. In the 9th row, our method could capture the global information of the
green background on the corner marked in the white box. More visual results
could be seen in the supplementary material.

4.3 Ablation Study

We ablate several critical factors in QueryOTR by progressively adjusting each
factor here. It can be seen that each factor contributes to the final success of
QueryOTR. We conducted all the ablation experiments on the Scenery dataset.

Transformer Encoder and Decoder We compare the impact of the pre-
trained ViT-based encoder and the number of transformer decoder layers M .
As shown in Tab. 2(a), utilizing a pretrained ViT encoder contributes to the
improvements of FID and IS by 2.418 and 0.204, respectively. The main reason
is that the small datasets might not be sufficient to train the model for per-
formance saturation. The pretrained ViT encoder is capable of capturing the
long-term dependencies, which may benefit the patch prediction. Additionally,
our QueryOTR performs optimally in both FID and IS when the number of
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Fig. 4: Comparisons on 1-step and multi-step outpainting with the state-of-the-
art methods. Our QueryOTR achieves the best image quality.
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Pretrained Enc. M FID↓ IS↑
- 4 22.784 3.751
✓ 2 20.731 3.931
✓ 4 20.366 3.955
✓ 8 20.373 3.852

(a) Ablation of the pretrained ViT-
base encoder and the number of trans-
former decoder layers M .

FID↓ IS↑
w/o Lrec & Lperceptual 38.009 3.433
w/o Lrec 31.282 3.744
w/o Lperceptual 33.380 3.510
QueryOTR (baseline) 20.366 3.955

(b) Impact of Lrec and Lperceptual con-
tribute to the overall performance. The
model is default trained with three losses.

FID↓ IS↑
w/o QEM 36.967 3.642
QEM w/o Noise 23.444 3.728
QEM w/o DC [48] 23.530 3.775
w QEM 22.784 3.751

(c) Impact of proposed Query Ex-
pansion Module (QEM) and its key
internal components.

PSM Per-Patch Norm. FID↓ IS↑
- - 51.945 3.801
- ✓ 31.073 3.753
✓ - 22.501 3.707
✓ ✓ 20.366 3.955

(d) Effect of the proposed Patch Smooth-
ing Module (PSM) and per-patch image
normalization.

Table 2: Ablation studies validated on Scenery dataset.

(a) w/o QEM (b) w/o PSM (c) w/o (d) w/o (e) QueryOTR (f) Ground Truth

Fig. 5: Visualisation of ablation study.

decoder layers is set to 4. Further increasing the depth of decoder indefinitely
will not improve the performance of our QueryOTR.

Loss Terms We investigate the impact of patch-wise reconstruction loss Lrec

and perceptual loss Lperceptual in Tab. 2(b). We first train the model with only
adversarial loss, which is equivalent to training the model unpaired, resulting
in a FID of 38.009 and IS of 3.433. On the basis of adversarial training, using
either Lrec or Lperceptual could improve the overall performance. Fig. 5(c) and
(d) show that high-frequency checkerboard artifacts occur when trained without
Lrec, and the details cannot be generated without Lperceptual.

QEM We ablate the impact of QEM and its internal key components. In the
experiments, we do not use a pretrained encoder to avoid reducing the difficulty
of training learnable queries. Since training pure transformer may require larger
datasets and longer time, it is hard for learnable queries to converge well on
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Scenery dataset, resulting in a high FID (see Tab. 2(c)) and blurry image patches
(see Fig. 5(a)). On the other hand, the proposed QEM generates queries condi-
tioned on input images, significantly improving FID by 14.227. Meanwhile, gen-
erating queries with noise slightly improves the patch diversity, and deformable
convolution enables an active long distance modeling for query generation.

To further investigate how QEM affect the convergence speed of pure trans-
former, we train the pure transformer with and without QEM module for 1000
epochs. As shown in Fig. 2(a), the convergence rate of the pure transformer
with QEM is about 3.3 times faster than that without QEM on a relatively small
dataset indicating the superiority of QEM in accelerating the model convergence.
On the other hand, the loss declines slowly without QEM, which might be caused
by the insufficient training data. The reason leading to this phenomenon is that
the pure transformer will process almost 4 billion possibilities if the 16×16 pixel
patch is treated as a word, which needs larger semantic space for attention pro-
cessing. When dealing with a small dataset, the amount of data is not enough
to regress the extrapolated patches resulting in model degradation.
PSM Tab. 2(d) demonstrates the effect of the proposed PSM and per-patch nor-
malization. Although using a single linear layer can generate vivid image patches,
the connections between patches are unnatural, as shown in Fig. 5(b). Per-patch
normalization could improve the reconstruction of high-frequency by enhancing
the local contrast of patches, leading an improvement of FID 20.872. Meanwhile,
PSM significantly alleviates the checkerboard artifacts caused by per-patch pre-
diction, and improves the overall perceptual quality of the extrapolated images.
PSM alleviates checkerboard artifacts via explicit constraints, while perceptual
loss penalizes image discontinuity from a semantic perspective. PSM appears
more effective and direct than perceptual loss. If both are applied, even better
performance can be obtained.

5 Conclusion

In this paper, we have proposed a novel hybrid query-based encoder-decoder
transformer framework,QueryOTR, to extrapolate visual context all-side around
a given image. The transformer structure breaks through the limitation of cap-
turing image long-rang dependencies and intrinsic locality. The special designed
module QEM helps to accelerate the transformer model convergence on small
datasets and PSM contributes to generate seamless extrapolated images realis-
tically and smoothly. Extensive experiments on Scenery, Building and WikiArt
datasets proved the superiority of our query-based method.
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video vision transformer. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 6836–6846 (2021)

2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: A ran-
domized correspondence algorithm for structural image editing. ACM Transactions
on Graphics 28(3), 24 (2009)

3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Pro-
ceedings of the 27th annual conference on Computer graphics and interactive tech-
niques. pp. 417–424 (2000)

4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity
natural image synthesis. In: Proceedings of the International Conference on Learn-
ing Representations (2019)

5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.:
End-to-end object detection with transformers. In: Proceedings of the European
Conference on Computer Vision. pp. 213–229. Springer (2020)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 248–255 (2009)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Annual Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (2019)

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
Proceedings of the International Conference on Learning Representations (2021)

9. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics
based on deep networks. In: Advances in Annual Conference on Neural Information
Processing Systems. vol. 29 (2016)

10. D’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: Con-
vit: Improving vision transformers with soft convolutional inductive biases. In:
Proceedings of the International Conference on Machine Learning. pp. 2286–2296.
PMLR (2021)

11. Gao, P., Yang, X., Zhang, R., Huang, K., Geng, Y.: Generalised image outpainting
with U-Transformer. arXiv preprint arXiv:2201.11403 (2022)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Annual
Conference on Neural Information Processing Systems. vol. 27 (2014)

13. Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin, A., Jégou, H., Douze, M.:
Levit: a vision transformer in convnet’s clothing for faster inference. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 12259–12269
(2021)

14. Gu, J., Shen, Y., Zhou, B.: Image processing using multi-code GAN prior. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 3012–3021 (2020)

15. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein GANs. In: Advances in Annual Conference on Neural In-
formation Processing Systems. vol. 30 (2017)



16 K. Yao et al.

16. Guo, D., Liu, H., Zhao, H., Cheng, Y., Song, Q., Gu, Z., Zheng, H., Zheng, B.:
Spiral generative network for image extrapolation. In: Proceedings of the European
Conference on Computer Vision. pp. 701–717. Springer (2020)

17. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 770–778 (2016)

19. Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial di-
mensions of vision transformers. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 11936–11945 (2021)

20. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Advances
in Annual Conference on Neural Information Processing Systems. vol. 30 (2017)

21. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: Proceedings of the European Conference on Computer Vision.
pp. 694–711. Springer (2016)

22. Kim, K., Yun, Y., Kang, K.W., Kong, K., Lee, S., Kang, S.J.: Painting outside
as inside: Edge guided image outpainting via bidirectional rearrangement with
progressive step learning. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision. pp. 2122–2130 (2021)

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

24. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding be-
yond pixels using a learned similarity metric. In: Proceedings of the International
Conference on Machine Learning. pp. 1558–1566. PMLR (2016)

25. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A.,
Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image
super-resolution using a generative adversarial network. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4681–
4690 (2017)

26. Lee, K., Chang, H., Jiang, L., Zhang, H., Tu, Z., Liu, C.: Vitgan: Training GANs
with vision transformers. arXiv preprint arXiv:2107.04589 (2021)

27. Lim, J.H., Ye, J.C.: Geometric GAN. arXiv preprint arXiv:1705.02894 (2017)
28. Lin, H., Pagnucco, M., Song, Y.: Edge guided progressively generative image out-

painting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 806–815 (2021)

29. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022
(2021)

30. Lu, C.N., Chang, Y.C., Chiu, W.C.: Bridging the visual gap: Wide-range image
blending. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 843–851 (2021)

31. Ma, Y., Ma, J., Zhou, M., Chen, Q., Ge, T., Jiang, Y., Lin, T.: Boosting im-
age outpainting with semantic layout prediction. arXiv preprint arXiv:2110.09267
(2021)

32. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares gen-
erative adversarial networks. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 2794–2802 (2017)



Outpainting by Queries 17

33. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: Proceedings of the International Conference
on Learning Representations (2018)

34. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: Advances in Annual Conference on Neural
Information Processing Systems. vol. 32 (2019)

35. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context en-
coders: Feature learning by inpainting. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 2536–2544 (2016)

36. Sabini, M., Rusak, G.: Painting outside the box: Image outpainting with GANs.
arXiv preprint arXiv:1808.08483 (2018)

37. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: Advances in Annual Conference on
Neural Information Processing Systems. vol. 29 (2016)

38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proceedings of the International Conference on Learning
Representations (2015)

39. Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: Ceci n’est pas une pipe: A deep
convolutional network for fine-art paintings classification. In: Proceedings of the
IEEE International Conference on Image Processing. pp. 3703–3707. IEEE (2016)

40. Van Hoorick, B.: Image outpainting and harmonization using generative adversarial
networks. arXiv preprint arXiv:1912.10960 (2019)

41. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in Annual Conference
on Neural Information Processing Systems. vol. 30 (2017)

42. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional GANs. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 8798–8807 (2018)

43. Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 1399–1408 (2019)

44. Yang, Z., Dong, J., Liu, P., Yang, Y., Yan, S.: Very long natural scenery image pre-
diction by outpainting. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 10561–10570 (2019)

45. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpaint-
ing with contextual attention. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 5505–5514 (2018)

46. Zhao, S., Liu, Z., Lin, J., Zhu, J.Y., Han, S.: Differentiable augmentation for data-
efficient GAN training. In: Advances in Annual Conference on Neural Information
Processing Systems. vol. 33, pp. 7559–7570 (2020)

47. Zhou, D., Kang, B., Jin, X., Yang, L., Lian, X., Jiang, Z., Hou, Q., Feng, J.: Deepvit:
Towards deeper vision transformer. arXiv preprint arXiv:2103.11886 (2021)

48. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets V2: More deformable, better
results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 9308–9316 (2019)


	Outpainting by Queries

