
Learning Where To Look –
Generative NAS is Surprisingly Efficient:

Supplementary Material

Jovita Lukasik1,2∗ , Steffen Jung2∗ , and Margret Keuper2,3

1 University of Mannheim
2 Max Planck Institute for Informatics, Saarland Informatics Campus

3 University of Siegen

Section A provides an overview about the graph representations for each
search space, we consider in the main paper. In section B we show additional
ablation studies. In section C, we provide more details about the experimental
settings. In subsection C.5 we provide additional details for our search method
on the DARTS search space. In section D we describe details about the generator
network, and in section E we list all hyperparameter settings of our experiments.
Lastly, we include a visual intuition of the latent space optimization technique
in section F.

A Search Space Representations

In this section we give more details about the search spaces we consider in the
main paper.

A.1 NAS-Bench-101

NAS-Bench-101 is the first tabular benchmark designed for benchmarking NAS
methods. This search space is a cell-based search space and contains 423, 624
unique neural networks. Each architecture is trained 3 times on CIFAR-10 [17]
for image classification. The cell topology is limited to the number of nodes
|V | ≤ 7 (including input and output nodes) and edges |E| ≤ 9. The nodes
represent the architecture layers and intermediate nodes can take any operation
from the operation set O = {1 × 1 conv., 3 × 3 conv., 3 × 3 max pooling}. For
visualization purposes, we present in Figure 5 exemplary a DAG from the NAS-
Bench-101 search space, with its corresponding node attribute matrix and its
adjacency matrix. Note, a concatenation of the flatted node attribute matrix and
the flatted upper triangular adjacency matrix is the representation our generator
model is trained to learn; this holds for all search spaces.

A.2 NAS-Bench-201

NAS-Bench-201 [12] is another cell-structured search space, which consists of
15, 625 architectures. Each architecture is trained for 200 training epochs on

∗Authors contributed equally.

https://orcid.org/0000-0003-4243-9188
https://orcid.org/0000-0001-8021-791X
https://orcid.org/0000-0002-8437-7993

2 J. Lukasik, S.Jung, M. Keuper

Fig. 5: Exemplary cell representation from the NAS-Bench-101 search space.
(left) DAG representation of a graph with 7 nodes. (right) The top part shows
the node attribute matrix to the DAG and the bottom part shows its adjacency
matrix.

3x3 3x3

skip
3x3

3x3 1x1

in

1x1

3x3

out

3x3

3x3

3x3

skip

0 1 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

Nodes

N
od

es

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

[out in 1x1 3x3 ap skip none]

Node Operations

N
od

es

Fig. 6: Exemplary cell representation from the NAS-Bench-201 search space.
(top) The left part visualizes the DAG representation with node attributes in-
stead of edge attributes. The right part shows the true DAG representation in
the NAS-Bench-201 search space. (bottom) The left part shows the node at-
tribute matrix to the DAG and the right part shows its adjacency matrix.

Learning Where To Look: Supplementary Material 3

CIFAR-10 [17], CIFAR-100 [17], and ImageNet16-120 [10]. This benchmark pro-
vides validation and test accuracy information for each of the three datasets.
The cell structure is different compared to NAS-Bench-101: Each cell has |V | = 4
nodes and |E| = 6 edges, where the former represent feature maps and the lat-
ter denote operations chosen from the set O = {1 × 1 conv., 3 × 3 conv., 3 ×
3 avg pooling, skip, zero}.

Figure 6 visualizes a DAG in the true variant in the NAS-Bench-201 search
space with edge attributes, as well as our adapted representation, where the
edge attributes are changed to node attributes. This is similar to the represen-
tation in [36]. We show experiments on NAS-Bench-101 and NAS-Bench-201 in
subsection 4.1.

A.3 DARTS Search Space

Fig. 7: Exemplary cell representation from the DARTS search space. (top) Vi-
sualization of the DAG representation in the DARTS search space. (bottom)
The left part shows the node attribute matrix to the DAG and the right part
shows its adjacency matrix.

NAS-Bench-301 [29] is the first surrogate benchmark, which evaluates several
surrogate models on in total 60, 000 sampled architectures from the DARTS [20]
search space on the CIFAR-10 [17] image classification task. The DARTS search
space consists of 1018 neural networks, where each network consists of two cells;
a normal cell and a reduction cell. Each cell is limited by the number of nodes
|N | = 7 and the number of edges |E| = 12, where 4 of these edges connect the
intermediate nodes (excluding the input nodes) to the output node. Each edge

4 J. Lukasik, S.Jung, M. Keuper

denotes an operation from the set O = {3 × 3 sep. conv., 5 × 5 sep. conv., 3 ×
3 dil. conv., 5× 5 dil. conv., 3× 3 avg pooling, 3× 3 max pooling, identity, zero}.
Each intermediate edge is connected to two predecessor nodes. Each cell also
contains two input nodes, which are the output nodes from the previous two
cells. The overall network is created by stacking the normal and reduction cell.

In order to train our generative model to generate valid cells, we additionally
randomly sample 500k architectures from the DARTS search space. We train
our generative model to learn to generate valid cells independently of being a
normal or reduction cell. In Figure 7 we visualize the adapted node attribute
matrix and the adapted adjacency matrix to an exemplary DAG in the DARTS
search space [20]. This is similar to the representation in [36].

A.4 NAS-Bench-NLP

Fig. 8: Exemplary cell representation from the NAS-Bench-NLP search space.
(left) DAG representation of a graph with 12 nodes. (right) The top part shows
the node attribute matrix to the DAG and the bottom part shows its adjacency
matrix.

NAS-Bench-NLP [16] is the first RNN-derived benchmark for language mod-
eling tasks. From the total 1053 possible architectures in the complete search
space, 14, 322 architectures are trained on Penn TreeBank [24] (PTB) and pro-
vided in this benchmark. The cell search space is constrained by the number of
nodes |V | ≤ 24, the number of hidden states |H| ≤ 3 and the number of linear
input vectors ≤ 3. The nodes represent the architecture operational layer and are

Learning Where To Look: Supplementary Material 5

chosen from the set O = {linear, element wise blending, element wise product,
element wise sum, Tanh activation, Sigmoid activation, LeakyReLU activation}.

For the experiments on NAS-Bench-NLP [16] we make use of the surrogate
benchmark NAS-Bench-X11 [35] and the additional implementation in NAS-
Bench-Suite [23]. Note, for the NAS-Bench-X11 evaluations, each architecture
from the NAS-Bench-NLP search space must be trained for three epochs to use
the surrogate model, whereas NAS-Bench-Suite provides the surrogate model
for NAS-Bench-NLP without learning curve information, but also accompany-
ing a lower Kendall Tau rank correlation. For fast evaluations we use the latter
surrogate for our experiments. In order to use the surrogate benchmark, the
architecture representation is the same used in [35] with the modification that
each hidden node is connected to the output node. An exemplary architecture
representation is visualized in Figure 8. A next step is to analyse the 14, 332
provided architectures on uniqueness, which leads to 12, 107 unique architec-
tures. Furthermore, since [35] and [23] only provide a surrogate model, which
only considers architectures with up to 12 nodes, we also restrict our training
data to this subset leading to a total of 7, 258 architectures.

We show experiments in the DARTs search space and on NAS-Bench-NLP
in subsection 4.2.

A.5 Hardware-Aware-NAS-Bench

The recently introduced HW-NAS-Bench [18] is the first public dataset for hard-
ware NAS. It extends two representative NAS search spaces, NAS-Bench-201 [12]
and FBNet [33], by providing measured and estimated hardware costs (i.e. la-
tency and/or energy) for each device for all architectures in both search spaces.
For this, HW-NAS-Bench considers six hardware devices: Edge GPU [3], Raspi 4
[4], Edge TPU [1], Pixel 3 [2], ASIC-Eyeriss [9] and FPGA [5,6].

In our experiments in subsection 4.3 we consider the latency information on
the NAS-Bench-201 search space.

B Additional Ablation Studies

In this section we give an overview of different ablation studies with respect to
the proposed AG-Net.

B.1 Oracle Ablation

As we have seen in the previous section, our model AG-Net is able to find high-
scoring architectures in various search spaces of different sizes and with different
objectives. In addition, including the supposedly stronger predictor XGB [7]
leads to improvements for the search on NAS-Bench-NLP [16]. In this section,
we include an even stronger architecture accuracy evaluation model, i.e. the
benchmark query input itself (oracle).

6 J. Lukasik, S.Jung, M. Keuper

Fig. 9: Architecture search on NAS-Bench-101. Reported is the mean over 10
trials for the search of the best architecture in terms of validation accuracy on
the CIFAR-10 image classification task compared to strong predictor models.

Table 7: Ablation: Search results on NAS-Bench-101 and NAS-Bench-201 on the
AG-Net latent space (mean over 10 trials with a maximal query amount of 300).

NAS-Bench-101 NAS-Bench-201
CIFAR-10 CIFAR-10 CIFAR-100 ImageNet16-120

Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc

Optimum* 95.06 94.32 91.61 94.37 73.49 73.51 46.77 47.31

Random Search 94.27 93.65 91.37 93.92 72.55 72.49 46.09 46.05
Local Search 94.31 93.66 91.28 94.01 72.52 72.59 45.89 46.07

Bayesian Optimization 94.27 93.62 91.30 93.99 72.23 72.35 46.09 46.01
Random Search + LSO 94.64 94.20 91.61* 94.37* 73.49* 73.51* 46.77* 45.47
Local Search + LSO 94.17 93.50 91.30 93.96 72.43 72.58 45.83 45.95

Bayesian Optimization +LSO 94.50 93.96 91.43 94.17 72.64 72.67 46.30 45.91
SGNAS [14] + LSO - - 91.61* 94.37* 73.04 73.12 46.56 46.32

AG-Net (ours) 94.96 94.20 91.61* 94.37* 73.49* 73.51* 46.67 46.22

The comparison of the oracle benchmark (also including the ranking metric
as for XGB in the main paper) to our AG-Net and XGB modifications are
visualized in Figure 9. This figure demonstrates the high performance of our
model in the low query area. The more queries are evaluated for the search, the
better the oracle becomes, outperforming all other methods after 150 queries.

B.2 Latent Space Ablations

As we have seen in subsection 4.1, AG-Net improves over state-of-the art meth-
ods. For additional comparisons, we investigate different search methods in the
latent space of the generative model, with samples z from a grid and also include
baselines using the LSO approach. For the first experiment we use the generator
solely as a data sampler from the generator’s latent space without any retrain-
ing, for the latter baseline we retrain the generator during the search. For the
optimization, we use Bayesian optimization, local search and random search.

Bayesian Optimization We use DNGO[30] as our uncertainty prediction model
for the Bayesian optimization search strategy, with the basis regression network
being a one-layer MLP with a hidden dimensionality of 128, which is trained

Learning Where To Look: Supplementary Material 7

Fig. 10: Ablation: neural architecture search on NAS-Bench-101 and NAS-Bench-
201 over 10 trials.

for 100 epochs and expected improvement (EI) [25] as our acquisition function,
which is mostly used in NAS. We set the best function value for the EI evalu-
ation as the best validation accuracy of the training data. We sample 16 initial
random latent space variables z ∼ U [−3, 3] and decode them to graph data
using our pretrained generative model. These latent space variables and their
corresponding validation architecture performances are then the inputs for the
DNGO model for training. Again, the best 16 architectures are selected using
EI in each round to be evaluated and added to the training data. This search
ends when the total query amount of 300 is reached.

Random and Local Search In addition to Bayesian Optimization as a comparison,
we also include a random search [19] and local search investigation. Recently,
[32] show that local search is a powerful NAS baseline, resulting in competitive
results. Local search [32] evaluates samples and their neighborhood uniformly at
random. An option to define the neighborhood is the set of architectures which
differ from a sampled architecture by one node or edge. This can be done only in
the discrete search space, given for example by the tabular NAS-Benchmarks. We
have to adapt the neighborhood definition in our latent space for local search in
this space. We sample a latent space variable z ∼ U [−3, 3], decode it and evaluate
the generated neural architecture. Here, we define neighborhood as the Euclidean
space around the sampled latent variable Uϵ(z) = {y ∼ U [−3, 3]|d(z, y) < ϵ},
with ϵ being sufficiently small. This neighborhood is then investigated until a
local optimum in terms of validation accuracy is reached. Furthermore, we in-
clude a random search and local search comparison using weighted retraining.
Here, we retrain the generative model in each search iteration for 1 epoch with
the weighted objective function, ceteris paribus.

8 J. Lukasik, S.Jung, M. Keuper

To compare with weight-sharing approaches, we also compare to the supernet
from [14] for the NAS-Bench-201 search space. To compare our AG-Net with
SGNAS, we use the supernet as our surrogate model to predict the architectures
performance while retraining the generative model in the weighted manner. The
results of our ablation studies are reported in Table 7. AG-Net improves over
search methods on the latent space with and without LSO on both benchmarks,
demonstrating that our generator in combination with our MLP surrogate model
learns to adapt the distribution shift constructed by the weighted retraining best.

For further visualizations we also plot different ablation search methods over
different query numbers in Figure 10 for both benchmarks NAS-Bench-101 and
NAS-Bench-201. This figure demonstrates the high any-time performance of our
method on both search spaces. For any number of available queries, our model is
better in finding high-performing architectures from the latent space than other
latent space based methods.

B.3 Predictor Ablation – Local Solution

Fig. 11: Architecture search on NAS-Bench-101 in the degenerate setting. Re-
ported is the mean over 10 trials.

Our proposed method, consisting of the generative and surrogate model com-
bined with the latent space optimization, makes the architecture search focus
on promising regions in the search space. This method could be trapped in local
solutions, which we investigate experimentally in the following. First, the previ-
ous section already points out that our proposed method AG-Net improves over
both local search methods with and without the latent space optimization ap-
proach. Thus, we assume that the latent space optimization learns properties of
high-scoring architectures without being easily trapped in poor local solutions.
The amount of samples drawn in each search iteration also provides a trade-off
between diversity versus specificity. To investigate further how easily AG-Net
could be trapped in a local solution, we test our method when it only uses in
total the best k (predicted) architectures from our test samples and the training
data as a new training set for the next search iteration (degenerative) and is
thereby encouraged to forget about worse performing architectures. Figure 11
shows the search behaviour of the degenerative model with k = 16 and k = 32.
Even in this case, AG-Net is not easily trapped in poor solutions.

Learning Where To Look: Supplementary Material 9

C Experiments: Implementation Details

C.1 Surrogate Model

In this section, we present details about the surrogate models used in the main
paper. The MLP surrogate model used for our AG-Net is a 4-layer MLP with
ReLU non-activation functions. The hidden size equals the input size. The input
to the MLP surrogate model is the vector representation ∈ Rn of our graphs: a
concatenation of the flatted node attribute matrix and flatted upper triangular
matrix of the adjacency matrix, which presents the edge scores, see section A
for visualizations. Note, the vector dimension n differs across the search spaces
due to the different maximal amount of nodes. Our AG-Net passes the output of
our generator, i.e. a generated vector representation, as the direct input to our
MLP surrogate model.

We consider as an alternative surrogate model the XGB [7] prediction model.
The input to this prediction model is the vector representation of the architec-
ture.

C.2 Search Algorithm

High-level descriptions of the unconstrained (subsection 4.1) and constrained
(subsection 4.3) versions of our search algorithm are depicted in algorithm 1 and
algorithm 2 respectively.

C.3 NAS-Bench-101

In this section, we give more information about the NAS-Bench-101 experiments
from the main paper.

Table 8 is the detailed version of Table 1 including the standard deviation.

C.4 NAS-Bench-201

Table 9 is the detailed version of Table 2 including the standard deviation.

C.5 DARTS Search Space

Additional Results Table 10 is the detailed version of Table 3 including the
standard deviation.

Search Process using NAS-Bench-301 For experiments in the DARTS [20] search
space, we first train our generative model on generating valid cells, as visual-
ized in Figure 7; here we do not distinguish between generating a normal or a
reduction cell. Having a pretrained generative model for generating valid cell
representations in the DARTS search space allows for searching well-performing
architectures. Here we describe the search process for architectures evaluated
on CIFAR-10 using the surrogate benchmark NAS-Bench-301 [29]. Since the

10 J. Lukasik, S.Jung, M. Keuper

Algorithm 1: Unconstrained Search Algorithm

Input: (i) Search space pD
Input: (ii) Pretrained generator G
Input: (iii) Untrained performance predictor P
Input: (iv) Query budget b
Input: (v) e epochs to train G and P
▷ Initialize training data

1 D← {}
2 while |D| < 16 do
3 D← D ∪ {d ∼ pD}
4 end

▷ Evaluate architectures (get accuracies on target image dataset)

5 D← eval(D)
▷ Randomly initialize predictor weights

6 P ← init(P)
▷ Search loop

7 while |D| < b do
▷ Weight training data by performance

8 Dw ← weight(D)
▷ Train generator and predictor

9 train(G,P , Dw, e)
▷ Generate 100 candidates

10 Dcand ← {}
11 while |Dcand| < 100 do
12 z ∼ U [−3, 3]
13 Dcand ← Dcand ∪G(z)

14 end
▷ Select top 16 candidates with P

15 Dcand ← select(Dcand, P,16)
▷ Evaluate and add to data

16 D← D ∪ eval(Dcand)

17 end

DARTS search space is defined by a normal and reduction cell, we have to adapt
the search process, compared to the search in the tabular benchmark search
spaces, where the architectures differ between the DAG. We begin the search
by randomly sampling 16 architectures from NAS-Bench-301. Next, we generate
one normal cell. This cell is used to search for the best reduction cell in terms of
the accuracy given by the surrogate benchmark NAS-Bench-301, in combination
with the randomly sampled cell. This search procedure then follows the same
steps as for the tabular benchmarks and stops after we reach a query amount of
155. Now, we can use the best found reduction cell as a fixed starting point to
search for the best normal cell in the same manner as before. The overall search
stops after a maximal amount of 310 queries. The search outcome differs between
starting with a reduction or the normal cell. The search procedure starting with

Learning Where To Look: Supplementary Material 11

Algorithm 2: Constrained Search Algorithm

Input: (i) Search space pD
Input: (ii) Pretrained generator G
Input: (iii) Untrained performance predictor Pa

Input: (iv) Set of constraint predictors Pc

Input: (v) Query budget b
Input: (vi) e epochs to train G and P
Input: (vii) Set of constraints C
▷ Initialize training data

1 D← {}
2 while |D| < 16 do
3 D← D ∪ {d ∼ pD}
4 end

▷ Evaluate architectures (get accuracies and constraints on target

image dataset)

5 D← eval(D)
▷ Randomly initialize predictor weights

6 Pa ← init(Pa)
7 foreach P ∈ Pc do
8 P ← init(P)
9 end

▷ Search loop

10 while |D| < b do
▷ Weight train data by performance and constraints

11 Dw ← weight(D, C)
▷ Train generator and predictors

12 train(G,Pa, Pc, Dw, e)
▷ Generate 100 candidates

13 Dcand ← {}
14 while |Dcand| < 100 do
15 z ∼ U [−3, 3]
16 Dcand ← Dcand ∪G(z)

17 end
▷ Select top16 candidates with Pa and Pc

18 Dcand ← select(Dcand, Pa, Pc,16)
▷ Evaluate and add to data

19 D← D ∪ eval(Dcand)

20 end

a random reduction cell is analogous. In the main paper, we report the search
outcome for NAS-Bench-301 [29] starting with a random reduction cell.

Search Process using TENAS As we described in the previous section, the search
in the DARTS [20] search space needs adaptions in the search procedure. Here
we describe the further adaption of using training free measurements instead
of the NAS-Bench-301 prediction. The training free measurements are based on
the recent paper TE-NAS [8], which ranks architectures by analysing the neural

12 J. Lukasik, S.Jung, M. Keuper

Table 8: Architecture search on NAS-Bench-101. Reported is the mean and the
standard deviation over 10 trials for the search of the best architecture in terms
of validation accuracy on the CIFAR-10 image classification task compared to
state-of-the-art methods.

NAS Method Val. Acc (%) StD (%) Test Acc (%) StD (%)Queries

Optimum* 95.06 - 94.32 -

Arch2vec + RL [36] - - 94.10 - 400
Arch2vec + BO [36] - - 94.05 - 400

NAO ‡[22] 94.66 0.14 93.49 0.59 192

BANANAS† [31] 94.73 0.17 94.09 0.19 192

Bayesian Optimization† [30] 94.57 0.2 93.96 0.21 192

Local Search† [32] 94.57 0.15 93.97 0.13 192

Random Search†[19] 94.31 0.15 93.61 0.27 192

Regularized Evolution*[27] 94.47 0.11 93.89 0.2 192
WeakNAS [34] - - 94.18 0.14 200

XGB (ours) 94.61 0.04 94.13 0.11 192
XGB + ranking (ours) 94.60 0.08 94.14 0.19 192

AG-Net (ours) 94.90 0.22 94.18 0.10 192

tangent kernel, by its condition number (KN), and the number of linear regions
(NLR) of each architecture. Concretely, for the search on ImageNet [11] we search
for architectures in terms of their KN value and their number of linear regions
instead of their validation accuracy. In the beginning of our search we generate
three random normal cells. These cells are used to search for an optimal reduction
cell optimizing both KN and NLR measurements. In each search iteration we
generate reduction cells and calculate the KN and NLR for each combination of
normal cell and reduction cell. The reduction cells are ranked according to their
mean KN and their mean NLR (mean in terms of all three normal cells). The
16 best ranked reduction cells are then used for the next iteration of reduction
cell search. The reduction cell search stops, when a maximum of 104 queries is
reached. After that we use the best found reduction cell in terms of the lowest
KN and the highest NLR for the next search for a normal cell. The next steps
use this best found reduction cell as a starting point and searches for the best
normal cell in the same manner as before. The search stops after a total of 208
queries and outputs an overall normal and reduction cell combination, leading
to a DARTS [20] architecture, which we train on ImageNet [11] using the same
training pipeline as [8].

C.6 NAS-Bench-NLP

Table 11 is the detailed version of Table 3 including the standard deviation.

C.7 Hardware-Aware NAS-Bench

In comparison to the experiments for NAS-Bench-101 [37] and NAS-Bench-201
[12] image benchmarks, the search on the Hardware-Aware NAS-Bench [18]

Learning Where To Look: Supplementary Material 13

Table 9: Architecture Search on NAS-Bench-201. We report the mean and stan-
dard deviation over 10 trials for the search of the architecture with the highest
validation accuracy. For comparable numbers of queries, AG-Net performs sim-
ilarly or better than the previous state of the art.

NAS Method CIFAR-10 CIFAR-100 ImageNet16-120 Queries
Val. Acc StD Test Acc StD Val. Acc StD Test Acc StD Val. Acc StD Test Acc StD

Optimum* 91.61 94.37 73.49 73.51 46.73 47.31

SGNAS [14] 90.18 0.31 93.53 0.12 70.28 1.2 70.31 1.09 44.65 2.32 44.98 2.10

Arch2vec + BO [36] 91.41 0.22 94.18 0.24 73.35 0.32 73.37 0.30 46.34 0.18 46.27 0.37 100
AG-Net (ours) 91.55 0.08 94.24 0.19 73.2 0.34 73.12 0.40 46.31 0.33 46.2 0.47 96

AG-Net (ours with topk=1) 91.41 0.30 94.16 0.31 73.14 0.56 73.15 0.54 46.42 0.14 46.43 0.30 100

BANANAS† [31] 91.56 0.14 94.3 0.22 73.49* 0.00 73.50 0.00 46.65 0.13 46.51 0.11 192

BO† [30] 91.54 0.06 94.22 0.18 73.26 0.19 73.22 0.27 46.43 0.35 46.40 0.35 192

RS † [19] 91.12 0.26 93.89 0.27 72.08 0.53 72.07 0.61 45.87 0.39 45.98 0.41 192
XGB (ours) 91.54 0.09 94.34 0.10 73.10 0.51 72.93 0.74 46.48 0.13 46.08 0.79 192

XGB + Ranking (ours) 91.48 0.12 94.25 0.15 73.20 0.36 73.24 0.34 46.40 0.28 46.16 0.64 192
AG-Net (ours) 91.60 0.02 94.37* 0.00 73.49* 0.00 73.51* 0.00 46.64 0.12 46.43 0.34 192

GANAS [28] - - 94.34 0.05 - - 73.28 0.17 - - 46.80 0.29 444
AG-Net (ours) 91.61* 0.00 94.37* 0.00 73.49* 0.00 73.51* 0.00 46.73* 0.00 46.42 0.00 400

Table 10: Results on NAS-Bench-301 (mean and standard deviation over 50
trials) for the search of the best architecture in terms of validation accuracy
compared to state-of-the-art methods.

NAS Method Val. Acc (%) StD (%) Queries

BANANAS† [31] 94.77 0.10 192

Bayesian Optimization† [30] 94.71 0.10 192

Local Search† [32] 95.02 0.10 192

Random Search†[19] 94.31 0.12 192

Regularized Evolution†[27] 94.75 0.11 192

XGB (ours) 94.79 0.13 192
XGR + Ranking (ours) 94.76 0.14 192

AG-Net (ours) 94.79 0.12 192

changes to be a multi-objective learning procedure. We compare two different
objective settings: i) a joint constrained optimization in Equation 4 and ii) a
constrained optimization in Equation 5. For both settings we need to adapt the
surrogate model by including an additional predictor g(·) for latency. We im-
plement g(·) equally to the performance predictor f(·), whereas both predictors
share weights in our experiments. We give a detailed overview of the hyperparam-
eter settings in section E. Since we include an additional predictor, the training
objective needs to be updated, as seen in Equation 6 with multiple targets. The
risk of including multiple targets to the training objective is an exploding loss
leading to reduced valid generation ability of our generative network. In order
to overcome this problem, we scale each loss term by the largest one, such that
each term is at most 1. This way, we have a more stable training.

14 J. Lukasik, S.Jung, M. Keuper

Table 11: Results on NAS-Bench-NLP (mean and standard deviation over 100
trials) for the search of the best architecture in terms of validation perplexity
compared to state-of-the-art methods.

NAS Method Val. Perplexity (%) StD (%) Queries

BANANAS† [31] 95.68 0.16 304

Local Search† [32] 95.69 0.18 304

Random Search†[19] 95.64 0.19 304

Regularized Evolution†[27] 95.66 0.21 304

XGB (ours) 95.95 0.20 304
XGR + Ranking (ours) 95.92 0.19 304

AG-Net (ours) 95.86 0.18 304

Exemplary Searches for Other Devices In Figure 4 we showed an exemplary
search result comparing random search with both of our constrained algorithm
settings in the case of different latency constraints on a Pixel3. In the following,
we show more examples on different devices in Figure 12. These plots show that
both methods Joint=1 and Joint=0 outperform the random search baseline in
all different device experiments. The same results as in the main paper holds
therefore for all other devices too; Joint=1 is able to find better performing ar-
chitectures compared to Joint=0 if the latency constraint L restricts the feasible
search space strongly.

Search Progress and Baselines Local search [32] is considered a strong baseline
in NAS. In the case of constrained searches (as in HW-NAS-Bench), we noticed
that it cannot perform well without adaptation. The vanilla local search algo-
rithm expects as input a single randomly drawn architecture from the search
space. However, this architecture is not guaranteed to be feasible in this setting,
as its latency can be larger than the latency constraint. To circumvent this, we
performed local search in the following settings: (a) local search vanilla setting
with one randomly drawn architecture, and (b) local search initialized with 16
randomly drawn architectures. In each setting, local search continues to search
the neighborhood of the next best architecture in terms of accuracy that sat-
isfies the latency constraint. We noticed that initializing local search with 16
randomly drawn architectures improves its performance substantially, however,
it is still not on par with random search [19] in this constrained search space.
Consequently, we only show random search as the baseline in Table 5 to improve
readability. In Figure 13 we show the progress of our algorithms (Joint=0 and
Joint=1) compared to random search and local search in settings (a) and (b).

Learning Where To Look: Supplementary Material 15

0 2 4 6 8 10
Latency

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Va
l.

Ac
c.

edgegpu Accuracies on ImageNet16

Optimum
Joint=0
Joint=1
Random

0 2 4 6 8 10 12 14
Latency

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Va
l.

Ac
c.

raspi4 Accuracies on ImageNet16

Optimum
Joint=0
Joint=1
Random

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Latency

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Va
l.

Ac
c.

eyeriss Accuracies on ImageNet16

Optimum
Joint=0
Joint=1
Random

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Latency

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Va
l.

Ac
c.

fpga Accuracies on ImageNet16

Optimum
Joint=0
Joint=1
Random

Fig. 12: Exemplary searches on HW-NAS-Bench for image classification on Im-
ageNet16 with 192 queries on Edge GPU, Raspi4, Eyeriss, FPGA and latency
conditions L ∈ {2, 4, 6, 8, 10}, L ∈ {2, 4, 6, 8, 10, 12, 14} and L ∈ {1, 2} (y-axis
zoomed for visibility).

D Generator Details

D.1 Generator Evaluation

Based on an investigation of autoencoder abilities from [36] and [21], we can
examine the generation ability of our generative model. For that we train our
generator on 90% of the overall dataset, and thus have a hold-out dataset of 10%
for the tabular benchmarks. The generative model training on the surrogate
benchmarks is a priori only on a subset of the overall dataset. Additionally,
we sample 10, 000 random variables z ∼ N (0, 1) and decode them to graphs.
We report the results of this investigation in Table 12. Here, validity describes
the ratio of valid graphs our generator model generates, uniqueness describes
the portion of unique graphs from the valid generated graphs, and novelty is
the portion of generated graphs not in the training set. It is not surprising for
the NAS-Bench-301 and NAS-Bench-NLP search spaces, that our model is able
to generate 100% unique and novel graphs, given the large size of both search
spaces.

This demonstrates that our simple generator model is able to generate valid
graphs with high novelty and consequently is able to cover a substantial part of
the search space.

16 J. Lukasik, S.Jung, M. Keuper

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

Functions Evaluated

0.6

0.7

0.8

0.9

1.0

Op
tim

al
ity

Mean of 10 runs

Joint=0
Joint=1
Random
Local Search
Local Search (16)
Optimum

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

Functions Evaluated

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Op
tim

al
ity

Mean of 10 runs

Joint=0
Joint=1
Random
Local Search
Local Search (16)
Optimum

Fig. 13: (left) Optimality for all search parameters in Table 5 at any time during
the search progress in terms of the number of evaluated architectures (up to 320).
Optimality is the mean validation accuracy of 10 runs per algorithm, normalized
by the optimal value for each parameter setting (hence, optimum is at 1.0).
(right) zoomed y-axis

Table 12: Generator Abilities and training costs. The proposed generator gener-
ates architectures with high validity and uniqueness scores. The novelty scores
are in a similar range as for previous methods [21].

Search Space Validity (in %) Uniqueness in (%) Novelty in (%) Training (in GPU days)

NAS-Bench-101 71.69 97.92 62.30 0.4
NAS-Bench-201 99.97 73.61 10.03 0.3
NAS-Bench-301 42.27 100 100 0.9
NAS-Bench-NLP 57.95 100 100 0.7

Table 12 also reports the training costs of the generative model on the com-
plete dataset as described in section A on a single Tesla V100. We used for the
experiments the OMNI cluster from the University of Siegen.

D.2 Generator Implementation Details

In this section we present more details about the generation model SVGe from
[21]. The pseudo algorithm is described in algorithm 3. The modules finitNode,
faddNode, faddEdges, fEmbedding used in this code are two-layer MLPs with ReLU
activation functions. Note, in contrast to SVGe, we don’t sample within the
generation process, in order to allow for end-to-end learning with the prediction
model for AG-Net.

E Hyperparameters

In this section we give a detailed overview about the hyperparameter for our
generative network. We use pytorch [26] and pytorch geometric [13] for all our
implementations.

Learning Where To Look: Supplementary Material 17

Algorithm 3: Graph Generation

Input: z ∼ N (0, 1)

Output: random sampled reconstructed graph G̃ = (Ṽ , Ẽ)
1 initialize one-hot encoded InputNode v0, with embedding

h0 ← finitNode(z, fEmbedding)[InputType])
2 V ← {v0}, E ← ∅, hG ← z,
3 while |V | ≤ Max Number of Nodes do
4 vt+1 ← faddNode(z,hG)
5 V ← V ∪ {vt+1}
6 ht+1 ← finitNode(z,hG, fEmbedding(vt+1)])
7 for vj ∈ V \ vt+1 do
8 saddEdges(j, t+ 1)← faddEdges(ht+1,ht,hG, z)
9 e(j,t+1) ∼ Eval(saddEdges(j, t+ 1)) ; ▷ evaluate whether to add edge

10 if e(j,t+1) = 1 then
11 E ← E ∪ {e(j,t+1) = (vj , vt+1)}
12 end

13 end
14 ht ← concat(ht,ht+1)
15 G← (V,E)
16 ht ← (ht, G) ; ▷ update node embeddings

17 hG ← aggregate(ht) ; ▷ update graph embedding

18 t← t+ 1

19 end
20 V ∼ Categorical(V) ; ▷ Sample node types

21 E ∼ Ber(E) ; ▷ Sample edges

22 G̃ = (V,E)

E.1 Generator

Table 13 presents all used hyperparameters for the generation training. We train
our generator in a ticked manner; after every 5.000 train data, we evaluate our
generator for validity ability. The used pretrained state dict for our search is
then, the one, which the highest validation measurement, which is defined by
randomly sample 10, 000 latent vectors z ∈ R32 and generate architectures. The
training is the same for all different search spaces.

E.2 Surrogate Model

The overall surrogate is an MLP with ReLU activations. Table 14 and Table 15
list all hyperparameters for the search experiments in the main paper for the
simple performance surrogate model and the multi-objective surrogate model
for the additional hardware objective. The hyperparameters for XGB [7] are the
same as in [23].

18 J. Lukasik, S.Jung, M. Keuper

Table 13: Hyperparameters of the generator model.

Hyperparameter Default Value

Node Embedding 32
Latent Vector 32

MLP Node Embedding layer 2
GNN layer 2
Batch Size 32
Optimizer Adam [15]

Learning Rate 0.0002
Betas (0.5, 0.999)
Ticks 500

Tick Size 5,000

Table 14: Hyperparameters for the performance surrogate model f(·)
Hyperparameter Dataset

NB101 NB201 NB301 NBNLP

α 0.9
MLP Layers 4
MLP Hidden 56 84 176 559

Epochs 15 30 15 30
Optimizer Adam [15]

LR 0.001
Betas (0.5, 0.999)

weight factor 10 e-3
batch size 16

loss L2

F Latent Space Optimization Visualization

A more descriptive visualization of the latent space optimization technique used
for our AG-Net neural architecture search is displayed in Figure 14.

Latent space

before LSO

Latent space

after LSO

LSO

Fig. 14: The latent space is reshaped in a way that promotes desired properties
of generated architectures (in this example: accuracy). Consequently, it becomes
more likely for the generator to generate architectures satisfying this property.

Learning Where To Look: Supplementary Material 19

Table 15: Hyperparameters for both surrogate models f(·) and g(·) for the multi-
objective search in the Hardware-Aware Benchmark

Hyperparameter Hardware-Aware NASBench

α 0.95
λ 0.5

MLP Layers 4
MLP Hidden 82

Epochs 30
Optimizer Adam [15]

LR 0.002
Betas (0.5, 0.999)

weight factor 10 e-3
penalty term 1000
batch size 16

loss L2

References

1. Google llc. edge tpu compiler. https://coral.ai/docs/dev-board/

get-started/, accessed: 2021-11-17
2. Google llc. pixel 3. https://g.co/kgs/pVRc1Y, accessed: 2021-11-17
3. Nvidia jetson tx2. https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-tx2/, accessed: 2021-11-17
4. Raspberry pi limited. https://www.raspberrypi.org/products/

raspberry-pi-4-model-b/, accessed: 2021-11-17
5. Xilinx inc. vivado high-level synthesis. https://https://www.xilinx.com/

products/design-tools/vivado/integration/esl-design.html, accessed: 2021-
11-17

6. Xilinx zynq-7000 soc zc706 evaluation kit. https://www.xilinx.com/products/
boards-and-kits/ek-z7-zc706-g.html, accessed: 2021-11-17

7. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2016)

8. Chen, W., Gong, X., Wang, Z.: Neural architecture search on imagenet in four
GPU hours: A theoretically inspired perspective. In: ICLR (2021)

9. Chen, Y., Krishna, T., Emer, J.S., Sze, V.: 14.5 eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks. In: International
Solid-State Circuits Conference, ISSCC (2016)

10. Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of imagenet as
an alternative to the CIFAR datasets. CoRR abs/1707.08819 (2017)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale
hierarchical image database. In: CVPR (2009)

12. Dong, X., Yang, Y.: Nas-bench-201: Extending the scope of reproducible neural
architecture search. In: ICLR (2020)

13. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

14. Huang, S., Chu, W.: Searching by generating: Flexible and efficient one-shot NAS
with architecture generator. In: CVPR (2021)

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)

https://coral.ai/docs/dev-board/get-started/
https://coral.ai/docs/dev-board/get-started/
https://g.co/kgs/pVRc1Y
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

20 J. Lukasik, S.Jung, M. Keuper

16. Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., Burnaev,
E.: Nas-bench-nlp: Neural architecture search benchmark for natural language pro-
cessing. CoRR abs/2006.07116 (2020)

17. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
18. Li, C., Yu, Z., Fu, Y., Zhang, Y., Zhao, Y., You, H., Yu, Q., Wang, Y., Hao, C.,

Lin, Y.: Hw-nas-bench: Hardware-aware neural architecture search benchmark. In:
ICLR (2021)

19. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture
search. In: UAI (2019)

20. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search (2019)
21. Lukasik, J., Friede, D., Zela, A., Hutter, F., Keuper, M.: Smooth variational graph

embeddings for efficient neural architecture search. In: IJCNN (2021)
22. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.: Neural architecture optimization. In:

NeurIPS (2018)
23. Mehta, Y., White, C., Zela, A., Krishnakumar, A., Zabergja, G., Moradian, S., Sa-

fari, M., Yu, K., Hutter, F.: Nas-bench-suite: NAS evaluation is (now) surprisingly
easy. CoRR abs/2201.13396 (2022)

24. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent
neural network based language model. In: Kobayashi, T., Hirose, K., Nakamura,
S. (eds.) INTERSPEECH 2010, 11th Annual Conference of the International
Speech Communication Association, Makuhari, Chiba, Japan, September 26-30,
2010 (2010)

25. Mockus, J.: On bayesian methods for seeking the extremum. In: Optimization Tech-
niques, IFIP Technical Conference, Novosibirsk, USSR, July 1-7, 1974. Springer
(1974)

26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS,
pp. 8024–8035 (2019)

27. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: AAAI (2019)

28. Rezaei, S.S.C., Han, F.X., Niu, D., Salameh, M., Mills, K.G., Lian, S., Lu, W., Jui,
S.: Generative adversarial neural architecture search. In: IJCAI (2021)

29. Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., Hutter, F.: Nas-bench-
301 and the case for surrogate benchmarks for neural architecture search. CoRR
abs/2008.09777 (2020)

30. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary,
M.M.A., Prabhat, Adams, R.P.: Scalable bayesian optimization using deep neural
networks. In: ICML (2015)

31. White, C., Neiswanger, W., Savani, Y.: Bananas: Bayesian optimization with neu-
ral architectures for neural architecture search. In: AAAI (2021)

32. White, C., Nolen, S., Savani, Y.: Exploring the loss landscape in neural architecture
search (2021)

33. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In: CVPR (2019)

34. Wu, J., Dai, X., Chen, D., Chen, Y., Liu, M., Yu, Y., Wang, Z., Liu, Z., Chen, M.,
Yuan, L.: Stronger nas with weaker predictors. In: NeurIPS (2021)

35. Yan, S., White, C., Savani, Y., Hutter, F.: Nas-bench-x11 and the power of learning
curves

Learning Where To Look: Supplementary Material 21

36. Yan, S., Zheng, Y., Ao, W., Zeng, X., Zhang, M.: Does unsupervised architecture
representation learning help neural architecture search? In: NeurIPS (2020)

37. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: Nas-bench-
101: Towards reproducible neural architecture search. In: ICML (2019)

	Learning Where To Look – Generative NAS is Surprisingly Efficient: Supplementary Material

