
Learning Where To Look –
Generative NAS is Surprisingly Efficient

Jovita Lukasik1,2∗ , Steffen Jung2∗ , and Margret Keuper2,3

1 University of Mannheim
2 Max Planck Institute for Informatics, Saarland Informatics Campus

3 University of Siegen

Abstract. The efficient, automated search for well-performing neural
architectures (NAS) has drawn increasing attention in the recent past.
Thereby, the predominant research objective is to reduce the necessity of
costly evaluations of neural architectures while efficiently exploring large
search spaces. To this aim, surrogate models embed architectures in a
latent space and predict their performance, while generative models for
neural architectures enable optimization-based search within the latent
space the generator draws from. Both, surrogate and generative models,
have the aim of facilitating query-efficient search in a well-structured
latent space. In this paper, we further improve the trade-off between
query-efficiency and promising architecture generation by leveraging ad-
vantages from both, efficient surrogate models and generative design.
To this end, we propose a generative model, paired with a surrogate
predictor, that iteratively learns to generate samples from increasingly
promising latent subspaces. This approach leads to very effective and
efficient architecture search, while keeping the query amount low. In
addition, our approach allows in a straightforward manner to jointly op-
timize for multiple objectives such as accuracy and hardware latency.
We show the benefit of this approach not only w.r.t. the optimization
of architectures for highest classification accuracy but also in the con-
text of hardware constraints and outperform state-of-the-art methods
on several NAS benchmarks for single and multiple objectives. We also
achieve state-of-the-art performance on ImageNet. The code is available
at https://github.com/jovitalukasik/AG-Net.
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1 Introduction

The first image classification network [20] applied to the large-scale visual recog-
nition challenge ImageNet [8] achieved unprecedented results. Since then, the
main driver of improvement on this challenge are new architecture designs [38,40],
[41,14] that, ultimately, lead to architectures surpassing human performance [13].
Since manual architecture design requires good intuition and a huge amount of
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Fig. 1: (left) Our search method generates architectures from points in an ar-
chitecture representation space that is iteratively optimized. (right) The archi-
tecture representation space is biased towards better-performing architectures
with each search iteration. After only 48 evaluated architectures, our generator
produces state-of-the-art performing architectures on NAS-Bench-101.

trial-and-error, the automated approach of neural architecture search (NAS) re-
ceives growing interest [32,58,54,10,18,21]. Well-performing architectures can be
found by applying common search practices like random search [2], evolution-
ary search [32,31], Bayesian optimization (BO) [16,35,45], or local search [46]
on discrete architecture search spaces, such as NAS-Bench-101, NAS-Bench-201,
DARTS and NAS-Bench-NLP [54,10,25,18]. However, these methods are ineffi-
cient because they require to evaluate thousands of architectures, resulting in
impracticable search times. Recent approaches avoid this problem of immense
computation costs by either training surrogate models to approximate the perfor-
mance of an architecture [25,3] or by generating architectures based on learned
architecture representation spaces [56,26]. Both methods aim to improve the
query efficiency, which is crucial in NAS, since every query implies a full train-
ing and evaluation of the neural architecture on the underlying target dataset.

This trade-off between query efficiency and resulting high-scoring architec-
tures is an active research field. Yet, no attempts were made so far to leverage
the advantages of both search paradigms. Therefore, we propose a model that
incorporates the focus of promising architectures already in the architecture gen-
eration process by optimizing the latent space directly : We let the generator learn
in which areas of the data distribution to look for promising architectures. This
way, we reduce the query amount even further, resulting in a query efficient and
very effective NAS method. Our proposed method is inspired by a latent space
optimization (LSO) technique [42], originally used in the context of variational
autoencoders [17] to optimize generated images or arithmetic expressions using
BO. We adapt this concept to NAS and pair it with an architecture performance
predictor in an end-to-end learning setting, so that it allows us to iteratively re-
shape the architecture representation space. Thereby, we promote desired prop-
erties of generated architectures in a highly query-efficient way, i.e. by learning
expert generators for promising architectures. Since we couple the generation
process with a surrogate model to predict desired properties such as high accu-
racy or low latency of generated architectures, there is no need in our method
for BO in the generated latent space, making our method even more efficient.
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In practice, we pretrain, on a target space of neural architectures, a GNN-
based generator network, which does not rely on any architecture evaluation
and is therefore fast and query-free. The generator is trained in a novel genera-
tive setting that directly compares generated architectures to randomly sampled
architectures using a reconstruction loss without the need of a discriminator
network as in generative adversarial networks (GANs) [12] or an encoder as in
variational autoencoders (VAEs) [17]. We use an MLP as a surrogate to rank
performances and hardware properties of generated architectures. In contrast,
previous generative methods either rely on training and evaluating supernets
[15], which are expensive to train and dataset specific, or pretrain a latent space
and search within this space directly using BO [56,53,26], reinforcement learn-
ing (RL) [33] or gradient based methods [27]. These methods incorporate either
GANs, which can be hard to train or VAEs, which are biased by the regulariza-
tion, whereas our plain generative model is easy to train. In addition we enable
backpropagation from the performance predictor to the generator. Thereby, the
generator can efficiently learn which part of the architecture search space is
promising with only few evaluated architectures.

By extensive experiments on common NAS benchmarks [54,10,37,18,21] as
well as ImageNet [8], we show that our method is effective and sample-efficient.
It reinforces the generator network to produce architectures with improving val-
idation accuracy (see Figure 1), as well as in improving on hardware-dependent
latency constraints (see Figure 4) while keeping the number of architecture eval-
uations small. In summary, we make the following contributions:

– We propose a simple model that learns to focus on promising regions of the
architecture space. It can thus learn to generate high-scoring architectures
from only a few queries.

– We learn architecture representation spaces via a novel generative design
that is able to generate architectures stochastically while being trained with
a simple reconstruction loss. Unlike VAEs [17] or GANs [12], no encoder
network nor discriminator network is necessary.

– Our model allows sample-efficient search and achieves state-of-the-art re-
sults on several NAS benchmarks as well as on ImageNet. It allows joint
optimization w.r.t. hardware properties in a straightforward way.

2 Related Work

Neural Architecture Search Intrinsically, Neural Architecture Search (NAS) is
a discrete optimization problem seeking the optimal configuration of operations
(such as convolutions, poolings and skip connections) in a constrained search
space of computational graphs. To enable benchmarking within the NAS com-
munity, different search spaces have been proposed. The tabular benchmarks
NAS-Bench-101 [54] and NAS-Bench-201 [10] provide both an exhaustive cover-
ing of metrics and performances. NAS-bench-NLP [18] provides a search space
for natural language processing. In addition to these tabular benchmarks NAS-
Bench-301 [37] provides a surrogate benchmark, which allows for fast evaluation
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of NAS methods on the DARTS [25] search space by querying the validation
accuracy. NAS-Bench-x11 [52] is another surrogate benchmark. It outputs full
training information for each architecture in all four mentioned benchmarks.
NAS-Bench-Suite [28] facilitates reproducible search on these NAS benchmarks.

Early NAS approaches are based on discrete encodings of search spaces,
such as in the form of adjacency matrices, and can be distinguished by their
search strategy. Examples are random search [2,22], reinforcement learning (RL)
[57,23], evolutionary methods [32,31], local search [46], and Bayesian optimiza-
tion (BO) [16,35]. Recent NAS methods shift from discrete optimization to
faster weight-sharing approaches, resulting in differentiable optimization meth-
ods [30,25,1,3,49,55]. Several approaches map the discrete search space into a
continuous architecture representation space [27,56,53,26] and search or opti-
mize within this space using for example BO (e.g. [53]) or gradient-based point
operation [27]. In this paper, we also learn continuous architecture representa-
tion spaces. However, in contrast to former works, we propose to optimize the
representation space, instead of performing point optimization within a fixed
space such as e.g. [27]. A survey of different strategies can be found in [11].

All NAS approaches are dependent on performance estimation of interme-
diate architectures. To avoid the computation heavy training and evaluation
of queries on the target dataset, methods to approximate the performance have
been explored [47]. Common approaches include neural predictors that take path
encodings [45] or graph embeddings learned by GNNs [36,43] as input. Weak-
NAS [48] proposes to progressively evaluate the search space towards finding
high-performing architectures using a set of weak predictors. In our method, we
integrate a weak expert predictor with a generator to yield an efficient interplay
between predicting for high-performing architectures and generating them.

Graph Generative Models Most graph generation models in NAS employ vari-
ational autoencoders (VAE) [17]. [27] uses an LSTM-based VAE, coupled with
performance prediction for gradient-based architecture optimization. Note that
[27] optimizes the latent point in a fixed latent space while our approach opti-
mizes the latent space itself. [56] use GNNs with asynchronous message-passing
to train a VAE for BO. [15] combines a generator with a supernet and searches for
neural architectures for different device information. [53] facilitates [50] with an
MLP decoder. [26] proposes smooth variational graph embeddings (SVGe) using
two-sided GNNs to capture the information flow within a neural architecture.

Our proposed model’s generator is inspired by SVGe with the aim to in-
herit its flexible applicability to various search spaces. Yet, similar to [53], due
to the intrinsic discretization and training setting, SVGe does not allow for
backpropagation. Recently, [33] facilitates GNNs in a GAN [12] setting, where
the backpropagation issue is circumvented using reinforcement learning. In con-
trast, our proposed GNN generator circumvents the intermediate architecture
discretization and can therefore be trained by a single reconstruction loss using
backpropagation. Its iterative optimization is inspired by [42], who proposes to
use a VAE with weighted retraining w.r.t. a target function to adapt the latent
space for the optimization of images and arithmetic functions using BO. Our
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Fig. 2: Representation of the training procedure for our generator in AG-Net.
The input is a randomly sampled latent vector z ∈ Rd. First, the input node is
generated, initialized and input to a GNN to generate a partial graph represen-
tation. The learning process iteratively generates node scores and edge scores
using z and the partial graph representation until the output node is generated.
The target for this generated graph is a randomly sampled architecture.

model transfers the idea of weighted retraining to NAS. It uses our plain gen-
erator and improves sample efficiency by employing a differentiable surrogate
model on the target function such that, in contrast to [42], no further black-box
optimization step is needed. Next, we describe the proposed generator network.

3 Architecture Generative Model

Preliminaries We aim to generate neural networks represented as directed acyclic
graphs (DAG). This representation is in line with the cell-based architecture
search spaces commonly used as tabular benchmarks [54,10]. Each cell is a DAG
G = (V,E), with nodes v ∈ V and edges e ∈ E. The graph representations
differ between the various benchmarks in terms of their labeling of operations.
For example in NAS-Bench-101 [54] each node is associated with an operation,
whereas in NAS-Bench-201 [10] each edge is associated with an operation.
Generative Network Commonly used graph generative networks are based
on variational autoencoders (VAE) [17]. In contrast, our proposed network is a
purely generative network, pG (see Figure 2). To generate valid graphs, we build
our model similar to the graph decoder from the VAE approach SVGe [26]. The
generator takes a randomly sampled variable z ∼ N (0, 1) as input and recon-
structs a randomly sampled graph from the cell-based search space. The model
iteratively builds the graph: it starts with generating the input node v0, followed
by adding subsequent nodes vi and their labels and connecting them with edges
e(j,i), j < i, until the end node vT with the label output is generated. Addition-
ally, we want to learn a surrogate for performance prediction on the generated
data and allow for end-to-end training of both. To allow for backpropagation,
we need to adapt several details of the generator model. We initialize the node-
attributes for each node by one-hot encoded vectors, which are initialized during
training using a 2-layer MLP to replace the learnable look-up table proposed in
SVGe. The output of our generator is a vector graph representation consisting
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of a concatenation of generated node scores and edge scores. It is important to
note that the iterative generation process is independent of the ground truth
data, which are only used as a target for the reconstruction loss. Note that
the end-to-end trainability of the proposed generator is a prerequisite for our
model: It allows to pair the generator with a learnable performance predictor
such that information on the expected architectures’ accuracy can be learned
by the generator. This enables a stronger coupling with the predictor’s target
for the generation process and higher query efficiency (see subsection 4.4). In
contrast, previous models such as [15,26,53] are not fully differentiable and do
not allow such optimization. Our generative model is pretrained on the task of
reconstructing neural architectures, where for each randomly drawn latent space
sample, we evaluate the reconstruction loss to a randomly drawn architecture.
This simple procedure is facilitated by the heavily constrained search spaces of
neural architectures, making it easy for the model to learn to generate valid ar-
chitectures without being supported by a discriminator model as in generative
adversarial networks (GANs) [12]. An evaluation of the generation ability of our
model and implementation details are provided in the supp. mat. section D.
Performance Predictor This generative model is coupled with a simple sur-
rogate model, a 4-layer MLP with ReLU non-linearities, for target predictions
C. These targets can be validation or test accuracy of the generated graph, or
the latency with respect to a certain hardware. For comparison, we also include
a tree-based method, XGBoost (XGB) [4] as an alternative prediction model.
XGB[4] is used as a surrogate model in NAS-Bench-301 [37] and shows high
prediction abilities. The input to XGB is the vector representation of the ar-
chitectures. Since this method is non-differentiable, we additionally include a
gradient estimation for rank-based metrics [34]. This way, we are able to include
gradient information to the generator. Yet, it is important to note, that this
approach is not fully differentiable. This comparison will allow us to measure
the trade-off between using supposedly stronger predictors over the capability
to allow for full end-to-end learning.
Training Objectives The generative model pG learns to reconstruct a ran-
domly sampled architecture G from search space pD given a randomly sampled
latent vector z ∼ N (0, 1). The objective function for this generation process can
be formulated as the sum of node-level loss LV and edge-level loss LE :

LG(G̃,G) = LV + LE ; G̃ ∼ pG(z); G ∼ pD, (1)

where LV is the Cross-Entropy loss between the predicted and the ground truth
nodes and LE is the Binary-Cross Entropy loss between the predicted and ground
truth edges of the generated graph G̃. This training step is completely unsuper-
vised. Figure 2 presents an overview of the training process. To include the
training of the surrogate model, the objective function is reformulated to:

L(G̃,G) = (1− α)LG(G̃,G) + αLC(G̃,G), (2)

where α is a hyperparameter to trade-off generator loss LG and prediction loss
LC for the prediction targets C of graph G. We set the predictor loss as an MSE.
Furthermore, each loss is optimized using mini-batch gradient descent.
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Generative Latent Space Optimization (LSO) To facilitate the genera-
tion process, we optimize the architecture representation space via weighted
retraining [42], resulting in a sample efficient search algorithm. The intuition of
this approach is to place more probability mass on high-scoring latent points,
(e.g. high performing or low latency architectures) and less mass on low-scoring
points. Thus, this strategy does not discard low-scoring architectures completely,
which would be inadequate for proper learning. The generative model is there-
fore trained on a data distribution that systematically increases the probability
of high-scoring latent points. This can be done by simply assigning a weight wi

to each data point Gi ∼ pD, indicating its likelihood to occur during batch-wise
training. In addition, the training objective is weighted via a weighted empirical
mean

∑
Gi∼pD

wi L for each data point. As for the weights itself, [42] proposed
a rank-based weight function

w(G; pD, k) ∝ 1

kN + rankf,pD
(G)

rankf,pD
(x) = |{Gi : f(Gi) > f(G), Gi ∼ pD}|,

(3)

where f(·) is the evaluation function of the architecture Gi; for NAS-Bench-101
[54] and NAS-Bench-201 [10] it is the tabular benchmark entry, for NAS-Bench-
301 [37] and NAS-Bench-NLP [18] it is the surrogate benchmark prediction.
Similar to [42], we set k = 10e− 3. The retraining procedure itself then consists
of finetuning the pretrained generative model coupled with the surrogate model,
where loss functions and data points are both weighted by w(G; pD, k).

4 Experiments

We evaluate the proposed simple architecture generative network (AG-Net) on
the two commonly used tabular benchmarks NAS-Bench-101 [54] and NAS-
Bench-201 [10], the surrogate benchmarks NAS-Bench-301 [37] evaluated on the
DARTS search space [25], NAS-Bench-NLP [18] and the first hardware device in-
duced benchmark [21]. Additionally we perform experiments on the ImageNet [8]
classification task and show state-of-the-art performance on the DARTS search
space. In our experiments in subsection 4.3 for the Hardware-Aware Benchmark
we consider the latency information on the NAS-Bench-201 search space. Details
about all hyperparameters are given in the supp. mat. section E.

4.1 Experiments on Tabular Benchmarks

NAS-Bench-101 For our experiments on NAS-Bench-101, we first pretrain our
generator for generating valid graphs on the NAS-Bench-101 search space. This
step does not require information about the performance of architectures and is
therefore inexpensive. The pretrained generator is then used for all experiments
on NAS-Bench-101. Our NAS algorithm is initialized by randomly sampling 16
architectures from the search space, which are then weighted by the weighting
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function W = w(G)G∼pD
. Then, latent space optimized architecture search is

performed by iteratively retraining the generator coupled with the MLP surro-
gate model for 15 epochs and generating 100 architectures of which the top 16
(according to their accuracy prediction) are evaluated and added to the training
data. This step is repeated until the desired number of queries is reached. When
generating architectures, we sample from a grid, containing the 99%-quantiles
from N (0, 1) uniformly distributed. This way, we sample more distributed la-
tent variables for better latent space coverage. We compare our method to the
VAE-based search method Arch2vec [53] and predictor based model WeakNAS
[48], as well as state-of-the-art methods, such as NAO [27]‡, random search [22],
local search [46], Bayesian optimization [39], regularized evolution [31] and BA-
NANAS [45]†. Additionally, we compare the proposed AG-Net to the model
using an XGBoost Predictor (see section C). The results of this comparison are
listed in Table 1. Here, we report the mean over 10 runs. Results including the
standard deviation can be found in the supp. mat. Note, we search for the ar-
chitecture with the best validation accuracy and report the corresponding test
accuracy. Furthermore, we plot the search progress in Figure 3 (bottom left).
As we can see, our model AG-Net improves over all state-of-the-art methods,
not only at the last query of 300 data points, reaching a top 1 test accuracy of
94.2%, but is also almost any time better during the search process.

A direct comparison to the recently proposed GANAS [33] on NAS-Bench-
101 is difficult, since GANAS searches on NAS-Bench-101 until they find the
best architecture in terms of validation accuracy, whereas we limit our search
to a maximal amount of 192 queries and are able to find high-performing ar-
chitectures already in this small query setting. The comparison of AG-Net to
the generator paired with an XGBoost [4] predictor shows that our end-to-end
learnable approach is favorable even over potentially stronger predictors.

NAS-Bench-201 This benchmark contains three different image classification
tasks: CIFAR-10, CIFAR-100 [19] and ImageNet16-120 [7]. For the experiments
on NAS-Bench-201[10] we retrain AG-Net in the weighted manner for 30 epochs.
In this setting, we also compare AG-Net to two recent generative models [33,15].
SGNAS [15] trains a supernet by uniform sampling, following SETN [9]. Addi-
tionally a CNN based architecture generator is trained to search architectures on
the supernet. When comparing with [53], we also adopt their evaluation scheme
of adding only the best-performing architecture (top-1) to the training data
instead of top-16 as in our other experiments.

We report the search results for different numbers of queries for the NAS-
Bench-201 dataset in Table 2. In addition, we plot the search progress in terms
of queries in Figure 3 (top). Our method provides state-of-the-art results on
all datasets for a varying number of queries. Most importantly, AG-Net shows
strong performance in the few-query regime compared to [53] with the exception
of CIFAR-100, proving its high query efficiency.

‡We reran this experiment using the implementation from [47].
†We reran these experiments using the official implementation from [44,45,46], with

the same initial training data and amount of top k architectures as for AG-Net.
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Table 1: Results on NAS-Bench-101 for the search of the best architecture in
terms of validation accuracy on CIFAR-10 to state-of-the-art methods (mean
over 10 trials).

NAS Method Val. Acc (%) Test Acc (%) Queries

Optimum* 95.06 94.32

Arch2vec + RL [53] - 94.10 400
Arch2vec + BO [53] - 94.05 400

NAO ‡[27] 94.66 93.49 192

BANANAS† [45] 94.73 94.09 192

Bayesian Optimization† [39] 94.57 93.96 192

Local Search† [46] 94.57 93.97 192

Random Search†[22] 94.31 93.61 192

Regularized Evolution†[31] 94.47 93.89 192
WeakNAS [48] - 94.18 200

XGB (ours) 94.61 94.13 192
XGB + ranking (ours) 94.60 94.14 192

AG-Net (ours) 94.90 94.18 192

4.2 Experiments on Surrogate Benchmarks

We furthermore apply our search method on larger search spaces as DARTS [25]
and NAS-Bench-NLP [18] without ground truth evaluations for the whole search
space, making use of surrogate benchmarks as NAS-Bench-301 [37], NAS-Bench-
X11 [52] and NAS-Bench-Suite [28].
NAS-Bench-301 Here, we report experiments on the cell-based DARTS [25]
search space using the surrogate benchmark NAS-Bench-301 [37] for the CIFAR-
10 [19] image classification task. The exact search procedure using the cells indi-
vidually is described in the supp. mat. subsection C.5. The results are described
in Table 3 (left) and visualized in Figure 3 (bottom middle). Our method is
comparable to other state-of-the-art methods in this search space.
NAS-Bench-NLP Next, we evaluate AG-Net on NAS-Bench-NLP [18] for the
language modeling task on Penn TreeBank [29]. We retrain AG-Net coupled
with the surrogate model for 30 epochs to predict the validation perplexity.
Note, since the search space considered in NAS-Bench-NLP is too large for a
full tabular benchmark evaluation, we make use of the surrogate benchmark
NAS-Bench-X11 [52] and NAS-Bench-Suite [28] instead of tabular entries.

For fair comparison we compare our methods to the same state-of-the-art
methods as in previous experiments. The results are reported in Table 3 (right)
and visualized in Figure 3 (bottom right). Our AG-Net improves over all state-
of-the-art methods by a substantial margin and using XGB as a predictor even
improves the search further.
ImageNet Experiments The previous experiment on NAS-Bench-301 [37]
shows the ability of our generator to generate valid architectures and to perform
well in the DARTS [25] search space. This allows for searching a well-performing
architecture on ImageNet [8]. Yet evaluating up to 300 different found architec-
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Table 2: Architecture Search on NAS-Bench-201. We report the mean over 10
trials for the search of the architecture with the highest validation accuracy.

NAS Method CIFAR-10 CIFAR-100 ImageNet16-120 Queries Search Method
Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc

Optimum* 91.61 94.37 73.49 73.51 46.77 47.31

SGNAS [15] 90.18 93.53 70.28 70.31 44.65 44.98 Supernet

Arch2vec + BO [53] 91.41 94.18 73.35 73.37 46.34 46.27 100 Bayesian Optimization
AG-Net (ours) 91.55 94.24 73.2 73.12 46.31 46.2 96 Generative LSO

AG-Net (ours, topk=1) 91.41 94.16 73.14 73.15 46.42 46.43 100 Generative LSO

BANANAS† [45] 91.56 94.3 73.49* 73.50 46.65 46.51 192 Bayesian Optimization

BO† [39] 91.54 94.22 73.26 73.22 46.43 46.40 192 Bayesian Optimization

RS † [22] 91.12 93.89 72.08 72.07 45.87 45.98 192 Random
XGB (ours) 91.54 94.34 73.10 72.93 46.48 46.08 192 Generative LSO

XGB + Ranking (ours) 91.48 94.25 73.20 73.24 46.40 46.16 192 Generative LSO
AG-Net (ours) 91.60 94.37* 73.49* 73.51* 46.64 46.43 192 Generative LSO

GANAS [33] - 94.34 - 73.28 - 46.80 444 Generative Reinforcement Learning
AG-Net (ours) 91.61* 94.37* 73.49* 73.51* 46.73 46.42 400 Generative LSO

Table 3: Results on: (left) NAS-Bench-301 (mean validation accuracy over 50
trials). (right) NAS-Bench-NLP (mean validation perplexity over 100 trials).

NAS Method NAS-Bench-301 NAS-Bench-NLP
Val. Acc (%) Queries Val. Perplexity (%) Queries

BANANAS† [45] 94.77 192 95.68 304

Bayesian Optimization† [39] 94.71 192 - -

Local Search† [46] 95.02 192 95.69 304

Random Search†[22] 94.31 192 95.64 304

Regularized Evolution†[31] 94.75 192 95.66 304

XGB (ours) 94.79 192 95.95 304
XGB + Ranking (ours) 94.76 192 95.92 304

AG-Net (ours) 94.79 192 95.86 304

tures on ImageNet is extremely expensive. Our first approach is to retrain the
best found architectures on the CIFAR-10 [19] image classification task from the
previous experiment on NAS-Bench-301 (AG-Net and the XGBoost adaptions)
on ImageNet [8]. Our second approach is based on a training-free neural architec-
ture search approach. The recently proposed TE-NAS [5] provides a training-free
neural architecture search approach, by ranking architectures by analysing the
neural tangent kernel (NTK) and the number of linear regions (NLR) of each
architecture. These two measurements are training free and do not need any la-
bels. The intuition between those two measurements is their implication towards
trainability and expressivity of a neural architecture and also their correlation
with the neural architecture’s accuracy; NTK is negatively correlated and NLR
positively correlated with the architecture’s test accuracy. We adapt this idea for
our search on ImageNet and search architectures in terms of their NTK value and
their number of linear regions instead of their validation accuracy. We describe
the detailed search process in the supp. mat. subsection C.5.



Learning Where To Look – Generative NAS is Surprisingly Efficient 11

Fig. 3: Architecture search evaluations on NAS-Bench-201, NAS-Bench-101,
NAS-Bench-301 and NAS-Bench-NLP for different search methods.
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Fig. 4: (left) Exemplary searches on HW-NAS-Bench for image classification on
ImageNet16 with 192 queries on Pixel 3 and latency conditions L ∈ {2, 4, 6, 8, 10}
(y-axis zoomed for visibility). (right) Amount of architectures generated and
selected in each search iteration (at most 16) that satisfy the latency constraint.
In this example we searched on Edge GPU with L = 2.

Table 4 shows the results. Note that our latter described search method on
ImageNet is training-free (as TE-NAS [5]) and the amount of queries displays
the amount of data we evaluated for the zero cost measurements. Other query
information include the amount of (partly) trained architectures. Furthermore,
the displayed differentiable methods are based on training supernets which can
lead to expensive training times. The best found architectures on NAS-Bench-
301 [37] (CIFAR-10) result in comparable error rates on ImageNet to former
approaches. As a result, our search method approach is highly efficient and
outperforms previous methods in terms of needed GPU days. The result in terms
of top-1 and top-5 error rates are even improving over the one from previous
approaches when using the training free approach.

4.3 Experiments on Hardware-Aware Benchmark

Next, we apply AG-Net to the Hardware-Aware NAS-Benchmark [21]. We demon-
strate in two settings that AG-Net can be used for multi-objective learning. The
first setting (Joint=1 ) is formulated as constrained joint optimization:
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Table 4: ImageNet error of neural architecture search on DARTS.

NAS Method Top-1↓ Top-5↓ # Queries
Search

GPU days

Mixed Methods

NASNET-A (CIFAR-10) [58] 26.0 8.4 20000 2000
PNAS (CIFAR-10) [24] 25.8 8.1 1160 225
NAO (CIFAR-10) [27] 24.5 7.8 1000 200

Differentiable Methods

DARTS (CIFAR-10) [25] 26.7 8.7 - 4.0
SNAS (CIFAR-10)[49] 27.3 9.2 - 1.5

PDARTS (CIFAR-10) [6] 24.4 7.4 - 0.3
PC-DARTS (CIFAR-10) [51] 25.1 7.8 - 0.1
PC-DARTS (ImageNet) [51] 24.2 7.3 - 3.8

Predictor Based Methods

WeakNAS (ImageNet) [48] 23.5 6.8 800 2.5
XGB (NB-301)(CIFAR-10) (ours) 24.1 7.4 304 0.02

XGB + Ranking (NB-301)(CIFAR-10) (ours) 24.1 7.2 304 0.02
AG-Net (NB-301)(CIFAR-10) (ours) 24.3 7.3 304 0.21

Training-Free Methods

TE-NAS (CIFAR-10)[5] 26.2 8.3 - 0.05
TE-NAS (ImageNet)[5] 24.5 7.5 - 0.17

AG-Net (CIFAR-10) (ours) 23.5 7.1 208 0.02
AG-Net (ImageNet) (ours) 23.5 6.9 208 0.09

max
G∼pD

f(G) ∧ min
G∼pD,

gh(G) s.t. gh(G) ≤ L,∃ h ∈ H, (4)

where f(·) evaluates architecture G for accuracy and gh(·) evaluates for latency
given a hardware h ∈ H and a user-defined latency constraint L. The second
setting (Joint=0 ) is formulated as constraint objective:

max
G∼pD

f(G) s.t. gh(G) ≤ L,∃ h ∈ H, (5)

where we drop the optimization on latency and only optimize accuracy given
the latency constraint. The loss function to train our generator in these settings
is updated from Equation 2 to:

L(G̃,G) =(1− α)LG(G̃,G) + α
[
λLC1

(G̃,G) + (1− λ)LC2
(G̃,G)

]
, (6)

where α is a hyperparameter trading off generation and prediction loss, and λ
is a hyperparameter trading off both prediction targets C1 (accuracy) and C2

(latency).
To perform LSO in the joint objective setting from Equation 4, we rank

the training data D for both accuracy and latency jointly by summing both
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Table 5: Results for searches with at most 200 queries on HW-NAS-Bench [21]
with varying devices and latency (Lat.) constraints in two multi-objective set-
tings: Joint=0 optimizes accuracy under latency constraint, while Joint=1 opti-
mizes for accuracy and latency jointly. We report the best found architecture out
of 10 runs with their corresponding latency, as well as the mean of these runs.
We compare to random search as a strong baseline [22]. Feasibility (Feas.) is the
proportion of evaluated architectures during the search that satisfy the latency
constraint (larger is better). The optimal architecture (*) is the architecture
with the highest accuracy satisfying the latency constraint.

Settings Best out of 10 runs Mean
Constraint Joint=0 Joint=1 Random Joint=0 Joint=1 Random Optimum*

Device Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Feas.↑ Acc.↑ Feas.↑ Acc.↑ Feas.↑ Acc.↑ Lat.↓

Edge GPU 2 0.406* 1.90 0.406* 1.90 0.397 1.78 0.397 0.29 0.391 0.31 0.372 0.05 0.406 1.90
Edge GPU 4 0.448* 3.49 0.448* 3.49 0.437 3.35 0.428 0.29 0.433 0.43 0.417 0.22 0.448 3.49
Edge GPU 6 0.458 5.29 0.464* 5.96 0.458 5.29 0.453 0.64 0.450 0.79 0.449 0.72 0.464 5.96
Edge GPU 8 0.465 6.81 0.468* 6.81 0.464 7.44 0.463 0.98 0.462 0.99 0.457 1.00 0.468 6.81

Raspi 4 2 0.355* 1.58 0.355* 1.58 0.348 1.60 0.346 0.28 0.347 0.30 0.339 0.08 0.355 1.58
Raspi 4 4 0.431 3.83 0.436* 3.79 0.427 3.85 0.420 0.47 0.428 0.50 0.419 0.37 0.436 3.79
Raspi 4 6 0.449 5.95 0.452* 5.29 0.445 5.95 0.440 0.56 0.441 0.57 0.432 0.55 0.452 5.29
Raspi 4 8 0.456 6.33 0.455 7.96 0.457 7.97 0.451 0.69 0.449 0.79 0.447 0.76 0.465 7.43
Raspi 4 10 0.466 8.66 0.465 8.62 0.464 8.72 0.464 0.77 0.454 0.94 0.454 0.90 0.468 8.83
Raspi 4 12 0.468* 8.83 0.463 9.05 0.464 8.72 0.465 0.91 0.457 0.98 0.456 0.96 0.468 8.83

Edge TPU 1 0.468* 0.96 0.466 0.97 0.464 1.00 0.464 0.74 0.457 0.82 0.454 0.79 0.468 0.96

Pixel 3 2 0.413* 1.30 0.413* 1.30 0.400 1.50 0.409 0.48 0.405 0.59 0.388 0.30 0.413 1.30
Pixel 3 4 0.460* 3.55 0.446 3.01 0.447 3.23 0.453 0.69 0.441 0.77 0.438 0.64 0.460 3.55
Pixel 3 6 0.464 5.92 0.465* 5.95 0.458 4.68 0.457 0.77 0.452 0.94 0.451 0.88 0.465 5.57
Pixel 3 8 0.468* 6.65 0.465 7.88 0.461 7.13 0.464 0.87 0.457 0.99 0.454 0.97 0.468 6.65
Pixel 3 10 0.466 6.70 0.461 8.48 0.464 8.01 0.464 0.96 0.455 1.00 0.456 0.99 0.468 6.65

Eyeriss 1 0.452* 0.98 0.449 0.98 0.447 0.98 0.445 0.49 0.436 0.53 0.433 0.23 0.452 0.98
Eyeriss 2 0.465 1.65 0.465 1.65 0.464 1.65 0.463 0.87 0.457 0.99 0.457 0.95 0.468 1.65

FPGA 1 0.440 1.00 0.440 0.97 0.438 0.97 0.433 0.65 0.433 0.80 0.429 0.58 0.444 1.00
FPGA 2 0.465* 1.60 0.460 1.60 0.463 1.97 0.462 0.82 0.451 0.99 0.453 0.97 0.465 1.60

individual rankings. To fulfill the optimization constraint, we further penalize
the ranks via a multiplicative penalty if the latency does not fulfill the constraint.
This overall ranking is then used for the weight calculation in Equation 3. The
LSO for the constraint objective setting from Equation 5 only ranks architectures
by accuracy and penalizes architectures with infeasible latency property. We
choose random search as a baseline in this setting as it is generally regarded as
a strong baseline in NAS [22]. Figure 4 depicts searches with our model in both
optimization settings on Pixel 3 with different latency conditions. More results on
different hardware and latency constraints are shown in Table 5. We observe that
either optimization setting outperforms the random search baseline in almost all
tasks. Additionally, our method is able to find the optimal architecture for a task
regularly (in 15 out of 20 tasks), which random search was not able to provide.
When considering mean accuracy and feasibility of the best architectures of all
runs, we see that Joint=1 is able to improve the ratio of feasible architectures
found during the search substantially. This is to be expected given that the
latent space is explicitly optimized for latency in this setting. Consequently,
Joint=1 is able to find better-performing architectures compared to Joint=0 if
the constraint restricts the space of feasible architectures strongly (see results on
Raspi 4). The feasibility ratio of random search is an indicator on how restricted
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Table 6: Ablation: Search results on NAS-Bench-101 and NAS-Bench-201 using
AG-Net (mean over 10 trials with a maximal query amount of 192).

NAS-Bench-101 NAS-Bench-201
CIFAR-10 CIFAR-10 CIFAR-100 ImageNet16-120

Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc

Optimum* 95.06 94.32 91.61 94.37 73.49 73.51 46.77 47.31

AG-Net (ours) w/o LSO 94.38 93.78 91.15 93.84 71.72 71.83 45.33 45.04
AG-Net (ours) w/o backprop 94.71 94.12 91.60 94.30 73.38 73.22 46.62 46.13

AG-Net (ours) 94.90 94.18 91.60 94.37* 73.49* 73.51* 46.64 46.43

the space is. In most cases, the latency penalization seems to be sufficient to
find enough well-performing and feasible architectures, as can be seen by the
feasibility of Joint=0 which is greatly improved compared to random search.
We show the development of feasibility over time from Table 5 in Figure 4.

4.4 Ablation Studies

In this section we analyse the impact of the LSO technique and the backpropa-
gation ability to the search efficiency. Therefore, we compare our AG-Net with
the latter named adaptions on the tabular benchmarks NAS-Bench-101 [54] and
NAS-Bench-201 [10]. The results of our ablation study are reported in Table 6.
As we can see, the lack of weighted retraining decreases the search substantially.
In addition the results without backpropagation support that the coupling of
the predictor’s target and the generation process enables a more efficient archi-
tecture search over different search spaces. Thus, the combination of LSO and a
fully differentiable approach improves the effectiveness of the search.

5 Conclusion

We propose a simple architecture generative network (AG-Net), which allows us
to directly generate architectures without any additional encoder or discrimina-
tor. AG-Net is fully differentiable, allowing to couple it with surrogate models for
different target predictions. In contrast to former works, it enables to backprop-
agate the target information from the surrogate predictor into the generator.
By iteratively optimizing the latent space of the generator, our model learns
to focus on promising regions of the architecture space, so that it can generate
high-scoring architectures directly in a query and sample-efficient manner. Ex-
tensive experiments on common NAS benchmarks demonstrate that our model
outperforms state-of-the-art methods at almost any time during architecture
search and achieves state-of-the-art performance on ImageNet. It also allows for
multi-objective optimization on the Hardware-Aware NAS-Benchmark.

Acknowledgments. JL and MK acknowledge the German Federal Ministry of
Education and Research Foundation via the project DeToL.
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