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1 Synthetic experiment

In order to validate the findings obtained in image generation on more generic
data, we test the subspace diffusion framework on a synthetic dataset in R30. The
dataset is a mixture of 100 Gaussians, each with isotropic variance σ2 = 0.052,
and whose centers are first sampled from a unit Gaussian and then modified such
that the total variance is 50% and 75% explained by 6 and 11 PCA components,
respectively. 64000 samples are drawn from the mixture of Gaussians to form
the training dataset and are diffused under the variance exploding SDE with
σmin = 0.01, σmax = 13. We train simple 3-layer feedforward score models in each
optimal subspace—that is, the subspaces spanned by principal components—of
dimensions 1–29. With each model, we generate 6400 samples in conjunction with
a full-dimensional model at varying transition times from 0–1 in increments of
0.01. We use the Euler-Maruyama solver with 100 steps and Langevin corrections
with a signal-to-noise ratio of 0.2.

The sample quality is evaluated in terms of the mean L2 distance from each
sampled point to the nearest training point, shown below in Figure 1. A U-shaped
trend in sample quality is again observed as the transition time is varied. All
subspaces with dimension ≥ 7 improve over the full-dimensional model (bottom
row, mean distance ≈ 5.4), reinforcing the observation made in the image gen-
eration experiments. These experiments also highlights the greater generality of
subspace diffusion compared to techniques that are limited to image generation
such as cascading diffusion models.

2 Patch-PCA

We investigate the optimality of the downsampling subspaces in comparison
with the best possible subspaces that produce an image-structured latent. Recall
that the downsampling subspaces are defined as follows: suppose we have a
full-resolution image X ∈ R(n×n×3), with n an integer power of 2. Then the
downsampled image X′ ∈ R(n/2×n/2×3) satisfies

X′[a, b] =
1

2

∑
(i,j)∈{0,1}2

X[2a+ i, 2b+ j] (1)

⋆ Equal contribution
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Fig. 1. Results on the synthetic dataset when varying the subspace dimension and
transition time. The color indicates the sample quality in terms of the mean distance
from each sampled point to the nearest training point (lower / darker is better). The
results from the full-dimensional model alone are shown as the subspace model of
dimension 30 in the bottom row and are (as expected) constant in quality.

where each element X[i, j] is an RGB color in R3. For output pixel X′[a, b], this
is an operation over the 2 × 2 patch of pixels X[2a + i, 2b + j] | (i, j) ∈ {0, 1}2,
which can be regarded as an element of a 12-dimensional vector space. That is,

X′[a, b] = f(X[2a+ i, 2b+ j] | (i, j) ∈ {0, 1}2) f : R12 → R3 (2)

for f independent of a, b. The downsampling subspace corresponds to taking
twice the mean of the input patch, but we can generalize to arbitrary linear
functions and consider (2) with any linear f to define an image-structured sub-
space. The key aspect of this definition is that each basis element of the subspace
corresponds to a spatially localized set of input features, and that the transfor-
mation operates identically for all spatial locations in the original image.

To find the optimal n/2× n/2 image-structured subspace we run PCA over
the 12-dimensional distribution of patches X[2a + i, 2b + j] | (i, j) ∈ {0, 1}2
for all possible values of (a, b), and over all images (or as large a subset as
is computationally feasible). We then project each patch onto the top three
principal components to form the smaller image. This definition and procedure
can be naturally extended to smaller subspaces by considering the input patches
of 4× 4, 8× 8 pixels as vector spaces of dimensionality 48, 192, etc.

3 Hyperparameters

As mentioned in the main text, we did not tune any hyperparameters for training
and directly used the default settings from the full-dimensional model, including
checkpoint intervals. The sole exception was that we used reduced batch sizes
due to different hardware constraints. We report FID and IS for the SDE sampler
on CIFAR-10 using the best training checkpoint, as in previous work. All other
results are obtained using the last training checkpoint.
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During inference, the only hyperparameter tuned was the number of condi-
tional Langevin steps. We tried 0, 1, 2, 5, or 10 steps using the last training
checkpoint of the 8× 8 NCSN++ model and chose the value leading to the best
FID averaged across the cutoff times. We then used 2 steps for all experiments
with the SDE sampler. The Langevin signal-to-noise ratio was fixed to 0.22 for
NCSN++ and 0.01 for DDPM++ based on the best settings found in previous
work. All other inference hyperparameters were fixed to their default values.

4 Detailed results

Model Subspace Threshold t1 Runtime FID ↓ IS ↑

NCSN++
shallow
(VE)

None – – 100% 2.38 9.93

16 → 32

1× 10−4 0.64 75% 2.45 9.81
3× 10−4 0.60 72% 2.37 9.87
1× 10−3 0.56 69% 2.31 9.95
3× 10−3 0.52 66% 2.29 9.99
1× 10−2 0.47 63% 2.46 9.96
3× 10−2 0.42 59% 2.67 9.93

8 → 32

1× 10−4 0.69 72% 2.41 9.90
3× 10−4 0.64 68% 2.39 9.83
1× 10−3 0.60 64% 2.29 9.92
3× 10−3 0.56 60% 2.35 10.08
1× 10−2 0.51 56% 2.74 10.09
3× 10−2 0.46 52% 3.42 10.10

NCSN++
deep
(VE)

None – – 100% 2.20 9.89

16 → 32

1× 10−4 0.64 75% 2.25 9.86
3× 10−4 0.60 73% 2.19 9.93
1× 10−3 0.56 69% 2.17 9.94
3× 10−3 0.52 67% 2.23 9.91
1× 10−2 0.47 63% 2.31 9.90
3× 10−2 0.42 60% 2.51 9.82

8 → 32

1× 10−4 0.69 72% 2.22 9.85
3× 10−4 0.64 68% 2.24 9.87
1× 10−3 0.60 64% 2.21 9.92
3× 10−3 0.56 60% 2.39 10.08
1× 10−2 0.51 56% 3.05 10.01
3× 10−2 0.46 51% 3.51 9.96

Table 1. NCSN++ subspace diffusion results on the CIFAR-10 unconditional gener-
ation. Runtimes are reported as percentages of the respective full diffusion model.
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Model Subspace Threshold t1 Runtime FID ↓ IS ↑

DDPM++
shallow
(sub-VP)

None – – 100% 2.61 9.56

16 → 32

1× 10−4 0.56 69% 2.61 9.53
3× 10−4 0.51 65% 2.63 9.64
1× 10−3 0.45 61% 2.75 9.66
3× 10−3 0.39 56% 3.11 9.53
1× 10−2 0.32 52% 4.07 9.52
3× 10−2 0.26 47% 5.68 9.37

8 → 32

1× 10−4 0.62 65% 2.60 9.54
3× 10−4 0.57 60% 2.68 9.56
1× 10−3 0.50 55% 2.93 9.66
3× 10−3 0.45 50% 3.73 9.63
1× 10−2 0.38 43% 5.24 9.51
3× 10−2 0.31 37% 7.61 9.23

DDPM++
deep

(sub-VP)

None – – 100% 2.41 9.57

16 → 32

1× 10−4 0.56 69% 2.40 9.66
3× 10−4 0.50 66% 2.43 9.62
1× 10−3 0.44 61% 2.55 9.65
3× 10−3 0.38 57% 2.84 9.68
1× 10−2 0.32 53% 3.49 9.55
3× 10−2 0.26 48% 4.64 9.52

8 → 32

1× 10−4 0.62 65% 2.46 9.67
3× 10−4 0.56 60% 2.52 9.67
1× 10−3 0.50 55% 2.76 9.72
3× 10−3 0.44 50% 3.41 9.65
1× 10−2 0.38 43% 4.39 9.55
3× 10−2 0.31 37% 6.32 9.30

Table 2. DDPM++ subspace diffusion results on the CIFAR-10 unconditional gener-
ation. Runtimes are reported as percentages of the respective full diffusion model.
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Fig. 2. Random samples from CIFAR-10 using the NCSN++ deep 16x16 subspace
diffusion, each row represents samples with an extra 10% of the diffusion on the full-
dimensional space (from 0% at the top to 100% at the bottom). High quality samples
start appearing between 50-60% of full diffusion.
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Fig. 3. Random samples from CelebA-HQ using the NCSN++ 64x64 subspace dif-
fusion, each row represents samples with an extra 10% of the diffusion on the full-
dimensional space (from 0% at the top to 100% at the bottom). High quality samples
start appearing between 30-40% of full diffusion.
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Fig. 4. Random samples from LSUN Church using the NCSN++ 64x64 subspace dif-
fusion, each row represents samples with an extra 10% of the diffusion on the full-
dimensional space (from 0% at the top to 100% at the bottom). High quality samples
start at around 40% of full diffusion.
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Fig. 5. Random samples of inpainting procedure from LSUN Church using the
NCSN++ 64x64 subspace diffusion, with different proportions of subspace diffusion
(reported at the top along with the corresponding Fisher divergence threshold).


