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1 MINER Algorithm Details

Algorithm [1] shows the overall MINER flow with initialization, pruning, and
parameter update. The function DOWNSAMPLE implements a domain-specific down-
sampling operator. For images it is,
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For three-dimensional signals such as videos (I(z, y, t)) and 3D occupancy volumes
(I(x, y, z)) we have,

20/H p2i /W 29/T _
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2 Experimental Results

Baselines. We compare MINER against three competing baselines for 2D images,
and three for 3D volumes.

1. SIREN [5] fits a single large MLP at a single scale and utilizes a sinusoidal
activation function for accelerated training. We varied the number of hidden
units for each experiment to ensure that the number of parameters matched
that of MINER.

2. KiloNeRF [4] fits multiple small MLPs at a single scale instead of a single
large MLP. The number of hidden units for each MLP was chosen to be the
same as that for MINER.

3. ACORN [2] fits a single large MLP at a single scale with adaptive coordinate
decomposition.

4. Convolutional occupancy network [3] utilizes convolutions to capture local
correlations. We used this only for 3D volume comparisons. While one of the
key strengths of the convolutional occupancy network is its ability to generalize
to unseen data points, we only compare it with respect to its capability of
overfitting to a single training data point.
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Algorithm 1 MINER algorithm.

Require: I(x), number of scales J, block size b, number of features per layer Nfeat,
number of layers Niayers
forj=J-1,J—-2,...,0do > Loop over spatial scales
if jis J — 1 then
R;(x) <+~ DOWNSAMPLE(I(x),1/2771)

end if
Qj +— % > Number of blocks
A; +{1,2,...,Q;} > Active set
for¢g=1,2,...,Q; do > Loop over blocks
if ||R;(x7)]| < 7; then
Aj +— Aj\q > Remove converged blocks
else
/\/]9 < MLP(Nteat, Nayers) > MLPs for each block
end if
end for

for i =1,2,..., Niter do
for ¢ in A; do
f(xq) «— N (x7) > Compute MLP output
€] Hf(xq) — I(x9)|)? > Compute MSE loss
Backpropagate €] to update 607
if ¢f < 7; then
Aj + Aj\q > Prune converged blocks
end if
end for
end for
end for

5. Screened Poisson Surface Reconstruction (SPSR) [I] utilizes local normals
to construct the mesh. SPSR does not utilize a neural network but requires
additional information in the form of normals at each voxel.

We used code from the respective authors and optimized the training parameters
to ensure a fair comparison.

Fitting 3D point clouds. Figure [I] visualizes the meshes fit with various recon-
struction approaches for a fixed duration. MINER has superior reconstruction
quality compared to ACORN and convolutional occupancy networks [3], and
comparable performance to Screened Poisson surface reconstruction (SPSR) [IJ.
We do note that the quality of reconstruction specifically for the engine model
is superior to SPSR. Since the engine model has a large number of sharp edges,
SPSR tends to oversmooth the result. Since MINER combined with marching
cubes relied only on local information for reconstruction, the resultant mesh was
more accurate.
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Fig.1: Comparisons against state-of-the-art for 3D volume fitting. The fig-
ure compares 3D occupancy fitting for a fixed duration with MINER, ACORN,
Convolutional occupancy [3], and screening poisson reconstruction [I]. The number
of parameters of MINER was chosen automatically according to model complexity.
MINER achieves high accuracy in a very short duration for arbitrarily complex shapes,
which is not possible with prior works, even though some models such as the engine
(second row) require significantly larger number of parameters.

2.1 Analysis of parameter space

The training time of MINER is affected by the number of scales, the size of each
patch, the stopping criteria when switching to a finer scale, and the parameters of
each MLP including the number of layers, the number of features per layer, and
the type of non-linearity. We now provide a thorough analysis of the parameters.
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Fig. 2: Effect of patch size. The plot shows the time taken to achieve 40 dB for three
different images. We notice that the optimal patch size is highly dependent on the
image. For images with high texture content (image 1), a smaller patch size of 8 pixels
is optimal. For medium texture with large flat areas (image 2), a medium patch size of
32 pixels is optimal. For images such as macro photography (image 3) which has strong
low frequency content, larger patch size of 64 is optimal.

Performance with varying patch size. The optimal patch size is highly dependent
on the signal itself. To understand the empirical relationship, we fit three types
of images with low, medium, and high texture content using MINER to achieve
40dB accuracy. In each case, we varied the patch size from 8 pixels to 64 pixels.
We proportionally increased the number of features per layer for each patch to
keep the total number of parameters approximately the same. Figure [2] shows
the plot of time taken to achieve 40 dB as a function of patch size for the three
images. We notice that the optimal patch size for least training time increases
with reducing texture content — which can be used as a guideline when choosing
the appropriate patch size.

Performance with number of scales. Figure [3]shows the time taken to achieve
40dB for various images with varying number of spatial scales. The optimal
number of scales is strongly dependent on the texture content — highly textured
images benefit from fewer scales, while images with low texture benefit from
larger scales. In practice, we found 3 - 4 scales sufficed for optimal results in
terms of training time and number of parameters.

Effect of stopping threshold. The number of parameters, and ultimately the train-
ing time are effected by the threshold at which each spatial block is terminated.
Fig. [f] compares the convergence time to 40dB, and number of parameters for
varying thresholds for fitting a 4MP Pluto image. The trends are as expected —
increase the block threshold terminates blocks at the state of each scale, which
leads to fewer parameters. However, this may adversely affect convergence time,
fewer blocks are required to achieve the targeted MSE. We found that a threshold
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Fig. 3: Effect of number of scales. The plots show the time taken to achieve 40dB,
and the total number of parameters for the three images shown in Fig. 2] The optimal

number of scales is image-dependent, but we found 4 scales to work well for most
images.
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Fig. 4: Effect of block stopping threshold. The plots show the time taken to
achieve 40dB, and the total number of parameters for a 4MP Pluto image. Increasing
the stopping threshold reduces the number of parameters, but leads to increased

convergence time. For very high threshold, sufficient blocks may not be active to achieve
40dB.

of 0.1 to 2x the desired MSE enabled best results in terms of convergence times
and number of parameters.
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