
The Supplementary File for Scalable Learning to
Optimize: A Learned Optimizer Can Train Big

Models

Xuxi Chen1⋆, Tianlong Chen1∗, Yu Cheng2, Weizhu Chen2

Ahmed Awadallah2, and Zhangyang Wang1

1 The University of Texas at Austin, Austin TX 78712, USA
{xxchen,tianlong.chen,atlaswang}utexas.edu

2 Microsoft Research
{yu.cheng,wzchen,hassanam}@microsoft.com

1 More Experiment Settings

For the analytical optimizers, we report the hyperparameter we use in Table 1.
The architecture of SL2O we use is stemmed from a one-layer LSTM with a
hidden size of 8. The inputs are fed into the LSTM model, followed by an MLP
model and a tanh function to generate the prediction of the parameters’ update.

2 More Experiment Analysis

As mentioned in the main manuscript, we will provide more analysis on exper-
iment results to this supplementary file due to space limitations. The following
analysis are not based on experiments on new datasets nor on new architectures.

2.1 Performance on ResNet-8

To cover a wider range of models, we examine our SL2O on an extremely small
architecture ResNet-8, and we present the curves of training loss and testing
accuracy in Figure 1. It shows that SL2O has promising results on small net-
works such as ResNet-8. The training loss converges the most rapidly among all
methods, and the testing accuracy remains the highest.

2.2 Superior Performance on GPT

As mentioned in the main manuscript, we successfully deploy SL2O on a giant
model GPT-2. We visualize the curves of training and validation loss in Figure 2.
For better demonstration, we report both the training loss for the first 2000 and
80000 steps. The figures show 1) Although both methods show great variation
in training loss, the overall trend of training loss is descending; 2) SL2O is more

⋆ Equal Contribution.



2 X. Chen et al.

Table 1: The hyperparameter configurations of different optimizers.

Optimizer Initial Learning Rate Learning Rate Scheduler Other Parameters

SGD 0.1 ×0.1 at 50th,75th epochs -
Momentum 0.1 ×0.1 at 50th,75th epochs γ = 0.9

Adam 0.001 ×0.1 at 50th,75th epochs β1 = 0.9, β2 = 0.99
RMSProp 0.01 ×0.1 at 50th,75th epochs -

SGD† 1 ×0.1 at 30th,50th epochs -

Momentum† 1 ×0.1 at 30th,50th epochs γ = 0.9

Fig. 1: Training loss and testing accuracy on ResNet-8 on CIFAR-10. We present
the training loss and the testing accuracy in the first 10000 steps. The super-
scription † means that the model is updated in a subspace.

efficient at minimizing the training loss, particularly for the first 250 steps, shown
by the steeper training loss curve. 3) The validation losses of SL2O match the
validation losses of AdamW† along the training process. These observations show
that the scalability roadblock of L2O has been removed.

Fig. 2: Training and validation loss of GPT-2 on E2E. We report both the training
loss in the full range and the first 2000 steps. The superscription † means that
the model is updated in a subspace.



Supplementary files for Scalable learning to Optimize 3

2.3 Superior Performance on DeiT

We prove that SL2O is also effective on different variants of Vision Transform-
ers. We conduct experiments on DeiT-base-distilled and present both the
training loss and the testing accuracy in Figure 3. From the figures, we can ob-
serve that SL2O achieves the highest testing accuracy (98.36%) while the most

competitive baseline Mom†
0.1 can achieve only 98.24% after 20 training epochs.

A bonus point is that SL2O shows high stability, demonstrated by the least
fluctuated testing accuracy curve among all baselines. The convergence speed
of SL2O continues to be fast, reaching a similar level as Mom†

0.1. In summary,
these deferred results on ResNet-8, GPT-2, and DeiT further support the valid-
ness of applying L2O on models with larger scales that have never been studied
in previous works.

Fig. 3: Training loss and the testing accuracy on DeiT. We present the training
loss in the first 2000 steps and the testing accuracy in the first 20 epochs. The
superscription † means that the model is updated in a subspace, and the sub-
scription indicates the learning rate.

2.4 Training ViT from Scratch?

We train ViT-B from scratch with SL2O, Mom†, and AdamW [2] on ImageNet.
We report an intermediate result at 2k-th steps, where SL2O is 1.6% and 7.1%
better than Mom† and AdamW, showing a positive trend.

2.5 Symbolic Regression

We sample 10000 samples from the training iterations as the training set, and
2000 samples as the testing set. The input features for symbolic regression are m̃t

and g̃t, and the output feature is the predicted update ∆θt generated by SL2O.
The atomic operators we use for symbolic regression are +,−,×,÷, ∗∗ (power
function),abs,sign,logm, sqrtm,relu,exp,tanh,sinh, asinh and erfc. . The first



4 X. Chen et al.

Table 2: The mean-squared error on the training set and the Pearson’s R on the
testing set of different symbolic expressions.

Expression Training Set Loss Testing Pearson’s R

∆θt = 0.2326tanh(g̃t − 0.1094) 0.0027 0.9495
∆θt = 0.2097exp(tanh(g̃t)) - 0.2523 0.0016 0.9689
∆θt = 0.0627exp(tanh(g̃t + m̃3

t )) 0.0015 0.9697

seven operators are fundamental blocks in traditional optimizers and the rest
are common in L2O; hence we adopt them to perform symbolic regression. On
ResNet-20, we derive three symbolic expressions with different complexity from
the training set and report the loss (i.e., MSE loss) on the training set as well as
the Pearson’s R on the testing set. The results are shown in Table 2 and Figure 5
The extracted expressions extracted on the training samples can be generalized
onto testing samples, demonstrated by the correlation values on the testing set.
The presence of hyperbolic functions in the symbolic expressions (i.e., tanh) is
reasonable: 1) hyperbolic functions limit the response when the input features
are large (refer to Figure 4) so they have a higher chance to reduce gradient
noise and make these operators be more easily selected; 2) the tanh functions
are being used as the non-linear activation function in the LSTM we deploy
for SL2O, so its presence correctly reflects the non-linearity structure. From a
perspective of expressions, these extracted equations are in general linear when
the inputs are small and become bounded and stable when the inputs are large.
Some non-linear structures are embedded in the extracted symbolic rules, which
help stabilize the predicted gradient to limit them to a reasonable range.

In summary, the learned update rules can be greatly interpreted by symbolic
expressions; hence our proposed optimizer benefits from high interpretability.

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
x

y

y=tanh(0.1x)
y=tanh(x)
y=x

Fig. 4: Comparison between hyperbolic
functions and linear functions. Hyper-
bolic functions limit the response when
input features are large.

−0.2

−0.1

0.0

0.1

0.2

−1.0 −0.5 0.0 0.5 1.0
g

y

y=0.2097exp(tanh(g))−0.2523
y=0.2326tanh(g−0.1094)

Fig. 5: Visualization of symbolic regres-
sion equations extracted from the train-
ing set. Both rules are deviated from
the origin (0, 0).



Supplementary files for Scalable learning to Optimize 5

2.6 Transferability Between Datasets and Architectures

As shown below, our SL2O is transferable across various datasets. SL2O achieves
a test accuracy of {93.54%, 74.39%} on CIFAR-100/10, which is only {0.07%,
0.28%} lower compared to its variants meta-trained on the same datasets. More-
over, SL2O trained on ImageNet also demonstrate an impressive transfer per-
formance on CIFAR-10/100. We also conduct new experiments of transferring
the learned optimizer among VGG-16, ResNet-18 and MobileNet as below. The
performance gap after transfer is negligible (< 0.1%), implying the sound trans-
ferability of SL2O across various types of architectures.

Table 3: Transfer performance between datasets and architectures. Transfer re-
sults are marked .

Meta-Training
(ResNet-18)

Meta-Testing Meta-Training
(CIFAR-10)

Meta-Testing

CIFAR-10 CIFAR-100 VGG-16 ResNet-18

CIFAR-10 93.61% 74.39% VGG-16 92.74% 93.54%

CIFAR-100 93.54% 74.67% ResNet-18 92.66% 93.61%

ImageNet 93.58% 74.47% MobileNet 92.64% 93.58%

2.7 Comparison With Different L2O methods

We compare SL2O with L2O-DM [1] to the same subspace of ResNet-20 on
CIFAR-10. We have observed that SL2O reaches over 50% accuracy advantages
in the meta-testing phase.

2.8 Detailed Analysis to Ablation Studies

The effects of unroll length. We study the effects of different unroll lengths T
and we have observed that different unroll lengths T yield similar results. The
experiments are conducted on ResNet-20 with four different T = [5, 10, 15, 20].
From Figure 6 we can see that, the unroll length T does not have a dominating
effect on the performance in the meta-testing stage since the curves of training
loss generated by SL2O with different unroll lengths are highly similar. Table 4
also validates that longer unroll lengths do not bring extra performance gain,
while a smaller unroll length would result in slightly weak performance.

The effects of different training iterations. We study the effects brought by
different training iterations on a certain optimization task and show the per-
formance in the meta-testing stage by varying N ∈ {200, 500, 1000, 2000}. The



6 X. Chen et al.

training loss curves are shown in Figure 6. Similarly, the training curves only
exhibit a mild difference in the first 100 steps. In Table 4 we notice that a smaller
N leads to an inferior result, showing that shorter training iterations probably
make SL2O overfit to shorter training horizons, become “short-sighted”, and
thereby harms the optimizee’s generalization ability.

Fig. 6: Left: Training loss in the first 100 training
steps with different T ; Right: Training loss in the
first 100 training steps with different N .

Table 4: The average of best
testing accuracy with different
unroll length T and training it-
erations N .

T = 5 10 15 20

Acc. 90.93% 91.00% 90.97% 90.92%

N = 200 500 1000 2000

Acc. 90.20% 90.70% 91.00% 90.97%

3 More Visualizations

We use two optimizers, Momentum† and SL2O, to optimize ResNet-20 on CIFAR-
10 from the same initialization for 100 steps. For each optimizer, we record the
updates on the coefficients of the first three principal directions (u1, u2, and u3)
which account for most variability. The results are shown in Figure 7. Firstly, we
can see that the updates generated by the Momentum† optimizer are small in
magnitude, while our SL2O can generate updates with various scales. Secondly,
SL2O can surprisingly predict overall decaying updates for the first three prin-
cipal directions even without an explicit learning rate scheduler. The predicted
updates are getting close to zeros after 75 steps, showing that SL2O tends to up-
date models more cautiously when the training loss is getting low. Lastly, SL2O
seems to prioritize the updates of the coefficient of u2 and u3 firstly, gradually
switches to update the coefficient of u1, and eventually decades its prediction
of updates to values of small magnitudes. This behavior suggests that SL2O
can learn sophisticated update rules rather than always optimizing towards the
largest principal direction.

References

1. Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., De Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: Advances in neural information processing systems (NeurIPS) (2016)

2. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)



Supplementary files for Scalable learning to Optimize 7

Fig. 7: The learned optimization rules for the largest three principal directions
of extracted tiny subspaces.


	The Supplementary File for Scalable Learning to Optimize: A Learned Optimizer Can Train Big Models

