
Scalable Learning to Optimize: A Learned
Optimizer Can Train Big Models

Xuxi Chen1⋆, Tianlong Chen1∗, Yu Cheng2, Weizhu Chen2

Ahmed Awadallah2, and Zhangyang Wang1

1 The University of Texas at Austin, Austin TX 78712, USA
{xxchen,tianlong.chen,atlaswang}utexas.edu

2 Microsoft Research
{yu.cheng,wzchen,hassanam}@microsoft.com

Abstract. Learning to optimize (L2O) has gained increasing attention
since it demonstrates a promising path to automating and accelerating
the optimization of complicated problems. Unlike manually crafted clas-
sical optimizers, L2O parameterizes and learns optimization rules in a
data-driven fashion. However, the primary barrier, scalability, persists
for this paradigm: as the typical L2O models create massive memory
overhead due to unrolled computational graphs, it disables L2O’s appli-
cability to large-scale tasks. To overcome this core challenge, we propose
a new scalable learning to optimize (SL2O) framework which (i) first
constrains the network updates in a tiny subspace and (ii) then explores
learning rules on top of it. Thanks to substantially reduced trainable
parameters, learning optimizers for large-scale networks with a single
GPU become feasible for the first time, showing that the scalability
roadblock of applying L2O to training large models is now re-
moved. Comprehensive experiments on various network architectures
(i.e., ResNets, VGGs, ViTs) and datasets (i.e., CIFAR, ImageNet, E2E)
across vision and language tasks, consistently validate that SL2O can
achieve significantly faster convergence speed and competitive perfor-
mance compared to analytical optimizers. For example, our approach
converges 3.41 ∼ 4.60 times faster on CIFAR-10/100 with ResNet-18,
and 1.24 times faster on ViTs, at nearly no performance loss. Codes are
in https://github.com/VITA-Group/Scalable-L2O.

1 Introduction

Gradient-based optimization methods are prevailing in the deep learning field,
and over years dozens of gradient-based optimizers have been designed by re-
searchers based on their expertise. Most of these optimizers apply specific rules
to calculate the update of parameters from their gradients, such as using mo-
mentum [34] or normalized gradients [13]. These manually crafted optimizers
can mostly be expressed in a handful of analytical formulas, and they are often
equipped with theoretical guarantees on some classes of optimization tasks [5].

⋆ Equal Contribution.

https://github.com/VITA-Group/Scalable-L2O


2 X. Chen et al.

O
pt
im

iz
ee

(Learnable)
Optimizer

D
ee

p 
Le

ar
ni

ng

Tr
ai
ni
ng

D
yn

am
ic
s

O
ptim

ization
R
ules

Fig. 1: The L2O pipeline.

However, recent works have pointed out that
when focusing on a specific category of optimiza-
tion tasks, one can pursue a different pathway to
learn an optimizer instead of applying these hand-
crafted optimizers to achieve better performance.
This alternative paradigm, called Learning to Op-
timize (L2O) [28], aims at learning a more effec-
tive optimization algorithm from data. As depicted
in Figure 1, L2O normally takes the optimizee’s
training dynamic as input, and output optimization
rules. Such learnable optimizers are capable of learn-
ing “shortcuts” that hand-crafted optimization al-
gorithms fail to leverage [28], and they have demon-
strated faster convergence speed and higher solution
quality [5] and even save energy cost [25].

L2O methods typically require a meta-training
stage where a optimizer is learned with a set of opti-
mizees sampled from a given task distribution. The
learned optimizers are parameterized by neural networks, typically by recurrent
neural networks [2,4,30,38]. However, L2O optimizers suffer from low scalabil-
ity : the memory overhead due to the unrolled computational graphs required by
training L2O optimizers limits the scales of optimization problems. For instance,
[4] studied problems at matrix multiplication levels. [6] studied a three-layer
multi-layer perceptron (MLP) (∼ 104 parameters) and a two-layer convolutional
networks (∼ 104 parameters). [31,46] studied multi-layer MLPs for MNIST and
CIFAR10 classification (∼ 105 parameters). [50] used the learned optimizer’s
weight to optimize Inception-V3 [41] but did not perform meta-training on it.
[3] performed meta-training on Wide ResNet but they require thousands of CPU
hours to parallelly train their RNN optimizers with multiple nodes. This main
hurdle obstacles the more general application of L2O methods.

Our proposed solution, which aims at tackling the aforementioned obsta-
cle, is a subspace training framework for L2O. Recent works [26,15,20,29]
have suggested an alternative but effective way to train neural networks, i.e.,
constraining the weight updates in tiny subspaces. The number of independent
parameters is smaller in the subspace compared to full fine-tuning; therefore
the corresponding subspace optimization problem is simplified. Motivated by
these recent signs of progress on subspace training, we propose to reparameter-
ize optimizee’s weight updates inside a low dimensional subspace, making the
optimization problem more memory-friendly for L2O. By reducing the number
of independent parameters, the L2O models will track fewer intermediate repre-
sentations for parameters, leading to smaller computational graphs and trimmed
memory costs. For the first time, we enable the training of L2O models on gi-
ant models such as Vision Transformer [12] (∼ 108 parameters) and GPT-2 [35]
(∼ 108 parameters) on a single GPU. Contributions are summarized as follows:



Scalable Learning to Optimize 3

⋆ We for the first time demonstrate that L2O can be scaled up to large-
scale models such as ViT, removing the previous scalability roadblock of
applying L2O methods. The keys behind scalability are simple subspace re-
parameterization techniques.

⋆ We propose a novel L2O training framework, SL2O, that seamlessly inte-
grates subspace re-parameterization methods. We show that SL2O is appli-
cable on a broad range of architectures like ResNets, VGG, and ViT3, and
can bring significantly better convergence and improved performance.

⋆ Extensive experiments on vision (CIFAR-10, CIFAR-100, ImageNet) and
language tasks (E2E) with large-scale networks validate the superiority of
our proposals. For example, our learned optimizer obtains nearly unimpaired
improvements with 29.3%/21.7% training iterations and 40 training param-
eters on ResNet-18 with CIFAR-10/CIFAR-100, which leads to impressive
resource-efficiency compared to vanilla network training.

2 Related Work

Low-Rank Structure in Training Neural Networks. Literature [54,26,32,16] point
out that the intrinsic dimensionality of trained over-parameterized models is nat-
urally low-rank. For example, [26,15] perform optimization in a reduced subspace
formed by random bases, leading to around 90% performance of regular SGD
training. More works focus on imposing explicit low-rank constraints during
training [21,33,37,56,57] and transferring [48,20], which obtain considerable pa-
rameter efficiency. In the meantime, such low-rank structures enable more power-
ful optimization algorithms to address existing learning barriers like convergence
speed. Specifically, thanks to largely reduced optimization variables, [44,40,29]
exploit higher-order information and design delicate training approaches using
curvature or Hessian, while maintaining overall computation efficiency and im-
proving convergence. Different from previous works, we consider leveraging a
superior learned optimizer to update within the tiny update subspace.

Learning to Optimize. Instead of hand-crafted optimization rules (e.g., SGD,
Adam, and RMSprop), learning to optimize (L2O) leverages a data-driven learned
model as the optimizer, which has achieved various successes in machine learn-
ing problems including black-box optimization [9], Bayesian swarm optimiza-
tion [4], min-max optimization [38], domain adaptation [25,7], adversarial train-
ing [22,51], graph learning [53], and noisy label training [8]. [1] invents the
first L2O pipeline parameterized by a long short-term memory (LSTM), which
takes optimizee’s gradients as input and outputs its update rules. It adopts a
coordinate-wise manner that allows learned optimizers to be applicable for opti-
mizees with different amounts of parameters. Another alternative reinforcement
learning framework is proposed by [28], while it is limited in generalization to
unseen optimizees. Latter, several efforts are made to empower the generaliza-
tion ability of L2O. Specifically, [30,25] propose regularizers such as random

3 We also include GPT-2 results in the supplementary.



4 X. Chen et al.

...
Input

Output

Optimizee Optimizee

Optimizer Optimizer

Optimizee

Optimizer ...

Update Optimizer with

Fig. 2: The framework overview of our proposed scalable learning to optimize
(SL2O). The network updates are constrained within certain intrinsic tiny sub-
spaces, i.e., U and V . Note that W can be the concatenated weight matrix of
CNN or a single transformer layer.

scaling, objective convexifying, and Jacobian constraint; [50] designs a more
sophisticated hierarchical recurrent neural networks (RNN) as an L2O; [6] uti-
lizes advanced training techniques like curriculum learning and imitation learn-
ing; [31,47] constructs unbiased gradient estimators to learn enhanced optimizer.
Recently, a survey paper of L2O [5] summarizes and benchmarks most of the
achievements in this field.

3 Methods

3.1 Preliminaries

Tiny Subspace of Network Updates. The parameters inside a neural network are
strongly correlated in multiple ways. For instance, the gradient back-propagation
[18] process will relate gradients in different layers so that the parameters are
also related. Therefore, it is possible to reduce the number of independent vari-
ables in a neural network. Recent studies [26,15,20] have pointed out that deep
neural networks (DNN) can be trained in a tiny subspace. One can first iden-
tify a fixed number of “basis” vectors and then only optimize the coefficient
of these basis vectors to get a sufficiently well-trained DNN. Generally speak-
ing, a set of basis vectors {u1,u2, . . . ,uN} is calculated for a network (whose
initialization is W 0), and the optimization goal is converted to learning a coef-
ficient vector w ∈ RN for weighing the bases. To derive the network’s weights
W from {u1,u2, . . . ,uN} and w, a simple multiply-and-sum method would

suffice: W = W 0 −
∑N

i=1 wiui. Therefore, the network is updated in the sub-
space spanned by the bases {ui}Ni=1. Researchers have taken various methods to
construct the bases and operate subspace training. [26,15] randomly generated
these bases, and optimizing in the subspace spanned by these random bases can
achieve surprisingly sufficient performance (over 90% of the full training accu-
racy). More recently, [29] sampled weights from the model training trajectory



Scalable Learning to Optimize 5

and performed spectral decomposition to derive orthogonal bases. Training in
the subspace spanned by these orthogonal bases can match or even surpass the
performance of optimizing all parameters in the model. [20] performed subspace
training in a more refined layer-wise and efficient manner. The basis vectors
are randomly initialized and can be optimized during training. This method has
demonstrated its effectiveness on various language tasks, reaching on-par or even
higher testing performance.

Learning to Optimize. In Learning-to-Optimize (L2O), an optimization task is
optimizing a network f(·;θ), which we call optimizee, over a dataset. θ is the
weights of the optimizee. The goal of L2O is to learn an optimizer for solving
tasks from a task distribution F , i.e., a set of similar optimization tasks. For
example, F can be {Optimizing ResNet-20 on CIFAR-10}. Such a learned opti-
mizer opt, parameterized by ϕ, predicts the update for optimizee’s weights as
opt(zt;ϕ). In literature, opt is usually modeled by a neural network. zt is a
vector containing observations of historical training dynamics accessible at step
t, such as the values and the gradients of θt. The optimizee’s weights θ are
updated by θt+1 := θt − opt(zt;ϕ).

Learning an optimal update rule for an optimization task is equivalent to find-
ing optimal optimizer weights ϕ. A direct approach is to minimize the weighted
sum of the optimizee’s objectives over a time interval T (i.e., unroll length):

L(ϕ) = E

[
T∑

t=1

ωtLt(f(xt;θt), yt)

]
, with θt+1 = θt − opt(zt;ϕ),

where (xt, yt) are training samples and Lt(·, ·) is the function for calculating
the optimizee’s objective, such as cross-entropy loss or mean-squared error. We
set ωt = 1, t = 1, 2, . . . , T to assign equal importance to all training steps, and
obtain ϕ by minimizing L. Note that ϕ is correlated with Lt(f(xt;θt), yt) since
ϕ partially determines the optimizee’s weights θt.

Typically, the pipeline of L2O can be split into two stages: meta-training
where ϕ is being optimized on tasks from the distribution F , and meta-testing
where ϕ is fixed and the learned optimizer g is used to optimize a new opti-
mization task. The meta-training stage is often done in an offline fashion since
it requires time-consuming algorithms like truncated back-propagation through
time [49]. However, the meta-training cost can be easily amortized at the meta-
testing stage, which is expected to have a faster convergence speed.

3.2 Scalable Learning to Optimize

Combining Subspace Training with L2O. Previous L2O techniques directly pre-
dict updates for all the parameters, so most works can only perform meta-
trainings on small-scale networks and require a large number of computational
resources. In contrast, SL2O leverages the subspace training technique to reduce
the number of independent parameters, and scale up to large models such as



6 X. Chen et al.

VGG-16 and ViT. For CNNs having d parameters, we derive the orthogonal ba-
sis matrix P ∈ Rr×d by performing SVD matrix decomposition and set θ ∈ R1×r

as the coefficients for P , where r is the number of orthogonal basis vectors. Con-
sequently, the weights of a CNN can be represented by W := W 0 − θP . We
do not directly embed θ in CNNs and consider it as a virtual parameter. The
gradient on θ can be calculated by the following formula:

∂Lt

∂θ
= ∇WLt

∂W

∂θ
= (∇WLt)P

T ,

suggesting that we only need a projection operation to construct the gradients.
The predicted update for θ from SL2O will also be projected back to update
W . By using such an indirect interacting method, we need not to store the
value of θt and save more memory. By default we set the number of independent
trainable variables r to 40, which is negligible compared to d.

For transformer-based models (ViT, DeiT, and GPT-2), we use a slightly
different subspace method for transformer-based models since performing SVD
decomposition at such scales requires enormous memory. Alternatively, we seek
a more refined layerwise we decompose the update of weights ∆W ∈ Rd1×d2

into two matrices U ∈ Rd1×r and V ∈ Rr×d2 , and constrain ∆W = UV . V can
be seen as a learnable and shared basis vectors since different rows in ∆W are
all linear combinations of row vectors in V . For different layers in a network, we
learn different decomposition matrices so that the subspace structures are more
fine-grained. We explicitly embed U and V in the optimizee, and let θ = {U ,V }
so that they would be the target parameters of SL2O. In this case we set r to
be 16; the number of trainable parameters in U and V is (d1 + d2)× r, which is
significantly smaller than d1 × d2 if r is small. We follow [20] to only apply the
re-parameterization on attention weights.

The meta-training and meta-testing stage of SL2O optimizers. To train our
SL2O optimizer, we sample multiple optimization tasks from a task distribution
and train the optimizer on each task for a certain number of iterations. Pre-
vious works [4,6,46] also followed the same pipeline. For each task, the orders
of training data are different so that the optimizer will not memorize the data
order [52]. Following [30], we use the scaled gradients and their momentum as
the observations of training dynamics. We limit the number of training steps to
be N for each optimization task, and we split the whole training sequence (N
training steps) into sub-sequences of length T . The value of N is set as 1000 so
the effort of training an L2O optimizer is small and can be easily amortized. The
unroll length T is fixed to be 10, and we will demonstrate that the choice of T
does not have a dominating effect in Section 4.5. We evaluate the model with the
updated parameters θN on the testing set Dvalid, and choose the best optimizer
parameters according to the testing performance. A detailed algorithm for the
meta-training stage is shown in Algorithm 1.

After we obtain the best parameters of the learned optimizers, we switch to
the meta-testing stage and use the learned optimizer to train a new optimization



Scalable Learning to Optimize 7

Algorithm 1 The general training pipeline of SL2O.

Input: optimizee f(·; ·), optimizer opt(·; ·), current training step t, initial optimizee
weights θ0, optimizer weights ϕt, optimizee’s objective Lt(·, ·), a training set Dtrain,
a testing set Dtest, coefficients β1 and β2, unroll length T , training steps N for each
epoch, and number of epochs E
Output: Optimal optimizer weights ϕ
for epoch < E do

Initialize m = 0 and v = 0
for i=0, T, 2T . . . , ([N/T ]− 1)× T do ▷ [N/T ] sub-sequences

Set L ← 0
for j=0, 1, 2 . . . , T − 1 do

t := i + j
Sample a batch B from the training set Dtrain

Calculate the training loss on B : E(x,y)∈BLt(f(x;θt), y) and the gradient
on θt: gt = ∇θE(x,y)∈BLt(f(x;θt), y)

Update m← β1m + (1− β1)gt and v ← β2v + (1− β2)g2
t

Calculate m̂←m/(1− βt+1
1 ), v̂ ← v/(1− βt+1

2 )
Calculate g̃ ← gt/

√
v̂ + ϵ, m̃← m̂/

√
v̂ + ϵ ▷ features calculation

Construct zt from zt from g̃ and m̃
Update θt+1 ← θt − opt(zt;ϕ) ▷ Update the optimizee’s weights
L ← L+ E(x,y)∈BLt(f(x;θt), y) ▷ Loss calculation

Update ϕ by minimizing L using gradient descent-based methods for one step
Evaluate f(·;θN ) on Dtest and find the optimal ϕ

task. Note that during this meta-testing stage we will fix ϕ. The learned opti-
mizer receives the same set of observations of the optimizee’s training dynamics
and predicts updates for θ at every training step t.

4 Experiments

4.1 Implementation Details

Architectures and Datasets. We study two sets of networks: (i) CNNs, including
ResNet-20 [17], ResNet-18 [17], and VGG-16 [39]; (ii) Transformer-based mod-
els [45], including ViT [12], DeiT [43] (and in supplementary, GPT-2 [35]). We
study four datasets: CIFAR-10 [24], CIFAR-100 [24], and ImageNet [11], and
E2E [14] dataset for the GPT-2 experiments. We also study a small network
ResNet-8 (results deferred to the supplementary files).

Baseline Optimizers. We choose several widely used optimizers as the base-
lines for comparison: Stochastic Gradient Descent (SGD) [36], Momentum [34],
Adam [23], and RMSProp [42]. The optimizer settings are reported in Table 1 in
the supplementary file. We also apply two of them (SGD and Momentum) with
the subspace training techniques, which we call “SGD†” and “Momentum†” (the
† superscription means subspace training).



8 X. Chen et al.

Table 1: Comparison of testing accuracy using different optimizers with four net-
work architectures on CIFAR-10. We report both the average and the confidence
interval of the best testing accuracy. The superscription † means that the model
is updated in a tiny subspace.

Optimizer
Testing Accuracy Convergence Steps

ResNet-20 ResNet-18 VGG-16 ResNet-20 ResNet-18 VGG-16

SGD 88.72±0.09% 93.48±0.15% 92.81±0.22% 5073.8 2351.2 1250.4
Momentum 91.27±0.30% 93.90±0.37% 92.96±0.13% 3280.8 4316.8 2972.0
Adam 90.19±0.21% 93.54±0.13% 92.06±0.29% 3554.0 2688.0 6767.0
RMSProp 90.16±0.20% 93.01±0.22% 86.26±0.29% 1776.2 1856.4 13189.4

SGD† 90.61±0.08% 92.99±0.08% 89.03±0.26% 1468.0 1318.2 2315.8

Momentum† 90.97±0.03% 93.70±0.01% 92.77±0.05% 333.0 216.8 383.4

SL2O 91.00±0.05% 93.61±0.02% 92.74±0.03% 90.2 63.6 57.4

Metrics. On image datasets (CIFAR-10, CIFAR-100, and ImageNet), we use
the accuracy on testing set and the first convergence step of training as our
metrics. We say the training is converged at step t if std(Lt−19, . . . ,Lt) < 0.1
and Lt < L∗ + 0.1, where std(·) is the standard deviation, Lt is the training
loss at step t and L∗ is the globally minimal training loss. On the language
dataset E2E, we report the validation loss. Note that most existing works on
L2O evaluate their methods only by reporting training losses; we take one
more step and also take the testing loss/accuracy into consideration.

Meta-Training and Meta-Testing Settings. We meta-train the optimizer on 20
sampled optimization tasks (i.e., 20 epochs) from every task distribution. We
use Adam with a learning rate of 0.01 to train our optimizer, and maintain the
same learning rate across the whole meta-training process. For the meta-testing
stage, the numbers of training epochs for (ResNets, VGGs, ViT, DeiT) are by
default (100, 100, 20, 20) respectively, and the training batch sizes are 128 for
all experiments. For baseline optimizers, we share the same training epochs and
batch sizes with our SL2O optimizer. The structure of our SL2O optimizer is
based on an LSTM [19], and we will show the details of the architecture of
our SL2O optimizer in the supplementary files. SL2O operates in a coordinate-
wise fashion [9], which enables SL2O to optimizees with distinctive numbers of
parameters. To be specific, for each parameter in the subspace, SL2O takes its
observation vector as input and produces its update.

4.2 Superior Performance on ResNets

We first conduct experiments on CIFAR-10, and report the testing accuracy
and the convergence steps in Table 1. We can draw several conclusions from
these tables: 1) On CIFAR-10, Momentum is the overall best optimizer for all



Scalable Learning to Optimize 9

Table 2: Comparison of testing accuracy using different optimizers with four
network architectures on CIFAR-100. We report both the average and the confi-
dence interval of the best testing accuracy. The superscription † means that the
model is updated in a tiny subspace.

Optimizer
Testing Accuracy Convergence Steps

ResNet-20 ResNet-18 VGG-16 ResNet-20 ResNet-18 VGG-16

SGD 63.18±0.40% 73.96±0.10% 70.43±0.14% 20286.6 6353.0 11558.6
Momentum 67.29±0.36% 73.92±0.41% 70.61±0.28% 26242.2 6860.6 19693.4
Adam 64.59±0.39% 73.76±0.23% 66.05±0.20% 18397.6 7947.0 19828.8
RMSProp 63.53±0.56% 65.91±0.57% 14.62±6.84% 15459.6 6707.8 15589.0

SGD† 66.64±0.18% 74.74±0.05% 59.96±0.95% 4420.4 1787.2 10198.8

Momentum† 66.89±0.04% 74.76±0.06% 70.98±0.04% 636.2 283.2 2104.8

SL2O 67.04±0.07% 74.67±0.14% 71.02±0.09% 105.4 61.6 168.2

architectures regarding the testing accuracy. However, it needs over 1000 training
steps to reach convergence; 2) Momentum† and SL2O achieve nearly the same
level of testing accuracy, and their performances are both comparable with the
performance of Momentum; 3) The convergence speeds of SL2O are significantly
faster than all other baselines. On {ResNet-20, ResNet-18, VGG-16}, our method
can achieve convergence with {90.2,63.6,57.4} training steps on average, while
the best analytical baseline optimizer Momentum† needs {333.0,216.8,383.4}
training steps for convergence on average, which is {3.69,3.41,6.68} times slower.
We further show the training loss and testing accuracy in the first 10000 steps in
Figure 3. The convergence speeds of the L2O optimizer surpass the convergence
speeds of other baselines: SL2O achieves nearly full accuracy after hundreds of
training iterations, and the speed of training loss decreasing is the highest among
all baseline methods. Moreover, the advantage on convergence speed of SL2O
compared to other methods on CIFAR-10 seems to be bigger as the number of
parameters gets larger, manifested by the enlarging spaces between early training
loss curves collected from ResNet-20 to VGG-16 models.

We continue to test our method on CIFAR-100 with ResNet-20, ResNet-18,
and VGG-16, and we have drawn a similar conclusion from the experiments.
The testing accuracy and the convergence steps are shown in Table 2. We can
see that: 1) Among all optimization methods, our L2O optimizer has the fastest
convergence speed: on {ResNet-20,ResNet-18,VGG-16}, SL2O can achieve con-
vergence with only {105.4, 61.6, 168.2} steps on average, while the most com-
petitive baseline Momentum† needs {636.2, 283.2, 2104.8} steps, which is {6.04,
4.60, 12.51} times more, respectively; 2) Compared to CIFAR-10, SL2O per-
forms much better on CIFAR-100 in terms of testing accuracy, achieving supe-
rior performance on some cases compared to other analytical optimizers, with
or without the subspace reparameterization technique. Specifically, we achieve
higher testing accuracy on ResNet-20 and VGG-16 compared to Momentum†,



10 X. Chen et al.

ResNet-20 VGG-16ResNet-18

Fig. 3: Comparison of training loss and testing accuracy on CIFAR-10 with var-
ious optimizers. Results of the first 10, 000 training steps are presented. The
superscription † means that the model is updated in a tiny subspace.

ResNet-20 ResNet-18 VGG-16

Fig. 4: Comparison of training loss and testing accuracy on CIFAR-10 with var-
ious optimizers. Results of the first 10, 000 training steps are presented. The
superscription † means that the model is updated in a tiny subspace.

although the confidence intervals overlap. From Figure 4 we can further validate
the superiority of our SL2O method. SL2O achieves high accuracy with only
hundreds of training steps, and the gaps between early training loss curves are
more significant as the model sizes get larger.

Finally, we validate our SL2O optimizer on a large-scale dataset, i.e., Ima-
geNet, with ResNet-18. We present the training loss in the first 11000 steps and
the best testing accuracy after training for 40 epochs in Figure 5. We can see



Scalable Learning to Optimize 11

from the figure that SL2O significantly outperforms other methods regarding
the convergence speed since the loss curve for SL2O becomes stable in less than
1000 training steps while the most competitive baseline (Mom†) needs around
5000 training steps, which is approximately 5 times faster. After training for
40 epochs, the testing accuracy of ResNet-18 optimized with SL2O (68.78%)
is comparable to SGD† (68.86%) and Momentum† (68.83%), only with slight
accuracy loss. In summary, our SL2O optimizer is capable of achieving conver-
gence faster than all analytical baseline optimizers and comparable performance
(testing accuracy) on various CNN optimizees.

4.3 Superior Performance on Transformer-based models

Fig. 5: Training loss on ImageNet with
ResNet-18.

We deploy the SL2O optimizer to
finetune two transformer-based vision
models, ViT and DeiT, on CIFAR-
10. To be more concrete, we use the
official ViT-B/16 (∼ 83M parame-
ters) pretrained on ImageNet and the
DeiT-tiny-distilled (∼ 8M parame-
ters) pretrained as the starting points
for fine-tuning. The number of the
fine-tuning epoch is set to 10 since we
observe no improvement afterward.
Figure 6 shows the performance of op-
timizing with Mom, Mom† with dif-
ferent learning rates, and the perfor-
mance of SL2O on ViT-B/16. We can
see from the figure that SL2O achieves
lower training loss and fastest conver-

gence while preserving high testing accuracy. Numerically, SL2O hits a testing
accuracy of 98.5% with only two epochs and consistently outperforms other base-
lines with subspace training. Training by using SL2O converges at the 484-th
step while Mom†

0.04 needs 602 steps, which is 1.24 times longer. SL2O eventually
gets surpassed by the analytical optimizer Momentum; however, it is still an
efficient optimizer and demonstrates the effectiveness of SL2O on optimizees at
the level of 108 parameters. It is noteworthy that almost all existing L2O ap-
proaches benefit more at the early stage rather than the final performance [30],
which is a fundamental yet unsolved problem in L2O, i.e., meta-testing with a
“longer horizon” [30]. Note that the previous best L2O is capable of maintain-
ing superior meta-testing performance for ∼ 4k iterations on small MLPs, while
our SL2O enables an improved “horizon” like 5k iterations in the ViT training.
Lastly, we offer a simple remedy to this challenging problem - leveraging both
learned and analytical optimizers: (i) apply SL2O in the early stage such as the
first 5k steps then (ii) switch to the analytical optimizer, and we obtain an ex-
tra 0.12% accuracy boost and match Mom in the late stage. We have observed



12 X. Chen et al.

similar results and validness on DeiT; therefore, we defer these results to the
supplementary files.

Fig. 6: Training loss and testing accuracy of ViT-B/16 on CIFAR-10. We report
the training loss in the first 2000 steps and the testing accuracy in the first 8000
steps. The superscription † means that the model is updated in a tiny subspace,
and the subscription means the initial learning rate of the optimizers. Mom†

0.4

does not appear in the figure of testing accuracy since the accuracies are below
the lower bar of 0.95.

4.4 The Transferability of SL2O

We conduct two experiments to study the transferability of SL2O between differ-
ent task distributions F : using an SL2O optimizer meta-trained on ResNet-20 to
optimize ResNet-18, and one meta-trained on ResNet-18 to optimize ResNet-20.
We empirically prove that SL2O is transferable between optimizee’s architec-
tures in Figure 7. The left figure shows the training loss curves on ResNet-
18, and the right figure shows the curves on ResNet-20. ResNet-20→ResNet-18
means that the transferred SL2O optimizer is trained on ResNet-20, ResNet-
18→ResNet-20 means the opposite. We can see from the figures that: 1) SL2O
meta-trained on ResNet-18 can optimize ResNet-20 well, and vice versa; 2) When
optimizing ResNet-20, the SL2O optimizer meta-trained on ResNet-18 can even
out-perform the optimizer meta-trained on ResNet-20 at the early training stage.
This may suggest that the L2O models meta-trained on more complicated prob-
lems (e.g., ResNet-18) can solve the easier problems (e.g., ResNet-20) more ef-
ficiently. Table 3 shows the average best testing accuracy of different combi-
nations of meta-training/meta-testing schemes. We can see that meta-training
and meta-testing on the same task distribution yield the best performance while
transferring the trained optimizers only brings slight performance loss. These
promising results show that the meta-training cost of SL2O can potentially be
further amortized by training fewer optimizers and sharing between different op-
timization optimizees. We also demonstrate the transferability of SL2O between



Scalable Learning to Optimize 13

Fig. 7: Training loss of optimizing
ResNet-18 (left) and ResNet-20 (right)
on CIFAR-10. SL2OT means the opti-
mizer is meta-trained on another archi-
tecture.

Table 3: The average of best test-
ing accuracy with different combina-
tions of meta-training and meta-testing
datasets.

Train on
Test on

ResNet-20 ResNet-18

ResNet-20 91.00% 93.59%

ResNet-18 90.96% 93.61%

various datasets in the supplementary file, which suggests the SL2O trained on
one dataset can be seamlessly generalized across multiple datasets.

4.5 Ablation Study and Visualizations

The effects of unroll length and different training iterations. We study the effects
of different unroll lengths T and training iterations N in the supplementary files.
We have validated: 1) the unroll length T does not have a dominating effect; 2)
longer unroll lengths do not bring extra performance gain, while a smaller unroll
length would result in slightly weak performance; 3) shorter training iterations
probably make SL2O overfit to shorter training horizons. Detailed analysis are
provided in the supplementary files.

Learned update rules. To understand how our L2O models generate update rules
for models, we provide two sets of visualizations on ResNet-20. The first visual-
ization is the training trajectory and the loss landscapes [27] of models trained
by different optimizers. We use three optimizers, i.e. Momentum, Momentum†

and SL2O, to train ResNet-20 on CIFAR-10 from the same initialization weights.
We focus on the first 100 training steps to demonstrate how optimizers behave
at the early training stage. The endpoints of the training trajectory are set to
be (0, 0). The three landscapes are presented in Figure 8. We can draw multi-
ple conclusions from these figures: 1) The training trajectories are similar for
the three optimizers. We interpret such a similarity as a successful sanity check
demonstrating the SL2O optimizer has learned valid optimization rules since
it shares a similar optimization pathway with Momentum and Momentum†; 2)
SL2O arrives at a lower loss region compared to Momentum† and Momentum af-
ter 100 training steps, again showing that SL2O can be more efficient at reducing
training loss; 3) SL2O reaches a region where the loss landscape is flatter, man-
ifested by sparser contour lines around the endpoint (0, 0) in the loss landscape
of SL2O. The flatness of loss landscapes is believed to measure the generaliza-
tion ability of neural networks [55]; therefore, the model optimized by SL2O



14 X. Chen et al.

SL2OMomentum

Fig. 8: The visualization of loss landscapes and training trajectories of ResNet-20
models optimized by Momentum, Momentum†, and SL2O, respectively.

has potentially higher generalization ability and better quality compared to the
Momentum† optimized model after 100 training steps. The second visualization
is what SL2O outputs. We provide the visualization of Momentum† and SL2O
on ResNet-20 in the supplementary files, showing that SL2O learns sophisticated
update rules rather than always optimizing in the largest principal direction.

Explainability. We use a classical tool, symbolic regression [10], to uncover a
mathematical formula from the fitted optimizers. The symbolic regression (SR)
will search within a space of mathematical formulas, and find one that best de-
scribes the numerical rules learned by SL2O. Different from normal regression
techniques, the symbolic regression does not need pre-defined regression struc-
tures (e.g., y = ax + b) but finds reasonable structures automatically from the
space. Such a property makes SR more flexible and explainable. The results are
deferred to the supplementary files due to space constraints.

5 Discussion and Conclusions

In this paper, we challenge the “common experience” that learnable optimiz-
ers can only be meta-trained on extremely shallow networks without massive
computation resources, which severely limits their piratical usage in real-world
scenarios. We remove this primary barrier, scalability, for L2O by first projecting
the network updates in a tiny subspace and then learning optimization rules on
top of it. In this way, we for the first time enable the L2O training on large-scale
models including Vision Transformer and GPT. Meanwhile, our scalable L2O
has demonstrated superior convergence and comparable or even better testing
performance. In future work, we would be interested in examining more about
the transferability of SL2O to better amortize the meta-training cost of SL2O
optimizers. We would be interested in combining L2O optimizers with analytical
optimizers to see if we can further improve the convergence speed and testing
performance. Exploring more efficient reparameterization techniques is also one
of our future goals. As for the social impact, we see our proposals substantially
reduce the computation cost of data-driven L2O training, which offers energy-
and financial-saving solution.



Scalable Learning to Optimize 15

References

1. Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., De Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: Advances in neural information processing systems (NeurIPS) (2016)

2. Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., de Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.)
Advances in Neural Information Processing Systems (NeurIPS). vol. 29. Curran
Associates, Inc. (2016)

3. Bello, I., Zoph, B., Vasudevan, V., Le, Q.V.: Neural optimizer search with re-
inforcement learning. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 70, pp. 459–468. PMLR (06–11 Aug 2017), https://proceedings.
mlr.press/v70/bello17a.html

4. Cao, Y., Chen, T., Wang, Z., Shen, Y.: Learning to optimize in swarms. In: Ad-
vances in Neural Information Processing Systems (NeurIPS). pp. 15018–15028
(2019)

5. Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang, Z., Yin, W.: Learning
to optimize: A primer and a benchmark. arXiv preprint arXiv:2103.12828 (2021)

6. Chen, T., Zhang, W., Zhou, J., Chang, S., Liu, S., Amini, L., Wang, Z.: Training
stronger baselines for learning to optimize. arXiv preprint arXiv:2010.09089 (2020)

7. Chen, W., Yu, Z., Wang, Z., Anandkumar, A.: Automated synthetic-to-real gen-
eralization. In: International Conference on Machine Learning (ICML). pp. 1746–
1756 (2020)

8. Chen, X., Chen, W., Chen, T., Yuan, Y., Gong, C., Chen, K., Wang, Z.: Self-pu: Self
boosted and calibrated positive-unlabeled training. In: International Conference on
Machine Learning (ICML). pp. 1510–1519 (2020)

9. Chen, Y., Hoffman, M.W., Colmenarejo, S.G., Denil, M., Lillicrap, T.P., Botvinick,
M., De Freitas, N.: Learning to learn without gradient descent by gradient descent.
In: International Conference on Machine Learning (ICML). pp. 748–756 (2017)

10. Cranmer, M.: Pysr: Fast & parallelized symbolic regression in python/julia (2020)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Ima-
genet: A large-scale hierarchical image database. In: 2009 IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 248–255 (2009).
https://doi.org/10.1109/CVPR.2009.5206848

12. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research 12(7) (2011)

14. Dušek, O., Howcroft, D.M., Rieser, V.: Semantic noise matters for neural nat-
ural language generation. In: Proc. of the 12th International Conference on
Natural Language Generation. pp. 421–426. Association for Computational Lin-
guistics, Tokyo, Japan (Oct–Nov 2019). https://doi.org/10.18653/v1/W19-8652,
https://www.aclweb.org/anthology/W19-8652

15. Gressmann, F., Eaton-Rosen, Z., Luschi, C.: Improving neural network training in
low dimensional random bases. arXiv preprint arXiv:2011.04720 (2020)

https://proceedings.mlr.press/v70/bello17a.html
https://proceedings.mlr.press/v70/bello17a.html
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.18653/v1/W19-8652
https://www.aclweb.org/anthology/W19-8652


16 X. Chen et al.

16. Gur-Ari, G., Roberts, D.A., Dyer, E.: Gradient descent happens in a tiny subspace.
arXiv preprint arXiv:1812.04754 (2018)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

18. Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: Neural net-
works for perception, pp. 65–93. Elsevier (1992)

19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

20. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Chen, W.: Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685
(2021)

21. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. In: Proceedings of the British Machine Vision
Conference. BMVA Press (2014)

22. Jiang, H., Chen, Z., Shi, Y., Dai, B., Zhao, T.: Learning to defense by learning to
attack. arXiv preprint arXiv:1811.01213 (2018)

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

24. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

25. Li, C., Chen, T., You, H., Wang, Z., Lin, Y.: Halo: Hardware-aware learning to
optimize. In: European Conference on Computer Vision (ECCV). pp. 500–518.
Springer (2020)

26. Li, C., Farkhoor, H., Liu, R., Yosinski, J.: Measuring the intrinsic dimension of
objective landscapes. arXiv preprint arXiv:1804.08838 (2018)

27. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape
of neural nets. Advances in neural information processing systems 31 (2018)

28. Li, K., Malik, J.: Learning to optimize. arXiv preprint arXiv:1606.01885 (2016)

29. Li, T., Tan, L., Tao, Q., Liu, Y., Huang, X.: Low dimensional landscape hypothesis
is true: Dnns can be trained in tiny subspaces (2021)

30. Lv, K., Jiang, S., Li, J.: Learning gradient descent: Better generalization and longer
horizons. In: International Conference on Machine Learning (ICML). pp. 2247–
2255 (2017)

31. Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., Sohl-Dickstein, J.: Un-
derstanding and correcting pathologies in the training of learned optimizers. In:
International Conference on Machine Learning. pp. 4556–4565. PMLR (2019)

32. Oymak, S., Fabian, Z., Li, M., Soltanolkotabi, M.: Generalization guarantees for
neural networks via harnessing the low-rank structure of the jacobian. arXiv
preprint arXiv:1906.05392 (2019)

33. Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H., Yarmohammadi, M., Khudanpur,
S.: Semi-orthogonal low-rank matrix factorization for deep neural networks. In:
Interspeech. pp. 3743–3747 (2018)

34. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural
networks 12(1), 145–151 (1999)

35. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners (2019)

36. Robbins, H.E.: A stochastic approximation method. Annals of Mathematical
Statistics 22, 400–407 (2007)



Scalable Learning to Optimize 17

37. Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhadran, B.: Low-
rank matrix factorization for deep neural network training with high-dimensional
output targets. In: 2013 IEEE international conference on acoustics, speech and
signal processing. pp. 6655–6659. IEEE (2013)

38. Shen, J., Chen, X., Heaton, H., Chen, T., Liu, J., Yin, W., Wang, Z.: Learning a
minimax optimizer: A pilot study. In: International Conference on Learning Rep-
resentations (ICLR) (2021)

39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

40. Sohl-Dickstein, J., Poole, B., Ganguli, S.: Fast large-scale optimization by unifying
stochastic gradient and quasi-newton methods. In: International Conference on
Machine Learning. pp. 604–612. PMLR (2014)

41. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2818–2826 (2016)

42. Tieleman, T., Hinton, G.: Lecture 6.5—RmsProp: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning (2012)

43. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning. pp. 10347–10357. PMLR (2021)

44. Tuddenham, M., Prügel-Bennett, A., Hare, J.: Quasi-newton’s method in the class
gradient defined high-curvature subspace. arXiv preprint arXiv:2012.01938 (2020)

45. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

46. Vicol, P., Metz, L., Sohl-Dickstein, J.: Unbiased gradient estimation in unrolled
computation graphs with persistent evolution strategies. In: International Confer-
ence on Machine Learning. pp. 10553–10563. PMLR (2021)

47. Vicol, P., Metz, L., Sohl-Dickstein, J.: Unbiased gradient estimation in unrolled
computation graphs with persistent evolution strategies. In: Meila, M., Zhang,
T. (eds.) Proceedings of the 38th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 139, pp. 10553–10563. PMLR (18–
24 Jul 2021), https://proceedings.mlr.press/v139/vicol21a.html

48. Wang, Z., Wohlwend, J., Lei, T.: Structured pruning of large language models. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). pp. 6151–6162 (2020)

49. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE 78(10), 1550–1560 (1990)

50. Wichrowska, O., Maheswaranathan, N., Hoffman, M.W., Colmenarejo, S.G., Denil,
M., de Freitas, N., Sohl-Dickstein, J.: Learned optimizers that scale and generalize.
In: International Conference on Machine Learning (ICML) (2017)

51. Xiong, Y., Hsieh, C.J.: Improved adversarial training via learned optimizer (2020)

52. Yin, M., Tucker, G., Zhou, M., Levine, S., Finn, C.: Meta-learning without mem-
orization. arXiv preprint arXiv:1912.03820 (2019)

53. You, Y., Chen, T., Wang, Z., Shen, Y.: L2-gcn: Layer-wise and learned efficient
training of graph convolutional networks. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 2127–2135
(2020)

https://proceedings.mlr.press/v139/vicol21a.html


18 X. Chen et al.

54. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank
and sparse decomposition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 7370–7379 (2017)

55. Zhang, S., Wang, M., Liu, S., Chen, P.Y., Xiong, J.: Why lottery ticket wins? a
theoretical perspective of sample complexity on sparse neural networks. Advances
in Neural Information Processing Systems 34 (2021)

56. Zhang, Y., Chuangsuwanich, E., Glass, J.: Extracting deep neural network bot-
tleneck features using low-rank matrix factorization. In: 2014 IEEE international
conference on acoustics, speech and signal processing (ICASSP). pp. 185–189. IEEE
(2014)

57. Zhao, Y., Li, J., Gong, Y.: Low-rank plus diagonal adaptation for deep neural
networks. In: 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). pp. 5005–5009. IEEE (2016)


	Scalable Learning to Optimize: A Learned Optimizer Can Train Big Models

