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6 Appendix

6.1 Validity of Eq. (14)

In the iterative process (13) that solves the problem (9a), it is formed by the
alternating iteration of two points: r* and x*. In Eq. (13a) (which is always called
the gradient descent step), the step size 5 is always chosen from (0, L%] [14][4][6],

where f(z) = 3 |ly — Am||§ and Ly is the smallest Lipschitz constant of V f(z).

Indeed, Ly = ||A||§, where || A]|, is the spectral norm of A. From Eq. (13a), we
can observe that ' — /=1 = AT (y — Az'~!), which implies

It =3 = BIAT (y — As* 1) (29a)
< B|AT|[; [ly — Azt (29b)
= 1Al [y - Azt (20¢)
<£}wmﬂw—Aflﬁ (294)
= |ly — Az' ]2 (29¢)

As the problem (9a) is convex provided ¥ is a linear operator, the PGD (prox-
imal gradient descent) algorithm (which is the iterative process (13)) is global-

convergence [1][3]. Let & = tlim x'~1, by inequality (29), we have
— 00
Tim [ =o', < fly - Azl (30)

On the other hand, if the penalty coefficient A of problem (9a) is small enough,

the magnitude of the regularization term A ., #
1

flx) = 5lly— Ax||§ This implies the optimal solution Z to the problem (9a)

leads to a relatively small value 3 ||y — A:?Hi In other words, if A is small enough,
by inequality (30), we can validate Eq. (14) as

is smaller than

7= lim v’ =~ lim 2! = z. (31)

t—o00 t—o0

Moreover, the two points ! and z'~! are close if ¢ is sufficiently large, 3 €
(0, L%], and A is sufficiently small. Under the circumstance, instead of choosing
c

= z' as the solution to the problem (9b), the approximation
et (32)

where r? is the iterative point of the proximal gradient descent algorithm that
solves the problem (9a), is adopted. The benefits of using the approximate op-
timal solution instead of the exact optimal solution to problem (9b) will be
described in Sec. 3.3.



QISTA-ImageNet: A Deep Compressive Image Sensing Framework 19

NN architecture

block-wise

e
sensing 55% \ mltlal

y = AXo.

|/ -
. output ‘ @
Y s} P off
4 q
Xo Yy
&
)
\T/
\Ilt (r"
»
ﬂ /ﬁa 4 shnnkage
s U
ﬂ —>|I i/—>|| '/—)ﬁﬂ
Vectorize descent " reshape " reshape
direction R” k ‘
Eq. (27) T

layer t

Fig.5: The flowchart of QISTA-ImageNet. The sensing is the operation y =
A - vec (Xp), where vec(Xp) is a vector representation of an image Xo. The
initial solution is obtained from Eq. (28). The descent direction corresponds to
Eq. (27a). The shrinkage corresponds to the operator 7 (-;~7') in Eq. (27b).

6.2 Flowchart of QISTA-ImageNet

Fig. 5 illustrates the structure of QISTA-ImageNet.

6.3 Training Details

We adopted a similar training setting with SCSNet [31] (and CSNet™ [32]) in that
the measurement matrix A is operated on the image block with size 32x32. Thus,
certain pre-processing and post-processing are required in Step 2 of QISTA-
ImageNet. In Step 2, the input has a size of 64 x 64 x b, where 64 x 64 is the size
of a patch of training data and b is the training batch size. The pre-processing
and post-processing in this step are as follows. To simplify the discussion, here
we suppose the batch size b = 1.

1. Pre-processing: As the operator A is unfolded by A € R™*1924 (the measure-
ment rate is 1g5;) and the input 2'~! has a size of 64 x 64, we first divided
the patch 2'~! into 4 blocks, each of which has a size of 32 x 32. Next,
we vectorized each block into a vector-form R19%4 (here we have four vec-
tors: x1,xa, T3, x4) and obtained the measurement vectors y; = Ax; € R™,
i =1,2,3,4. The input size change during pre-processing can be summarized
as

64 x 64 TVIde 29 a0 u 1024 x4 B mox 4. (33)

2. Post-processing: For the operator B, as y — Az!~! € R™*4 and B is unfolded
by AT € R1024X™ we have B (y — Az'~!) € R1024*4, After being operated
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by B, we reverse the pre-processing that we performed before A, which leads
the results back into the patch form of size 64 x 64. The input size change
during post-processing can be summarized as

mx4 By 1024 x4 — 32x32x4 28 64« 64 (34)

The pre-processing in Eq. (33) and post-processing in Eq. (34) reduce the
memory usage of the measurement matrix A. When an image is sensed by A
with the measurement rate rq, rg is fixed regardless of whether the image block
size is 64 x 64 or 32 x 32, but the required storage usage for A is different. For
example, if the size of a patch is 64 x 64, A has a size of m x 4096, whereas if
the size of a patch is 32 x 32, A has a size of m x 1024.

During training, we adopted the Adam optimizer [21] with a learning rate of
0.0001. The network was trained for 120 epochs with a batch size of 64.

6.4 More Recovery and Visual Results in Sec. 4.3

As having been described in Sec. 4.3, we show more recovery (Table 4, Table
5, and Table 6) and visual results (Figure 6, Figure 7, and Figure 8) here.
The SOTA methods used for comparisons with our method (QISTA-ImageNet)
include ReconNet [22], [1], MS-CSNet [30], DR2-Net [19], {0, 1}-BCSNet [32]!,
{—1,+1}-BCSNet [32]%, CSNet™ [32]2, SCSNet [31], AMP-Net-9-BM [43], and
OPINE-Net* [41].

Table 4: Average PSNR (dB) and SSIM comparisons of different methods with
various measurement rates (MRs) on Set5.

Set5 [PSNR SSIM |PSNR SSIM [PSNR SSIM |PSNR SSIM [PSNR SSIM

MR 40% 20% 10% 5% 1%

Do - 5 5 T [25.08 0734 - 5 . :

(1] - - 13455 0.939|31.31 0.894| - - - -
- - 36.26 0.950(32.82 0.909 - - - -
- - 27.79 0798 - - -
38.24 0.967|32.31 0.898]29.99 0.851|28.57 0.816]23.79 0.636
[ ]2 38.62 0.964|35.24 0.939]|32.20 0.898(29.39 0.840|24.07 0.645
131 40.11  0.974[36.05 0.948|32.59 0.906 | 29.74 0.849 |24.18 0.648
[31] |40.44 0.976|36.15 0.949|32.77 0.908|29.74 0.847(24.21 0.647
[13] |140.95 0.975|36.88 0.950|33.42 0.914|29.82 0.853|23.48 0.652
[41] | 39.56 0.972|35.57 0.947 [33.77 0.924|28.89 0.854|22.95 0.621
Ours|41.63 0.977(37.25 0.953/33.85 0.919(30.38 0.863| 23.64 0.650

6.5 Ablation Study on Dictionary in Sec. 3.4

In this paper, the dictionary ¥ and its “left-inverse” ¥ are adopted from Eqs.
(22) and (23), respectively. Here we conducted a comparison with the dictionary
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Table 5: Average PSNR (dB) and SSIM comparisons of different methods with
various measurement rates (MRs) on Set14.
Set14|PSNR SSIM |[PSNR SSIM [PSNR SSIM [PSNR SSIM |[PSNR SSIM

MR 40% 20% 10% 5% 1%

Do - - - T [2418 0640 - - - -

[1] - - 31.21 0.885|28.54 0.814 - - - -

[30] - - 32.26 0.896|29.29 0.820| - - - -
- - 24.38 0.706 | - - -
[32]' | 34.52 0.938(29.25 0.816|27.36 0.756|26.09 0.694 |22.48 0.553
[32)%|34.81 0.934|31.55 0.880|28.78 0.805|26.67 0.724|22.74 0.562
[32]%]36.16 0.950|32.15 0.894|29.13 0.817|26.93 0.733|22.83 0.563
[31] [36.54 0.953|32.19 0.895]29.22 0.818|26.92 0.732(22.87 0.563
[13] |37.44 0.956|33.17 0.902|29.92 0.831|27.25 0.744|22.79 0.575
[41] | 36.08 0.952|31.74 0.899|29.98 0.841|26.13 0.740 |22.48 0.555
Ours [38.10 0.959(33.54 0.906|30.26 0.835|27.75 0.753|22.83 0.571

Table 6: Average PSNR (dB) and SSIM comparisons of different methods with
various measurement rates (MRs) on BSD100.
BSD100|PSNR SSIM |[PSNR SSIM |PSNR SSIM|PSNR SSIM|PSNR SSIM

MR 40% 20% 10% 5% 1%

[30] - ~ [31.15 0.874]28.61 0.786| - - -
[32] |33.41 0.928]28.65 0.785|27.05 0.722]26.04 0.658|23.49 0.541
[32]> |33.67 0.925|30.50 0.855|28.21 0.770|26.55 0.689|23.70 0.547
[32]> |34.91 0.944|31.05 0.872|28.53 0.783(26.78 0.698(23.76 0.548
[31] |35.21 0.947|31.10 0.873]28.57 0.784|26.77 0.697(23.78 0.548
[43] |35.76 0.949|31.58 0.878(28.87 0.792|26.78 0.702|23.42 0.553
[
O

] [34.03 0.943|30.09 0.873]28.83 0.803|25.47 0.695]|23.03 0.529
urs [36.07 0.951|31.84 0.880(29.07 0.794(27.09 0.708|23.59 0.551

design in ISTA-Net [10], which is expressed as:
V' =CioReLUo () (35)

and ~
V' =(C} oReLUo(j (36)

where all Cgs7~ i =0,1,2,3 are convolutional operators. Table 7 shows that the
pair (¥ and ¥) obtaines better recovery results than the pair (¥’ and ¥’) in all
testing datasets described in Sec. 4.3 under a range of measurement rates.
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Fig. 6: Reconstruction result of (c¢) CSNet™t, (d) SCSNet, (e¢) AMP-Net-9-BM,
(f) OPINE-Net™, and (g) QISTA-ImageNet with 10% measurement rate.
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Fig. 7: Reconstruction result of (¢) CSNet™, (d) SCSNet, (e) AMP-Net-9-BM,
(f) OPINE-Net™, and (g) QISTA-ImageNet with 10% measurement rate.
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Fig. 8: Reconstruction result of (¢) CSNet™, (d) SCSNet, (e) AMP-Net-9-BM,
(f) OPINE-Net™, and (g) QISTA-ImageNet with 10% measurement rate.

Table 7: Ablation study on the dictionary design in terms of recovery perfor-
mance. MR represents the measurement rate.

Dataset|  Setll BSD68 Set14 BSD100
Dictionary| MR PSNR_SSIM [PSNR_SSIM [PSNR_SSIM [PSNR_ SSIM
v& b 19 21.30 0.5717|22.39 0.5347(22.83 0.5712[23.59 0.5506
L&Y | |2L19 0.564622.36 05312)22.75 0.5657| 23.57 0.5472
v w % 26.07 0.7869|25.43 0.6773|27.01 0.7254| 26.52 0.6816
v & 25.74 0.7757|25.16 0.6713|26.64 0.7167|26.26 0.6763
v & 10% 30.01 0.8853|28.06 0.7949(30.26 0.8347|29.07 0.7942
&Y | .]2962 08799)27.86 07896 29.98 0.8294)28.88 0.7892
v w 0501 35.41 0.9529|32.03 0.9067|34.82 0.9257|32.97 0.9050
Y& |3497 094983178 0.9033)34.49 0.9223)32.72 0.9014
v & 20% 36.64 0.9618)33.08 0.9255(35.94 0.9397|34.02 0.9240
&Y | ...]|3617 0959313283 09224)35.56 0.9361)33.76 0.9209
v & 0% 38.84 0.9734|35.15 0.9520(38.10 0.9585|36.07 0.9508
Y&y | ... |3853 0972213402 09503 37.82 0.9569)35.83 0.9490
v & 50% 40.87 0.9820|37.19 0.9690| 40.09 0.9709| 38.09 0.9684
v & 40.59 0.9806|36.94 0.9678|39.73 0.9692| 37.84 0.9668




