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Abstract. In this paper, we study how to reconstruct the original im-
ages from the given sensed samples/measurements by proposing a so-
called deep compressive image sensing framework. This framework, dubbed
QISTA-ImageNet, is built upon a deep neural network to realize our opti-
mization algorithm QISTA (ℓq-ISTA) in solving image recovery problem.
The unique characteristics of QISTA-ImageNet are that we (1) introduce
a generalized proximal operator and present learning-based proximal
gradient descent (PGD) together with an iterative algorithm in recon-
structing images, (2) analyze how QISTA-ImageNet can exhibit better
solutions compared to state-of-the-art methods and interpret clearly the
insight of proposed method, and (3) conduct empirical comparisons with
state-of-the-art methods to demonstrate that QISTA-ImageNet exhibits
the best performance in terms of image reconstruction quality to solve
the ℓq-norm optimization problem.

1 Introduction

1.1 Problem Definition and Motivation

In sparse signal recovery such as compressive sensing (CS) [8][16], we typically
let x0 ∈ Rn denote a k-sparse signal to be sensed, let A ∈ Rm×n represent a
sensing/sampling matrix, and let y ∈ Rm be the measurement vector defined as
y = Ax0, where k < m < n and m

n is the measurement rate (MR), and x0 can
be either a 1D signal or obtained from reshaping a 2D image. At the decoder,
x0 can be recovered based on its sparsity by solving the ℓ1-norm regularization
problem, which is known as “LASSO” [33][14]:

(LASSO) min
x

1

2
∥y −Ax∥22 + λ ∥x∥1 , (1)

where λ > 0 is a regularization parameter.
Nevertheless, considering that LASSO cannot recover the original sparse sig-

nal under low MRs [11], ℓq-norm regularization has been suggested [11][12]. The
(non-convex) ℓq-norm regularization problem has the form

(ℓq) : min
x

1

2
∥y −Ax∥22 + λ ∥x∥qq , (2)
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where 0 < q < 1 and ∥x∥q =
∑n

i=1 (|xi|q)
1/q

is the ℓq-quasi-norm (which is
usually called ℓq-norm).

Fig. 1: Comparison of the reconstruction quality in terms of PSNR (dB) and
GPU running time (in seconds) between QISTA-ImageNet and state-of-the-art
methods. The average PSNR values are reconstruction results from dataset Set11
under measurement rates of 1% (in blue circle) and 10% (in red diamond), respec-
tively. The average GPU running time is the time of reconstructing a 256× 256
gray-scale image. Please note that since current learning-based CS algorithms
have already achieved real-time recovery and the time actually depends on the
used hardwares and programming languages, the running time results provided
here were excerpted from the literautre for reference purpose only. The AMP-Net
denotes the AMP-Net-9-BM version (with best results). We can see that, under
the harsh environment of measurement rate 1%, QISTA-ImageNet surpass all
the methods in reconstruction quality (in dB). Overall, all these methods exhibit
similar tendencies under different datasets and measurement rates (see Sec. 4).

It is noted that the discussions regarding an (ℓq)-problem or effective algo-
rithms for finding its optimal solution are very rare in the literature. In [23],
we reformulated the non-convex ℓq-norm minimization problem into a 2-step
problem with q ∈ (0, 1) that is composed of one convex and one non-convex
subproblems, and proposed an iterative algorithm, called QISTA (ℓq-ISTA), to
solve 1D signal recovery from the given incomplete samples.

In this paper, we further study how to reconstruct the original images from
the given sensed data (samples/measurements) by proposing a so-called deep
compressive image sensing framework. Our framework is built upon and ex-
tended from QISTA that aims at 1D signal recovery [23]. Although QISTA is not



QISTA-ImageNet: A Deep Compressive Image Sensing Framework 3

designed for image recovery that is often treated as an (ℓ1)-problem, we propose
a new 2D image recovery algorithm, which is formulated as an (ℓq)-problem and
unfolded into a new network architecture, dubbed QISTA-ImageNet, for natural
image reconstruction. For image recovery from incomplete samples, Fig. 1 shows
that QISTA-ImageNet, compared with the state-of-the-art methods, achieves
the relatively better results in terms of reconstruction quality.

1.2 Related Works

To learn signal reconstruction, the network architecture is generated by a tech-
nique called algorithm unfolding [27], which unfolds specific parameters of an
iterative algorithm to be learning parameters. The network architectures for
2D image reconstruction can be classified into two categories: heuristic design
and algorithm unfolding. The main difference between them is that algorithm
unfolding connects the network architecture with the traditional iterative algo-
rihm, which implies the trained network is interpretable [9][17].

For the first category, Mousavi et al. [28] first proposed to apply a stacked
denoising auto-encoder (SDA) to learn the representation and to reconstruct
natural images from their CS measurements. Kulkarni et al. [22] further de-
veloped a CNN-based method, dubbed ReconNet, to reconstruct the natural
images. Similar to [28][22], all network architectures in MS-CSNet [30], DR2-
Net [19], MSRNet [24], CSNet+ [32], and SCSNet [31] are heuristic designs for
solving CS. For the second category, Yang et al. designed a network architec-
ture called ADMM-Net [36], where the structure of each layer is obtained by
unfolding the specific parameters in the traditional iterative algorithm, ADMM
[35][7]. Zhang et al. designed ISTA-Net and ISTA-Net+ [40] by unfolding the
traditional iterative algorithm ISTA [14][4]. The authors further proposed two
extensions, called COAST [38] and ISTA-Net++ [37]. Different from ISTA-Net+,
COAST further designed a controllable proximal mapping module and a plug-
and-play deblocking strategy to dynamically modulate the network features and
effectively eliminate the blocking artifacts, respectively. Zhang et al. proposed a
so-called OPINE-Net [41], which adopts the framework of ISTA-Net+ [40] with
an additional learning parameter in that it is a convolutional operator unfolded
by the sampling matrix A. Zhang et al. proposed AMP-Net [43] inspired by two
iterative algorithms, DIT and AMP [26], with an additional noise estimation.
We also note that there is a branch of studies in (image) inverse problem that
merges the iterative algorithm and DNN, which is the so-called plug-and-play
(PnP) framework, including PnP-ADMM [10][29] and PnP proximal gradient
method (PnP-PGM) [34]. However, the PnP framework is different from the
framework of unfolding a traditional iterative algorithm in a DNN model in that
the latter requires the traditional iterative algorithm to be presented explicitly,
whereas the former does not seek to define an explicit regularization term be-
cause solving the proximal operator associated with the regularization term is
impractical. Instead, both PnP-ADMM and PnP-PGM replace the proximal op-
erator with a trained denoiser and iterate the algorithm (ADMM or PGM) until
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it converges. Table 1 shows the characteristics of state-of-the-art learning-based
image recovery algorithms.

Table 1: Comparisons with state-of-the-art methods. FC and Conv. represent
fully connected and convolutional oeprators, respectively.

Methods
Interpret- Sampling Matrix Initialization Deblocking Regular-

able Training Strategy ization

ReconNet [22] - ✓ FC ✓ -
DR2-Net [19] - ✓ Least square - -
CSNet+ [32] - ✓ Conv. ✓ -
SCSNet [31] - ✓ Conv. ✓ -
AMP-Net [43] ✓ ✓ FC ✓ -

ADMM-Net [36] ✓ - follow ADMM - Data-driven
ISTA-Net+ [40] ✓ - Least square - Convex
OPINE-Net [41] ✓ ✓ Conv. - Convex
OPINE-Net+ [41] ✓ ✓ Conv. ✓ Convex

COAST [38] ✓ - naive solution ✓ Data-driven

QISTA-ImageNet ✓ ✓ FC ✓ Non-convex

1.3 Contributions

The contributions in QISTA-ImageNet include:

1. Different from its 1D counterpart [23], QISTA-ImageNet is proposed to get
approximated instead of exact solution (Sec. 3). This enables us to inter-
pret clearly the insight of the proposed iterative method (Eq. (15)) in each
iterative step.

2. By introducing a generalized proximal operator, the learning-based proximal
gradient descent (PGD) together with an iterative algorithm in reconstruct-
ing images are proposed (Sec. 3.1 and Sec. 3.2).

3. Benefited from considering the ℓq-norm regularization problem in Eq. (8),
we analyze how QISTA-ImageNet can exhibit better performances compared
to state-of-the-art methods (Sec. 3.3).

4. In reconstructing the natural images, QISTA-ImageNet is empirically verified
to be better than or comparable with state-of-the-art methods (Sec. 4).

2 Preliminary: (ℓq)-ISTA for 1D Sparse Signal
Reconstruction

In sparse signal reconstruction, to achieve the same reconstruction performance,
the requirement of the measurement rate of (ℓq)-based problem is lesser than
that of (ℓ1)-based problem. Unfortunately, because (ℓq)-based problem is non-
convex, the algorithms that can achieve an acceptable solution are very rare in
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the literature. In [23], we proposed a new algorithm to solve the (ℓq)-problem
(2). We first approximated the (ℓq)-problem into

min
x

F (x) =
1

2
∥y −Ax∥22 + λ

n∑
i=1

|xi|
(|xi|+ εi)

1−q , (3)

where εi > 0 for all i ∈ [1 : n], then relaxed problem (3) (associated with the
dimension of feasible domain) into

min
x,c

H(x, c) =
1

2
∥y −Ax∥22 + λ

n∑
i=1

|xi|
(|ci|+ εi)

1−q , (4)

and reformulated problem (4) as a two-step problem:

min
x

H(x, c̄), (5a)

min
c

|H (x̄, c)−H (x̄, x̄) , | , (5b)

where x̄ and c̄ are optimal solutions to problems (5a) and (5b), respectively.
One can see that problem (4) is equivalent to problem (3) if c = x, and both
the two problems (4) and (5) have the same optimal solution. On the one hand,
since the problem (5a) is in the weighted-LASSO form (each component |xi| in
the regularization term ∥x∥1 has weight 1

(|ci|+εi)
1−q ), ISTA (iterative shrinkage-

thresholding algorithm) was adopted to approach the optimal solution. On the
other hand, the problem (5b) has a trivial optimal solution c∗ = x̄, even if the
problem is non-convex. Thus, the (ℓq)-ISTA algorithm is derived by adopting
one iterative step of ISTA (Eqs. (6b) and (6c)) and alternatively iterating with
the optimal solution to problem (5b) (Eq. (6a)) as follows:

ct = xt−1, (6a)

rt = xt−1 + βAT
(
y −Axt−1

)
, (6b)

xt
i = η

(
rti ;

βλ

(|cti|+ εi)
1−q

)
, ∀i, (6c)

where η (·; ·) is a component-wise soft-thresholding operator, defined as:

η (ri;wi) = sign (ri) ·max {0, |ri| − wi} . (7)

In comparison with the traditional ℓq-norm minimization, the (ℓq)-ISTA al-
gorithm is also found to be relatively stable for q’s.

3 QISTA-ImageNet: Learning-Based Method for
Reconstructing Natural Images

We describe a new method, QISTA-ImageNet, to reconstruct natural images.
The image is, in general, a non-sparse signal in the space domain and exhibits a
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sparse representation in a transform domain (Fourier, STFT, wavelet, etc.). Let
x0 ∈ Rn be the vector representation of image X0 ∈ Rn1×n2 , where n = n1 · n2.
Different from its 1D counterpart in problem (1), the traditional optimization
method typically reconstructs the original image x0 by solving the ℓ1-norm

regularization problem in LASSO form as: minx
1

2
∥y −Ax∥22 + λ ∥Ψx∥1, where

A ∈ Rm×n is the sensing matrix and Ψ ∈ Rn×n is the dictionary that allows x0

to be sparsely represented.
In our method, we consider the ℓq-norm regularization problem in the form

min
x

1

2
∥y −Ax∥22 + λ ∥Ψx∥qq , (8)

where 0 < q < 1. Similar to the process in deriving QISTA in Sec. 2, we can
reformulate the problem (8) as a two-step problem:

min
x

H(x, c̄), (9a)

min
c

|H (x̄, c)−H (x̄, Ψx̄)| , (9b)

where H(x, c) = 1
2 ∥y −Ax∥22+λ

∑n
i=1

|(Ψx)i|
(|ci|+εi)

1−q , εi > 0 for all i ∈ [1 : n], and x̄

and c̄ are the optimal solutions to the x-subproblem (9a) and c-subproblem (9b),
respectively. In the following, we describe how to solve these two sub-problems
in (9) for natural image recovery.

To solve the optimal solution pair (x̄, c̄) to problem (9), first we can see that
the optimal value of problem (9b) is obviously zero with the optimal solution
c̄ = Ψx̄. Second, if Ψ(·) is a linear operator, then problem (9a) is convex, and
the optimal solution can be approached via the PGD algorithm [3]. Unfortu-
nately, the iterative process of PGD algorithm cannot be represented explicitly
due to the composite function |Ψ(x)|. This implies the PGD algorithm cannot
be implemented directly. Nevertheless, together with the proximal operator for
composition with an affine mapping (Theorem 6.15 in [3]), we derive the explicit
formula approaching the optimal solution to problem (9a) in Sec. 3.1.

3.1 Proximal Operator for Composite Function

In this subsection, we aim to design an explicit iterative process that solves
problem (9a). In problem (9a), we can observe that the regularization term of
the objective function is in the form of the composite function ∥Ψ(x)∥1,w =(
∥·∥1,w ◦ Ψ

)
(x), where ∥x∥1,w =

∑n
i=1 wi |xi| and wi =

λ
(|c̄i|+εi)

1−q . Therefore,

the PGD algorithm [3] for solving problem (9a) has the form

rt = xt−1 + βAT
(
y −Axt−1

)
, (10a)

xt = prox∥Ψ(·)∥1,w

(
rt
)
. (10b)

Remark that the proximal operator in Eq. (10b) is the soft-thresholding opera-
tor (Eq. (7)) provided the dictionary Ψ is an identity function [3][4]. However,
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since there is no useful calculus rule for computing the proximal operator of a
composite function ∥Ψ (·)∥1,w for a general Ψ , Eq. (10b) cannot be written in an
explicit function. To address this issue, we introduce the generalized proximal
operator using the following theorem.

Theorem 31 [3] Let g : Rn → (−∞,∞] be a proper closed convex function, and
let f(x) = g(A(x)+b), where b ∈ Rn and A : Rn̂ → Rn is a linear transformation
satisfying A ◦ AT = γ · In for some constant γ > 0. Then, for any x ∈ Rn̂,

proxf (x) = x+
1

γ
AT

(
proxγg(A(x) + b)− (A(x) + b)

)
. (11)

As described in Theorem 31, we can observe that if the dictionary Ψ is
linear and satisfies a certain orthogonality condition, the solution to the proximal
operator of ∥Ψ (·)∥1,w in Eq. (10b) can be found.

Hence, we propose to replace g(x) and A(x) in Theorem 31 by ∥·∥1,w and
Ψ(x), respectively, to get

prox∥Ψ(·)∥1,w

(
rt
)
= rt +

1

γc̄
ΨT
(
η
(
Ψ
(
rt
)
; γc̄
)
− Ψ(rt)

)
, (12)

where (γc̄)i =
λ

(|c̄i|+εi)
1−q for all i ∈ [1 : n] and 1

γc̄
is the component-wise recip-

rocal of γc̄. Thus, Eq. (10) can be written as

rt = xt−1 + βAT
(
y −Axt−1

)
(13a)

xt = rt +
1

γc̄
ΨT
(
η
(
Ψ
(
rt
)
; γc̄
)
− Ψ(rt)

)
. (13b)

3.2 The Iterative Algorithm

To derive an iterative algorithm to solve problem (9), we know that the optimal
solution to problem (9b) is c̄ = Ψ (x̄) and the optimal solution to problem (9a)
can be approached via Eq. (13). Similar to 1D signal recovery described in Eq.
(6) in Sec. 2, we can design an iterative algorithm solving 2D image recovery
problem (9) by replacing Eq. (6a) and Eq. (6c) with ct = Ψ

(
xt−1

)
and Eq. (13b),

respectively.

Moreover, since the dictionary Ψ plays the key role of sparsely representing
a natural image, together with the fact that

x̄ ≈ r̄ (14)

provided Ψ is a linear operator satisfying a certain orthogonality condition, the
optimal solution to problem (9b) is modified as c̄ ≈ Ψ (r̄). Remark that the
validity of Eq. (14) is further illustrated in Appendix 6.1. Finally, the iterative
algorithm is designed by iterating ct = Ψ (rt) with Eq. (13) alternatively. More
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specifically, the iterative process at t-th iteration has the form

rt = xt−1 + βAT
(
y −Axt−1

)
, (15a)

ct = Ψ
(
rt
)
, (15b)

xt = rt +
1

γct
ΨT
(
η
(
Ψ
(
rt
)
; γct

)
− Ψ(rt)

)
, (15c)

which is equivalent to

rt = xt−1 + βAT
(
y −Axt−1

)
, (16a)

xt = rt +
1

γ̂
ΨT
(
η
(
Ψ
(
rt
)
; γ̂
)
− Ψ(rt)

)
, (16b)

where γ̂i =
λ

(|(Ψ(rt))i|+εi)
1−q for all i ∈ [1 : n].

3.3 Why Our Method Can Get Better Reconstructions?

We analyze the reason why the solution obtained by the iterative process (16)
is closer to the original signal than ℓ1-based method. The algorithm (16) solving
the problem (9) consists of two steps, the gradient descent step (Eq. (16a)) and
the truncation (shrinkage) step (Eq. (16b)).

The gradient descent step updates the point by moving the current iterative
point xt−1 along the direction AT

(
y −Axt−1

)
, which is perpendicular to the

null space N (A) of A, with the step size β, to the updated point rt, as shown
in Fig. 2 (Left). Indeed, Eq. (16a) can be written as

Ψ
(
rt
)
= Ψ

(
xt−1

)
+ βΨ

(
AT
(
y −Axt−1

))
, (17)

in the dictionary domain (i.e.,, the space {Ψ (x) ;x ∈ Rn}) provided Ψ is a
linear operator. That is, in the dictionary domain, the gradient descent step
makes updates by moving the current iterative point Ψ

(
xt−1

)
along the direc-

tion Ψ
[
AT
(
y −Axt−1

)]
, which is perpendicular to {Ψ(x) : x ∈ N (A)}, with the

step size β to the updated point Ψ (rt), as shown in Fig. 2 (Right).
In the truncation step, Eq. (16b) is indeed the proximal operator of ∥Ψ (·)∥1,w

in Eq. (12) with c̄ = Ψ (rt). As Theorem 31 indicates, Ψ is a linear operator
satisfying Ψ ◦ ΨT = γc̄ · In. Thus, Eq. (16b) can be written as

Ψ
(
xt
)
= Ψ

(
rt
)
+

1

γΨ(rt)
Ψ
(
ΨT
(
η
(
Ψ
(
rt
)
; γΨ(rt)

)
− Ψ(rt)

))
(18a)

= Ψ
(
rt
)
+

γc̄
γΨ(rt)

(
η
(
Ψ
(
rt
)
; γΨ(rt)

)
− Ψ(rt)

)
(18b)

= Ψ
(
rt
)
+
(
η
(
Ψ
(
rt
)
; γΨ(rt)

)
− Ψ(rt)

)
(18c)

= η
(
Ψ
(
rt
)
; γΨ(rt)

)
. (18d)

Eq. (18) is indeed the component-wise soft-thresholding operator operating at
the point Ψ (rt) with the shrinkage parameter γΨ(rt).
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Fig. 2: Left: The gradient descent step (Eq. (16a)) in the space Rn. Right: The
gradient descent step (Eq. (17)) in the space {Ψ(x) : x ∈ Rn}.

Moreover, in Eq. (18), the parameter
(
γΨ(rt)

)
i
, is determined by |(Ψ (rt))i|.

We can observe that if |(Ψ (rt))i| is non-zero or larger than the other components∣∣∣(Ψ (rt))j

∣∣∣ (which indicates that the index i should in the support set of Ψ (rt)),

then
(
γΨ(rt)

)
i
is relatively small and the operator η

(
(Ψ (rt))i ;

(
γΨ(rt)

)
i

)
will

preserve the value of (Ψ (rt))i. Conversely, if |(Ψ (rt))i| is zero or is relatively

small (which indicates that the ith component of Ψ (rt) should be zero), then(
γΨ(rt)

)
i
is relatively large and the operator η

(
(Ψ (rt))i ;

(
γΨ(rt)

)
i

)
will decrease

the value of |(Ψ (rt))i|. As shown in Fig. 3, Eq. (18) updates the point Ψ (rt) by
moving it, along the direction perpendicular to the curve {x : ∥x∥q = ∥Ψ (rt)∥q}
(which is a contour line

{
x : ∥x∥q = s

}
for some constant s) approximately, to

approach the point Ψ (xt).

Fig. 3: The truncation step (Eq. (18)) aims at moving the point Ψ (rt) along the

direction perpendicular to the curve
{
x : ∥x∥q = ∥Ψ (rt)∥q

}
approximately to

approach the point Ψ (xt).

The above exploration reveals the insight into the iterative process (16) that
gradually approaches the optimal solution to problem (8), as shown in Fig.
4. It should be noted that the parameter γΨ(rt) adapts to the value of Ψ (rt)
in a component-wise manner, instead of applying the same threshold to every
component, as in ℓ1-based methods such as ISTA [3][4], ISTA-Net [40], and
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OPINE-Net [41]. This may explain why the solution obtained by the iterative
process (16) is closer to the original signal than ℓ1-based methods.

Fig. 4: The iterative process (16). The water-colored region is the set
{Ψ(x) : ∥y −Ax∥2 < δ}, where δ is a constant related to λ. The red curve is

the contour line
{
x : ∥x∥q = s

}
for a constant s. x0 is the ground-truth and x̄

is the optimal solution to the problem (8).

3.4 Design of Dictionary in QISTA-ImageNet Is Non-trivial

Notably, Ψ in both problem (8) and iterative algorithm (16) plays the role of a
dictionary that provides an image a sparse representation. Ψ is generally treated
as an over-complete dictionary (i.e., Ψ ∈ RN×n with N > n) to achieve better
representation. However, its design is not trivial, since, as N > n, the assumption
Ψ ◦ΨT = γ̂IN in Theorem 31 is not satisfied at all. Thus, it is necessary to choose
a Ψ † satisfying Ψ ◦Ψ † ≈ γ̂IN to replace ΨT . We can observe that the left-inverse

of Ψ always exists, that is, Ψ̃ =
(
ΨT ◦ Ψ

)−1 ◦ ΨT satisfies Ψ̃ ◦ Ψ = In, because
N > n. Then, we have

Ψ † = In ◦ Ψ † =
(
Ψ̃ ◦ Ψ

)
◦ Ψ † = Ψ̃ ◦

(
Ψ ◦ Ψ †) ≈ Ψ̃ ◦ γ̂IN = γ̂Ψ̃ . (19)

Therefore, we relax the assumption in Theorem 31 as 1
γ̂Ψ

T = γ̄Ψ̃ , where γ̄ is a

constant to ensure that the solution to the proximal operator in Eq. (10b) can
be approximated as

xt = rt + γ̄Ψ̃
(
η(Ψ(rt); γ̂)− Ψ(rt)

)
. (20)

By replacing Eq. (16b) with Eq. (20), the iterative process becomes

rt = xt−1 + βAT
(
y −Axt−1

)
, (21a)

xt = rt + γ̄Ψ̃
(
η
(
Ψ
(
rt
)
; γ̂
)
− Ψ(rt)

)
. (21b)
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After imposing the above constraint of Ψ , inspired by the representation
power of CNN [15] and the design of NN architecture in [40], the dictionary Ψ
is adopted in the form

Ψ = C3 ◦ ReLU ◦ C2 ◦ ReLU ◦ C1 ◦ ReLU ◦ C0 (22)

where Ci’s, i = 0, 1, 2, 3 are convolutional operators and ReLU is a rectified linear
unit.

It should be noted that in order to exhibit a “left-inverse” structure of Ψ , in
our design the Ψ̃ in Eq. (21b) is adopted in the same structure as that in Eq.
(22) as

Ψ̃ = C7 ◦ ReLU ◦ C6 ◦ ReLU ◦ C5 ◦ ReLU ◦ C4 (23)

where Cj ’s, j = 4, 5, 6, 7 are convolutional operators. Based on the aforemen-

tioned relaxation that 1
γc
ΨT = γ̄Ψ̃ , we will present a suitable loss function in

Sec. 3.5 to ensure the left-inverse relation between Ψ and Ψ̃ . In Appendix 6.5,
we provide an ablation study on the dictionary design.

3.5 Loss Function of QISTA-ImageNet

The MSE loss

LMSE =
1

n

∥∥x0 − xT
∥∥2
2
, (24)

where x0 represents the ground-truth and xT is the output of the network ar-
chitecture, is typically considered in learning-based models. However, because
we have relaxed 1

γc
ΨT ≈ γ̄Ψ̃ , we have to impose a constraint on the left-inverse

relation between Ψ and Ψ̃ at each layer t as

Laux =

T∑
t=1

∥∥∥Ψ̃ t
(
Ψ t
(
rt
))

− rt
∥∥∥2
2
. (25)

Combining Eqs. (24) and (25), the loss function is designed as:

L = LMSE + δLaux, δ > 0 is a constant. (26)

3.6 The Network Architecture

We construct a network architecture based on the iterative algorithm (21). Let

T be the number of layers. At tth layer, t = 1, 2, · · · , T , with the input xt−1, the
output xt is obtained by (QISTA-ImageNet):

rt = xt−1 + βtB
(
y −Axt−1

)
(27a)

xt = rt + αtΨ̃ t
(
η(Ψ t(rt); γt)− Ψ t(rt)

)
, (27b)

where γt
i =

λt

(|(Ψt(rt))i|+εi)
1−q for all i ∈ [1 : n], and βt, B, A, αt, Ψ̃ t, Ψ t and λt are

learning parameters, which are unfolded by β, AT , A, γ̄, Ψ̃ , Ψ , and λ, respectively.
In Appendix 6.2, Fig. 5 illustrates the structure of QISTA-ImageNet.
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More specifically, both A and B are fully connected operators, with the shape
m×n and n×m, respectively. Moreover, Ψ t and Ψ̃ t follow the structures in Eqs.
(22) and (23), respectively. That is, the training parameters represented by Ψ t

and Ψ̃ t are Ct
i , i = 0, 1, · · · , 7, where Ct

i is a convolutional operator. In summary,

the learning parameters of QISTA-ImageNet are {βt,B,A, αt, λt, and Ct
i}

T
t=1.

Note that both the two learning parameters A and B, which play the roles of A
and AT , respectively, in the iterative algorithm are commonly used at each layer,
whereas βt, αt, λt, and Ct

i are learning parameters dependent on each layer.
Given a measurement vector y and a trained measurement matrix A, a 2D

image can be reconstructed via QISTA-ImageNet. The initial input to QISTA-
ImageNet is commonly determined as

x0 = By, (28)

which plays the role of a naive initialization AT y in the iterative algorithm. In
QISTA-ImageNet, instead of adopting AT y, the initial input is generated with
the fully connected operator B, which is independent of A.

4 Experiments

We examine the performance of QISTA-ImageNet⋆ in reconstructing the natural
images and conduct comparison with state-of-the-art methods.

4.1 Parameters and Training Setting

The constant parameter in QISTA-ImageNet was εi = 0.1 for i ∈ [1 : n]. The
training parameters of QISTA-ImageNet were initialized as βt = 0.1, λt = 10−5,
and αt = 1, and {B,A, and Ct

i , i = 0, 1, · · · , 7} were initialized using Xavier
initializer [18]. All the convolutional operators Ct

i were set to 3 × 3, and the
numbers of input features and output features of C0 ∼ C7 were 32 except the
numbers of input of C0 and output of C7 were set to 1. On the other hand, because
0 < q < 1 and natural images are usually not sparse, we adopted q = 0.5 here
Training details will be described in Appendix 6.3.

4.2 Datasets for Training and Testing

In the experiments, we follow CSNet+ [32] and SCSNet [31] to use the 200 train-
ing images and 200 test images from the BSD500 database [2] as the training
data. In addition, the datasets, including Set11 (11 images) [22], BSD68 (68 im-
ages) [25], Set5 (5 images) [5], Set14 (14 images) [39], and BSD100 (100 images)
[25], were used for testing.

The training data were generated by cropping the gray-scale images into
patches of size 64 × 64 with a stride of 24, and collected as a set of 91, 200

⋆ Our code can be downloaded from https://github.com/anonymous-deep-
learning/QISTA-ImageNet/
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patches. Moreover, the training data were further generated by augmentation
via flipping, rotation 90◦, rotation 90◦ plus flipping, rotation 180◦, rotation 180◦

plus flipping, rotation 270◦, and rotation 270◦ plus flipping on each patch to
yield a total of 729, 600 patches.

4.3 Performance Comparison of Natural Image Reconstruction

The experiments in this subsection were conducted on a PC with Intel Core
i7-7700K CPU, a NVIDIA GeForce GTX 1080 Ti GPU, and Python with Ten-
sorFlow version 1.14.0. We compared QISTA-ImageNet with state-of-the-art
learning-based methods, including SDA [28], ReconNet [22], ISTA-Net+ [40],
MS-CSNet [30], DR2-Net [19], {0, 1}-BCSNet [32], {−1,+1}-BCSNet [32], CSNet+

[32], SCSNet [31], MSRNet [24], OPINE-Net [41], AMP-Net [43], ISTA-Net++

[37], COAST [38], and other methods [20][1][42]. The comparison results are
shown in Table 2, Table 3, Table 4, Table 5, and Table 6, which correspond to
datasets Set11, BSD68, Set5, Set14, and BSD100, respectively.

Note that the reconstruction results in Tables 2∼3 were measured in terms
of PSNR, whereas the results in Tables 4∼6 of Appendix 6.4 were measured in
terms of both the PSNR and SSIM [31]. This is because some prior works did
not provide results for some datasets. Therefore, the “dash” mark in the tables
implies that the results were not provided. In each table, the best reconstruc-
tion results are marked in bold red and the second ones are marked in bold
blue. The reconstruction results in Table 2 and Table 3 indicate that QISTA-
ImageNet outperforms the other methods in terms of PSNR in reconstructing
Set11 and BSD68, respectively. Moreover, we can observe from Table 4, Table 5,
and Table 6 that the reconstruction performance of QISTA-ImageNet in terms
of PSNR outperforms the other methods in all measurement rates except for
1%. We conjecture that this is because SCSNet adopts sub-images with the size
of 96× 96 pixels as the input to the NN architecture, and this leads SCSNet to
produce fewer blocking artifact effects. Overall, the reconstruction performance
of QISTA-ImageNet in terms of SSIM is superior among all the results obtained.

In Appendix 6.4, Fig. 6, Fig. 7, and Fig. 8 show the visual comparison be-
tween the ground-truth and reconstruction results of CSNet+ [32], SCSNet [31],
AMP-Net-9-BM [43], OPINE-Net [41], and QISTA-ImageNet. Some methods
were not selected for visual comparison as either the authors did not provide the
implementation codes or [31] already offered those comparison results. As shown
in Fig. 6, QISTA-ImageNet generates a relatively less blurring effect at the tex-
ture in front of the eyes of Parrot. Fig. 7 demonstrates that QISTA-ImageNet
is able to reconstruct the striped texture better than other methods. Finally,
Fig. 8 shows that the words “multimedia” and “presentations” are relatively
recognizable in the reconstruction from QISTA-ImageNet.

5 Conclusion

We studied how to reconstruct the original images from the given sensed sam-
ples/measurements by proposing a so-called deep image sensing framework,
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dubbed QISTA-ImageNet. Its effectivenss has been verified through both an-
alytic and empirical results.
Acknowledgement. This work was supported by Ministry of Science and Tech-
nology, Taiwan, ROC, under grants MOST 110-2221-E-001–020-MY2 and 109-
2221-E-001–023.

Table 2: Average PSNR (dB) comparisons of different methods with various
measurement rates on Set11.

Measurement rate 50% 40% 30% 25% 10% 4% 1%

SDA [28] 28.95 27.79 26.63 25.34 22.65 20.12 17.29
ReconNet [22] 31.50 30.58 28.74 25.60 24.28 20.63 17.27

[42] 36.23 34.06 31.18 30.07 24.02 17.56 7.70
LISTA-CPSS [13] 34.60 32.87 30.54 - - - -
ISTA-Net+ [40] 38.07 36.06 33.82 32.57 26.64 21.31 17.34
DR2-Net [19] - - - 29.06 24.71 21.29 17.80

{0, 1}-BCSNet [32] 35.05 34.61 32.57 - 26.39 - 20.62
{−1,+1}-BCSNet [32] 35.57 34.94 33.42 - 28.03 - 20.93

CSNet+ [32] 38.52 36.48 34.30 - 28.37 - 21.03
SCSNet [31] 39.01 36.92 34.62 - 28.48 - 21.04
MSRNet [24] - - - 33.36 28.07 24.23 20.08

[20] - - - 32.81 26.97 - 18.83
AMP-Net-9-BM [43] 40.34 38.28 36.03 34.63 29.40 25.26 20.20
OPINE-Net+ [41] 40.19 38.11 35.96 34.81 29.81 25.52 20.02
ISTA-Net++ [37] 38.73 36.94 34.86 - 28.34 - -

COAST [38] 38.94 37.13 35.04 - 28.69 - -
QISTA-ImageNet 40.87 38.84 36.64 35.41 30.01 26.07 21.34

Table 3: Average PSNR (dB) comparisons of different methods with various
measurement rates on BSD68.

Measurement rate 50% 40% 30% 25% 10% 4% 1%

SDA [28] 28.35 27.41 26.38 - 23.12 21.32 -
ReconNet [22] 29.86 29.08 27.53 - 24.15 21.66 -
ISTA-Net+ [40] 34.01 32.21 30.34 - 25.33 22.17 -

CSNet [32] 34.89 32.53 31.45 - 27.10 - 22.34
SCSNet [31] 35.77 33.86 31.87 - 27.28 - 22.37

AMP-Net-9-BM [43] 36.82 34.86 32.84 31.74 27.86 25.26 22.28
OPINE-Net+ [41] 36.32 34.33 32.46 31.50 27.81 25.16 21.88
ISTA-Net++ [37] 34.85 33.00 31.10 - 26.25 - -

COAST [38] 34.74 32.93 31.06 - 26.28 - -
QISTA-ImageNet 37.19 35.15 33.08 32.03 28.06 25.43 22.39
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