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Abstract. Class-Incremental Learning (CIL) struggles with catastrophic
forgetting when learning new knowledge, and Data-Free CIL (DFCIL) is
even more challenging without access to the training data of previously
learned classes. Though recent DFCIL works introduce techniques such
as model inversion to synthesize data for previous classes, they fail to
overcome forgetting due to the severe domain gap between the synthetic
and real data. To address this issue, this paper proposes relation-guided
representation learning (RRL) for DFCIL, dubbed R-DFCIL. In RRL, we
introduce relational knowledge distillation to flexibly transfer the struc-
tural relation of new data from the old model to the current model. Our
RRL-boosted DFCIL can guide the current model to learn representa-
tions of new classes better compatible with representations of previous
classes, which greatly reduces forgetting while improving plasticity. To
avoid the mutual interference between representation and classifier learn-
ing, we employ local rather than global classification loss during RRL.
After RRL, the classification head is refined with global class-balanced
classification loss to address the data imbalance issue as well as learn
the decision boundaries between new and previous classes. Extensive ex-
periments on CIFAR100, Tiny-ImageNet200, and ImageNet100 demon-
strate that our R-DFCIL significantly surpasses previous approaches and
achieves a new state-of-the-art performance for DFCIL. Code is available
at https://github.com/jianzhangcs/R-DFCIL
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1 Introduction

Class-Incremental Learning (CIL) is a learning paradigm in which a model
(referred to as a solver model) continually learns a sequence of classification
tasks. The model suffers from catastrophic forgetting [5,21] since its access to
data of previous tasks is restricted when learning a new task. Existing CIL
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works [20,8,4,2,15] try to overcome the challenge mainly through saving a small
proportion of previous training data in memory. Despite their success of mitigat-
ing catastrophic forgetting, these approaches may bring issues such as violation
of data legality and explosion of storage space. Instead, some works [24,3,9]
simultaneously train the solver model and a data generator, which is used to
generate data for previous classes at a new task. This usually performs poorly
and still causes data privacy concerns because the generator may remember sen-
sitive information in the real data. To address these concerns, researchers start
to consider Data-Free CIL (DFCIL) [14,31,25], in which the model incrementally
incorporates new information without storing data or generator of previous tasks.

Early DFCIL works, e.g ., LwF [14], are often ineffective in overcoming catas-
trophic forgetting without data of previous tasks [27]. More recently, Yin et
al . introduce model inversion [31] to DFCIL to synthesize data for previous
tasks when learning a new task, the forgetting of previous classes can be miti-
gated by performing knowledge distillation on these synthetic data. However, the
synthetic data have a severe domain gap with the real data, misleading the deci-
sion boundaries between new and previous classes. These approaches may come
through the first few tasks (i.e., short-term CIL), but they lose the stability-
plasticity balance when learning many tasks (i.e., long-term CIL). It is still a
great challenge to train a model with both good stability (i.e., not forgetting
previous knowledge) and plasticity (i.e., learning new knowledge) in DFCIL.

After a thorough study on DFCIL with synthetic data of previous classes,
we identify bottlenecks in prior approaches as follows: 1) with the existence of
domain gap between synthetic and real data, the global classification loss (i.e.,
the cross-entropy between the model’s prediction among all seen classes and the
ground truth) leads classifiers to separate new and previous classes by domain
features rather than semantic features, which also causes the model to learn more
domain features of synthetic data than semantic features of previous classes;
2) to overcome forgetting, prior works perform the same knowledge distillation
method on the synthetic data and the data of new classes, ignoring the difference
between them, which actually hurts the model’s plasticity and is not helpful in
alleviating the conflict between improving plasticity and maintaining stability.
Please refer to the supplementary material for more details.

To address the above bottlenecks, we propose 1) relation-guided representa-
tion learning (RRL) with hard knowledge distillation (HKD) for synthetic old
data together with the relational knowledge distillation (RKD) for data of new
task; 2) local classification loss (i.e., the cross-entropy between the model’s pre-
diction among new classes and ground truth) in place of global classification
loss during representation learning, following classification head refinement with
global class-balanced classification loss using a small learning rate.

Specifically, our novel approach R-DFCIL consists of three stages: 1) before
learning a new task, we train an image synthesizer by inverting the old model
through model inversion technique [31], which is used to synthesize image during
learning new task; 2) we design three components to encourage the model to
learn the representations of new classes without forgetting learned classes, in
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which local classification loss improves model’s plasticity, hard knowledge
distillation maintains model’s stability, and relational knowledge distilla-
tion mitigates the conflict between them; 3) after representation learning, we
refine the classification head to address the data imbalance between classes as
well as learn the decision boundaries between new and previous classes, in which
a global class-balanced classification loss is adopted, and the weights of
classes are computed by their number of training samples.

We summarize our contributions as follows:

– We propose a novel DFCIL approach R-DFCIL, which strikes a better stability-
plasticity balance by relation-guided representation learning (RRL) and clas-
sification head refinement (CHR).

– To the best of our knowledge, we are the first to introduce relational knowl-
edge distillation (RKD) to DFCIL, which is critical to mitigate the conflict
between learning the representations for new classes and preserving the rep-
resentations of previously learned classes.

– We conduct extensive experiments on CIFAR100 [10] , Tiny-ImageNet200 [11],
and ImageNet100 [8] datasets, on all of which, our R-DFCIL surpasses the
previous state-of-the-art ABD [25] with accuracy gains of 8.46%, 9.23%, and
9.88%, respectively, and achieves a new record for DFCIL.

2 Related Work

Class-Incremental Learning (CIL). To overcome catastrophic forgetting,
successful approaches [20,2,8,32,4,19,15,1] store representative training data for
previously learned classes and replay them when updating the model with the
data from new task. Knowledge distillation (KD) [7] techniques are widely used
in these approaches to further alleviate forgetting of learned information, e.g .,
iCaRL [20] conducts KD on the pre-softmax output of the old and new data,
UCIR [8] designs a novel feature distillation loss, and PODNet [4] proposes to
distill from not only the final embedding output but also the pooled output of
the model’s intermediate layers. However, these methods are not suitable for
synthetic data, so we adopt a hard KD, which directly distills the knowledge
from the model’s output. PODNet requires another stage to fine-tune the clas-
sifier with balanced data, our approach also has a classification head refinement
stage, in which the model addresses the data imbalance issue and learns decision
boundaries between new and previous classes with a global class-balanced clas-
sification loss. The classification head also impacts the incremental performance:
iCaRL works better with NME than CNN classifier, UCIR is more compatible
with cosine classifier, and PODNet depends on LSC classifier. We remove the
bias parameter of the linear classifier to adapt our approach better.

Data-Free Class-Incremental Learning (DFCIL). The earliest DFCIL work
is LwF [14], which first introduces knowledge distillation (KD) to incremental
learning. Unfortunately, KD has limited effectiveness in overcoming forgetting
when using only new data. Some prior works [24,3,9,30,28] train a large genera-
tor simultaneously with the training of the solver model, which helps the solver
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model remember the knowledge of previous tasks through replaying the gen-
erated data. These approaches usually perform poorly [27] due to the domain
gap between generated and real data, and they also cause data privacy concerns
because the generator may remember sensitive information in the real data [16].
Recent works [31,25] introduce model inversion technique to synthesize data of
previous tasks. Although the visual quality is very different from the real im-
ages, the synthetic images generally match the statistical distribution of the real
data from previous tasks. The synthetic images often mix features from mul-
tiple classes, which confuse the decision boundaries between classes, the prior
approaches that overcome forgetting with real data may fail with synthetic data.
Our approach follows ABD [25] to synthesize data for previous classes by model
inversion technique, but we further propose a training framework that separates
representation and classifier learning to avoid the mutual interference caused by
domain gap between synthetic and real data.

Knowledge Distillation (KD) was first introduced to Deep Learning by Hin-
ton et al . [7] to transfer knowledge from a teacher model to a small student
model. Since then, various KD methods [22,13,26,18] have been developed. Con-
ventional KD methods extract knowledge from individual data, i.e., keep the
hidden activation or the final output of the student model consistent with those
of the teacher model for individual training samples. In contrast, Park et al . [17]
propose Relational KD (RKD) to transfer structural knowledge using mutual
relations of data examples in the teacher’s output presentation. Their experi-
mental results demonstrate that RKD is superior to conventional individual KD
(IKD) methods. KD techniques are also widely used in incremental learning to
overcome catastrophic forgetting, but most of them are IKD methods. These
IKD methods can improve the model’s stability when applied to old data but
may hurt the model’s plasticity when applied to new data. Inspired by RKD, we
propose relation-guided representation learning to address DFCIL problem.

3 Methodology

3.1 Problem formulation and R-DFCIL architecture

Problem formulation. In the problem of Data-Free Class-Incremental Learn-
ing (DFCIL), a model sequentially learns a series of tasks, in which the ith task
introduces a set of classes Ti that do not overlap with those in previous tasks.
We use Ti and the ith task interchangeably in this paper, and denote the num-
ber of classes in Ti as |Ti|. At learning phase i, the model can only access the
training data of the current task Ti, and predicts for all the data of the tasks T1:i
(i.e., from T1 to Ti) for inference after the learning is finished. We denote the
feature extractor with stacks of convolutional layers as f : Rh×w×3 → Rd, and
the classification head with c linear classifiers as θ : Rd → Rc, then the model
θ ◦ f predicts the class y of input x via ŷ = argmaxj∈{0,...,c−1} θ

(j)(f(x)). For
simplicity, we denote the frozen snapshot of θ ◦ f at the end of learning phase i
as θi ◦ fi, which means θi ◦ fi has learned T1:i. The training data and test data
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Fig. 1: Overview of our R-DFCIL. The model θ ◦ f is learning the current task
Ti+1. The hard knowledge distillation loss Lhkd is applied on synthetic data to
alleviate forgetting. The local classification loss Llce is employed on new data
to learn new knowledge. The relation knowledge distillation loss Lrkd transfers
the structural relation of new data Dtrain

i+1 from the previous model θi ◦ fi to the
current model θ ◦ f . ϕ and ψ are two linear transform functions.

of Ti are described by Dtrain
i and Dtest

i , respectively. We also refer Dtrain
1:i and

Dtest
1:i to the training and test data of T1:i for convenience.

R-DFCIL architecture. Fig. 1 illustrates the architecture of our relation-
guided representation learning for DFCIL (R-DFCIL). Our R-DFCIL is based on
the framework that synthesizes old data when learning a new task, and contains
the following three stages: First, at the beginning of the learning phase i+1, we
train a synthesizer by inverting the old model θi ◦ fi through model inversion
technique [31] following ABD [25]. Then, the model starts to learn new task Ti+1

once the synthesizer training is completed. We temporarily keep the snapshot
θi ◦ fi (old model) in memory, and add |Ti+1| new linear classifiers (denoted as
θTi+1) to θ (the original θ is denoted as θT1:i). Then, we randomly sample a batch
of training data (Xnew, Y new) from the new training data Dtrain

i+1 , and synthesize
the same number of data (Xold, Y old) by the synthesizer for previous classes,
which are passed to the model to learn the representations of new classes without
forgetting previous classes by integrating the hard knowledge distillation, local
classification loss and relational knowledge distillation. Last, after representation
learning, we freeze the feature extractor f and refine the classification head θ
with global class-balanced classification loss to address the data imbalance issue
as well as learn the decision boundaries between new and previous classes.

In the following subsections, we will first describe our core contributions of
relation-guided representation learning in Sec. 3.2 and classification head refine-
ment in Sec. 3.3, then review the synthesizer training in Sec. 3.4.
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3.2 Relation-Guided Representation Learning

Learning new knowledge will inevitably change the current model, causing the
forgetting of previously learned classes. Therefore, on the one hand, how to
overcome forgetting is essential in DFCIL. To this end, we provide the technique
of hard knowledge distillation (HKD). On the other hand, the model should also
have the flexibility to learn knowledge from the classes in the new task, for which
we adopt local cross-entropy loss (LCE) on data of new classes. However, the
conflict between overcoming forgetting by HKD and learning new knowledge by
LCE still can not be well resolved, which motivates us to propose relation-guided
representation learning (RRL) via relational knowledge distillation (RKD).

Hard Knowledge Distillation (HKD). Prior works usually take the following
knowledge distillation method to keep the model from forgetting previous 1 : i
tasks when learning the i+1th task:

Lkd =
1

|X|
∑
x∈X

DKL

(
softmax (θi (fi (x)) /τ) , softmax

(
θT1:i (f (x)) /τ

))
, (1)

where τ is a temperature parameter, DKL is KL divergence, and X is one of
Xnew, Xold and Xnew ∪Xold. However, we find that it is not hard enough when
applied to synthetic data. Instead, we use a harder variant of Lkd and only
apply it on synthetic data without freezing θT1:i . We formulate our HKD as:

Lhkd =
1

|Xold| × |T1:i|
∑

x∈Xold

∥θi (fi (x))− θT1:i (f (x)) ∥1. (2)

With this hard knowledge distillation, the outputs of old model θi ◦ fi and
current model θ ◦ f for the synthetic old data tend to be the same, but the
model remains flexible inside to adapt to new knowledge. Next, we focus on
learning representations of new classes, which requires the model to learn as
many features from new task Ti+1 as possible.

Local Classification Loss. In CIL, it’s common to use global cross-entropy
as the base loss that is applied on all available training data at the same time.
However, when we use synthetic data to replace the real old data in DFCIL, the
domain gap between synthetic and real data leads the model to separate new and
old classes by the difference of domain rather than semantics, as pointed out in
ABD [25]. We also observe that the decision boundaries within synthetic data are
different from the ones within the real data. For instance, a synthetic fish image
may mix a lot of features of a bird, which might confuse the old classifiers.
Therefore, we adopt a local classification loss, which is the cross-entropy loss
computed on the new data and the new classifiers (i.e., θTi+1), formulated as:

Llce =
1

|Xnew|
∑

(x,y)∈(Xnew,Y new)

LCE

(
softmax

(
θTi+1 (f (x))

)
, y
)
. (3)

This local classification loss does not directly affect classifiers of previous
classes θT1:i , but it changes f to adapt to new task, which may corrupt the
representations of previous learned classes.
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The conflict between learning representations of new classes and maintaining
representations of previously learned classes can only be mitigated by sacrificing
one for the other if the representation learning is not properly guided, and finally
they compromise each other to achieve a coarse balance. Therefore, we propose to
guide the current model to learn representations of new classes by the structural
relation of their data in the old model’s feature space.

Relational Knowledge Distillation (RKD). The HKD applied on synthetic
data prevents changes in the representation of previous classes, since it strictly
forces the representation of a single sample to be consistent on the new and old
models. However, it limits the model’s plasticity when employed on data of new
classes. In contrast to HKD, RKD [17] transfers structural information among
a set of samples from teacher model to student model, endowing the student
model more flexibility to learn new knowledge. The angle-wise RKD defines the
relation on a triplet of samples (xa,xb,xc) as the following cosine value:

cos∠rarbrc =
〈
eab, ecb

〉
where eij =

ri − rj
∥ri − rj∥2

. (4)

Here r∗ is sample x∗’s feature representation on the teacher or student model.
We incorporate RKD into our DFCIL framework, transferring the structural

information of the new data in the feature space of the old model θi◦fi to current
model θ ◦ f . Therefore, it can build a bridge between learning representations of
new classes and maintaining representations of previously learned classes.

When applying RKD, instead of directly using the data representations from
the model to construct the relation, we first transform the representations via a
d× 2d linear layer denoted as ϕ, considering the following. The new classes may
not be effectively distinguished by their representations on old model θi ◦fi, and
therefore, the structural relation built directly from the old representations may
not help improving model’s plasticity. The representations of the new classes
on current model θ ◦ f are transformed by another linear layer ψ to align to
the transformed old representations. Then, we apply the following angle-wise
relational knowledge distillation to a triplet (xa,xb,xc) of the new data:

Lrkd =
1

|Xnew|3
∑

xa,xb,xc∈Xnew

∥ cos∠tatbtc − cos∠sasbsc∥1,

where tk = ϕ (fi (xk)) , sk = ψ (f (xk)) .

(5)

By minimizing this loss, we limit the cases when the relation built from the
transformed old representations hinders the improvement of plasticity or when
the representation change hurts the model’s stability. The two learnable trans-
formation functions ϕ and ψ are optimized with the representation learning to
minimize this loss, making the relation distillation flexible. Using this relational
knowledge distillation, we mitigate the conflict between improving plasticity by
local classification loss and maintaining stability by hard knowledge distillation.

RRL Loss. The above three components form the relation-guided representa-
tion learning (RRL). The loss of the RRL at phase i+1 is formulated as:

Lrrl = λi+1
lce Llce + λi+1

hkdLhkd + λi+1
rkdLrkd, (6)
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where lambdas are corresponding scale factors. Considering the amount of new
knowledge increases with the number of new classes, and the difficulty of pre-
serving previous knowledge grows as the ratio of previous classes to new classes
gets larger, scale factors at learning phase i+1 are adaptively set as follows:

λi+1
lce =

1 + 1/α

β
λlce, λi+1

hkd = αβλhkd, λi+1
rkd = αβλrkd (7)

where α = log2(
|Ti+1|
2

+ 1), β =

√
|T1:i|
|Ti+1|

, (8)

in which λlce, λhkd and λrkd are base scale factors that can be configurable, α and
β denote the amount of new knowledge and the difficulty of preserving previous
knowledge, respectively. We appropriately increase the local classification loss
to compensate for its weakening as the number of new classes decreases. The
overall loss of the RRL at learning phase i+1 is finally defined as:

Lrrl =
1 + 1/α

β
λlceLlce + αβλhkdLhkd + αβλrkdLrkd. (9)

3.3 Classification Head Refinement

We achieve better stability-plasticity balance in feature extractor by relation-
guided representation learning, but there are still two issues in classification
head to address. One is that the decision boundaries between new and previous
classes have not been learned by the model, and the other is that the imbal-
anced training data may cause biased classifiers. ABD attacks these problems
concurrently with representation learning by a global task-balanced classification
loss [24,12,29]. However, we find that the global classification loss is not beneficial
to the representation learning due to the domain gap between synthetic and real
data. In addition to the data imbalance between new and previous classes, the
data imbalance also exists within previous classes because the label of synthetic
images are random. Inspired by prior works [4,29], we fine-tune the classification
head with the feature extractor frozen after representation learning, in which the
Llce is replaced with the following global class-balanced classification loss:

Lgce =
1

|X|
∑

(x,y)∈(X,Y )

wy∑|T1:i+1|−1
j=0 wj

LCE (softmax (θ (f (x))) , y) ,

where (X,Y ) = (Xnew ∪Xold, Y new ∪ Y old).

(10)

The weight wy of class y is the reciprocal of it’s number of samples (i.e., synthetic
for previous classes and real for new classes) passed to the model during training.

3.4 Image Synthesis

The model inversion technique was first introduced to DFCIL in DeepInver-
sion [31] to synthesize data for previous classes. DeepInversion iteratively opti-
mizes random noises to images of given classes together with training the classi-
fication model, which is time consuming. Instead, ABD [25] trains a synthesizer
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before learning new task, speeding up the learning process. Therefore, we follow
ABD [25] to train our synthesizer using the following four optimization objec-
tives. The label diversity loss forces the synthesizer to produce balanced
data for previous classes. The data content loss is the cross-entropy loss with
a large temperature parameter to scale down the difference between the model’s
output, so that the synthetic images can be predicted as a certain class with high
confidence. The stat alignment loss minimizes the KL divergence between the
distribution of synthetic data and the distribution in BatchNorm layers of fi,
which record the statistics of the real data during the previous training. The
image prior loss encourages the synthesizer to produce more realistic images.

By this means, we can obtain synthetic data that mimic the old real data.
However, there are still the following issues with the synthetic data, and dif-
ferent techniques of our R-DFCIL addresses these issues accordingly. 1) Class
imbalance is attacked by class-balanced classification loss defined in Sec. 3.3. 2)
The domain gap between synthetic and real data, which misleads classifiers to
learn wrong decision boundaries between new and previous classes, is attacked
by separating the learning process into representation learning (Sec. 3.2) and
classifier learning (Sec. 3.3). 3) The conflict between model’s plasticity
and stability is alleviated by relational knowledge distillation (Sec. 3.2), and
catastrophic forgetting is effectively overcome by hard knowledge distillation.

4 Experiment

4.1 Datasets and Evaluation Protocol

Datasets. We chose three representative classification datasets CIFAR100 [10],
Tiny-ImageNet200 [11] and ImageNet100 [8], in which CIFAR100 and Ima-
geNet100 are two extensively used datasets in CIL, and Tiny-ImageNet200 is
considered as a challenging dataset for DFCIL [25]. CIFAR100 contains 100
classes, each class with 500 training images of size 32×32×3 and 100 test im-
ages in the same size. ImageNet100 is a subset of ImageNet1000 [23], with 100
randomly sampled classes. It has about 1300 training and 50 test images per
class, and the spatial size of images vary. Tiny-ImageNet200 is an ImageNet-like
dataset with smaller (64×64×3) images than ImageNet. It has 200 classes in
total, with 500 training and 50 test images for each class.
Evaluation Protocol. In the CIL literature, there are two commonly used
protocols. The first protocol splits the classes equally into N = 5, 10, 20 tasks
for simulating short-term and large task incremental learning scenarios, in which
|T1:i|/|Ti+1| is relatively small and the number of classes per task are relatively
large. The other protocol introduced by Hou et al . [8] takes a half of classes
as the first task, and equally divides the rest classes into 5, 10 or 25 tasks
(i.e., N = 6, 11, 26), which matches the situation of long-term and small task
incremental learning. We follow prior works [20,8,4,25] to evaluate approaches
by the typical incremental metrics: last incremental accuracy AN and average
incremental accuracy ĀN = 1

N

∑N
i=1Ai, in which the incremental accuracy Ai
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Table 1: Evaluation on CIFAR100 with protocol that equally split 100 classes
into N tasks. The means and standard deviations are reported of three runs with
random class orders. Approaches with * are reported directly from ABD paper.

Approach
N = 5 10 20

AN (%) AN (%) AN (%)

Upper Bound 70.67 ± 0.16 70.67 ± 0.16 70.67 ± 0.16

DGR* [24] 14.40 ± 0.40 8.10 ± 0.10 4.10 ± 0.30
LwF* [14] 17.00 ± 0.10 9.20 ± 0.00 4.70 ± 0.10
DeepInversion* [31] 18.80 ± 0.30 10.90 ± 0.60 5.70 ± 0.30
ABD* [25] 43.90 ± 0.90 33.70 ± 1.20 20.00 ± 1.40

ABD [25] 47.36 ± 0.48 36.19 ± 0.93 22.29 ± 0.65

R-DFCIL (Ours) 50.47 ± 0.43 42.37 ± 0.72 30.75 ± 0.12

ĀN (%) ĀN (%) ĀN (%)

ABD [25] 63.23 ± 1.49 56.61 ± 1.93 45.10 ± 2.01

R-DFCIL (Ours) 64.85 ± 1.78 59.41 ± 1.76 48.47 ± 1.90

is formally defined as:

Ai =
1

|Dtest
1:i |

∑
(x,y)∈Dtest

1:i

1 (ŷ = y) , where ŷ = argmax
0≤j<|T1:i|

θ
(j)
i (fi(x)), (11)

in which 1(·) is the indicator function that maps the boolean value to {0, 1}.

4.2 Implementation Details

All approaches are implemented within the same code base written in PyTorch.
We reproduce the current SOTA DFCIL approach ABD [25], and two popular
replay-based CIL approaches UCIR [8], PODNet [4]. To fairly comparision, we
implement the UCIR-DF and PODNet-DF by replacing the real old data with
the synthetic data that used by ABD and our R-DFCIL. For CIFAR100, we
follow the prior works [20,8,4] to adopt a modified 32-layer ResNet [6] backbone
and train the model with SGD optimizer for 160 epochs, the learning rate is
initially set to 0.1 and is divided by 10 after 80 and 120 epochs, the weight
decay is set to 0.0005 and batch size is 128. We change the weight decay to
0.0002 for Tiny-ImageNet200 and keep other settings same as CIFAR100. For
ImageNet100, we employ a ResNet18 [6] backbone and train the model with SGD
optimizer for 90 epochs, the learning rate starts from 0.1 and is divided by 10
after 30 and 60 epochs, the weight decay is set to 0.0001 and batch size is 64. Our
R-DFCIL fine-tunes the classification head with a small constant learning rate
0.005 for another 40 epochs for CIFAR100, Tiny-ImageNet200, and 30 epochs
for ImageNet100. The hyper parameters of our R-DFCIL are set to λlce = 0.5,
λhkd = 0.15, λrkd = 0.5 in all experiments. Please see supplementary material
for more details on hyper-parameter tuning.
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Table 2: Evaluation on CIFAR100 with the protocol introduced by Hou et al . [8].
The results of UCIR, PODNet and their Data-Free implementation UCIR-DF,
PODNet-DF (all with CNN classifier) are present here for clearly comparison.

Approach Data Free
N = 6 11 26

AN (%) AN (%) AN (%)

UCIR (CNN) [8] ✗ 55.73 ± 0.89 53.22 ± 0.71 50.08 ± 0.35
PODNet (CNN) [4] ✗ 56.19 ± 1.00 52.53 ± 0.55 49.14 ± 0.25

UCIR-DF (CNN) [8] ✓ 39.49 ± 0.81 25.54 ± 1.51 9.62 ± 0.73
PODNet-DF (CNN) [4] ✓ 40.54 ± 1.68 33.57 ± 2.48 20.18 ± 0.76
ABD [25] ✓ 50.55 ± 1.14 43.65 ± 2.40 25.27 ± 1.09

R-DFCIL (Ours) ✓ 54.76 ± 0.76 49.70 ± 0.61 30.01 ± 0.56

ĀN (%) ĀN (%) ĀN (%)

UCIR (CNN) [8] ✗ 65.58 ± 1.00 63.54 ± 1.12 60.32 ± 1.09
PODNet (CNN) [4] ✗ 66.82 ± 1.25 63.91 ± 1.07 61.56 ± 1.02

UCIR-DF (CNN) [8] ✓ 57.82 ± 0.86 48.69 ± 1.16 33.33 ± 1.18
PODNet-DF (CNN) [4] ✓ 56.85 ± 1.40 52.61 ± 1.72 43.23 ± 1.70
ABD [25] ✓ 62.40 ± 1.17 58.97 ± 1.87 48.91 ± 1.88

R-DFCIL (Ours) ✓ 64.78 ± 1.58 61.71 ± 1.17 49.95 ± 0.76

4.3 Results and Analysis

CIFAR100. We follow ABD [25] to conduct five-, ten-, and twenty-tasks class-
incremental experiments, with respectively 20, 10 and 5 classes per task. We run
all approaches on three random class orders with the seeds 0, 1, 2 (i.e., consistent
with the official ABD code) and report the means and standard deviations of
these three runs. In Table 1, we report the results of ABD implemented by us and
present the original data reported by ABD paper. Our R-DFCIL surpasses ABD
by 3.11/1.62 (AN/ĀN ), 6.18/2.80 and 8.46/3.37 percent points on five-, ten-,
and twenty-tasks settings, respectively. Table 2 shows results of the experiments
with the protocol introduced by Hou et al . [8], in which the first task has 50
classes and 10, 5, 2 classes per incremental task for N = 6, 11, 26, respectively.
From the comparison between UCIR/PODNet and UCIR-DF/PODNet-DF, we
can see a great performance degradation of the popular replay-based approaches
when replacing the real old data with synthetic old data. Prior CIL works believe
that more tasks imply stronger forgetting. But we find that the initially learned
knowledge and the number of classes in incremental tasks also impact forgetting,
since both ABD and our R-DFCIL perform better with the second protocol than
with the first protocol despite more tasks (Table 2 vs. 1).

Tiny-ImageNet200. We compare our R-DFCIL with ABD in the more chal-
lenging dataset Tiny-ImageNet200, in which we can observe similar results to
the experiments on CIFAR100. From the data presented in Table 3, 4, we can see
that there are more performance gains of our R-DFCIL over ABD as the total
number of tasks increases (e.g ., N = 5 → 20, 6 → 26). We plot the task-by-task
incremental accuracy in Fig. 2, in which we can see the ABD drops faster than
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Table 3: Evaluation on Tiny-ImageNet200 with the protocol that equally divides
classes into N tasks. The means and standard deviations are reported of three
runs with random class orders. ABD* indicates data reported from ABD paper.

Approach
N = 5 10 20

AN (%) AN (%) AN (%)

Upper Bound 55.39 ± 0.33 55.39 ± 0.33 55.39 ± 0.33

ABD* [25] - - 12.1

ABD [25] 30.56 ± 0.22 22.87 ± 0.67 15.20 ± 1.01

R-DFCIL (Ours) 35.89 ± 0.75 29.58 ± 0.51 24.43 ± 0.82

ĀN (%) ĀN (%) ĀN (%)

ABD [25] 45.30 ± 0.50 41.05 ± 0.54 34.74 ± 0.91

R-DFCIL (Ours) 48.96 ± 0.40 44.36 ± 0.18 39.34 ± 0.18

Table 4: Evaluation on Tiny-ImageNet200 with the protocol introduced by Hou
et al . [8]. The means and standard deviations are reported of three runs with
random class orders. The best values are in bold font.

Approach
N = 6 11 26

AN (%) AN (%) AN (%)

ABD [25] 33.18 ± 0.46 27.34 ± 0.44 16.46 ± 0.34

R-DFCIL (Ours) 40.44 ± 0.11 38.19 ± 0.08 27.29 ± 0.24

ĀN (%) ĀN (%) ĀN (%)

ABD [25] 44.55 ± 0.13 41.64 ± 0.46 34.47 ± 0.29

R-DFCIL (Ours) 48.91 ± 0.29 47.60 ± 0.50 40.85 ± 0.28

our R-DFCIL as the number of learned classes increases. We can conclude from
the above observations that our R-DFCIL solves the forgetting of previously
learned classes better than ABD.

ImageNet100. We report the experimental results on ImageNet100 in Table 5.
In these experiments, the model is less prone to forgetting than experiments on
CIFAR100 and Tiny-ImageNet200 due to the large model capacity (11.0 vs. 0.4
million parameters). Although the performance of ABD is close to our R-DFCIL
when N=5, the difference becomes significant when N increases to 20.

Ablation Study. We ablate three main components of our R-DFCIL, and dis-
play the results in Table 6. The experiments are conducted on CIFAR100 with
total N=20 tasks and 5 classes per task. All three components contribute greatly
to our R-DFCIL, the last incremental accuracy drops by 9.21, 25.38, 7.00 percent
point without relational knowledge distillation (RKD), hard knowledge distilla-
tion (HKD), classification head refinement (CHR), respectively. From Fig. 3, we
can clearly see that the HKD is necessary for reducing the forgetting of learned
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Fig. 2: Incremental Accuracy on Tiny-ImageNet200. The lines show the
phase-by-phase evaluation results of ABD [25] and our F-DFCIL. The means
and standard deviations are reported of three runs with random class orders.

Table 5: Evaluation on ImageNet100 with the protocol that equally split 100
classes into N tasks. We report the evaluation results of a single run.

Approach
N = 5 10 20

AN (%) AN (%) AN (%)

Upper Bound 77.46 77.46 77.46

ABD [25] 51.46 35.96 22.40

R-DFCIL (Ours) 53.10 42.28 30.28

ĀN (%) ĀN (%) ĀN (%)

ABD [25] 67.42 57.76 44.89

R-DFCIL (Ours) 68.15 59.10 47.33

classes. We also observe that the RKD boost both plasticity and stability, demon-
strating the success of our relation-guided representation learning in alleviating
the conflict between improving plasticity and maintaining stability. In fact, our
R-DFCIL achieves better plasticity as well as stability than previous approaches,
the details are present in supplementary material. It is worth emphasizing that
our adaptive design (i.e., introduction of linear transformation functions) con-
tributes about 2% gain in the last incremental accuracy. We also investigated
some newer relational KD methods, please see supplementary material.

5 Conclusion

This paper studies the problem of Data-Free Class-Incremental Learning (DF-
CIL). We propose relation-guided representation learning (RRL) for DFCIL (R-
DFCIL) to address the catastrophic forgetting caused by the severe domain gap
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Fig. 3: Ablation Study about Stability-Plasticity Balance. The left (a)
shows a better balance with RKD (w/ rkd), and the right show the importance
of the HKD to mitigate forgetting.

Table 6: Abalation Study on CIFAR100 with N = 20. The results show the
comparison between our R-DFCIL with all components and without relation
knowledege distillation (RKD), hard knowledge distillation (HKD), classification
head refinement (CHR, i.e., training process ends with representation learning).

RKD HKD CHR AN (%) ĀN (%)

✗ ✓ ✓ 21.63 ± 5.60 40.86 ± 5.98

✓ ✗ ✓ 5.37 ± 0.35 20.96 ± 0.69

✓ ✓ ✗ 23.75 ± 0.81 43.09 ± 1.53

✓ ✓ ✓ 30.75 ± 0.12 48.47 ± 1.90

between synthetic and real data. In RRL, the model overcomes forgetting of pre-
vious classes by hard knowledge distillation on synthetic data, and learns new
knowledge by the local classification loss on new data. The relational knowl-
edge distillation (RKD) can mitigate the conflict between improving plasticity
and maintaining stability by transferring structural relation of new data from the
old to the current model. After RRL, the classification head is refined with global
class-balanced classification loss to address data imbalance issue and learn the
decision boundaries between classes. Our R-DFCIL surpasses previous SOTA ap-
proach on CIFAR100, Tiny-ImageNet200 and ImageNet100 with 8.46%, 9.23%,
and 9.88% accuracy gain, respectively. Our R-DFCIL learns representation and
classifier independently in two stages, which constructs a basic framework for
future studies to address the domain gap between synthetic and real data in
DFCIL. We introduce RKD to DFCIL for the first time, providing a reference
for future works to overcome forgetting using structural information.
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