
Predicting is not Understanding:
Recognizing and Addressing

Underspecification in Machine Learning

Damien Teney1,3 Maxime Peyrard2 Ehsan Abbasnejad3

1Idiap Research Institute 2EPFL 3Australian Inst. for Machine Learning
firstname.lastname@{idiap.ch,epfl.ch,adelaide.edu.au}

Abstract. Machine learning (ML) models are typically optimized for
their accuracy on a given dataset. However, this predictive criterion
rarely captures all desirable properties of a model, in particular how well
it matches a domain expert’s understanding of a task. Underspecifica-
tion [12] refers to the existence of multiple models that are indistinguish-
able in their in-domain accuracy, even though they differ in other desir-
able properties such as out-of-distribution (OOD) performance. Identify-
ing these situations is critical for assessing the reliability of ML models.
We formalize the concept of underspecification and propose a method to
identify and partially address it. We train multiple models with an inde-
pendence constraint that forces them to implement different functions.
They discover predictive features that are otherwise ignored by standard
empirical risk minimization (ERM), which we then distill into a global
model with superior OOD performance. Importantly, we constrain the
models to align with the data manifold to ensure that they discover mean-
ingful features. We demonstrate the method on multiple datasets in com-
puter vision (collages, WILDS-Camelyon17, GQA) and discuss general
implications of underspecification. Most notably, in-domain performance
cannot serve for OOD model selection without additional assumptions.1

1 Introduction

Is data all you need? A finite set of i.i.d. examples is almost never sufficient
to learn a task. Inductive biases have long been known to be necessary for in-
domain generalization [49,82]. OOD2 generalization complicates things further
since one also needs to determine which predictive patterns of the training data
will remain relevant at test time. Correlations between inputs and labels that are
important for the task may be indistinguishable from spurious ones that result
from dataset-specific artefacts such as selection biases.

An example in image recognition. Image labels are often correlated with
objects and the backgrounds they appear in (e.g . cars in cities, birds in nature).
Recognizing either often suffice to predict correct labels. However, robust OOD

1See https://arxiv.org/abs/2207.02598 for the full-length version of this work.
2 In this paper, OODmeans there is a covariate shift between training and test data [67].

https://arxiv.org/abs/2207.02598
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generalization (e.g . correctly labeling images of birds in street scenes) requires
to rely on shapes and to ignore the background. When this requirement cannot
be deduced from the data (because both features leave a similar signature in the
joint training distribution), the task is said to be underspecified. In this example,
the task requires the additional knowledge that labels refer to object shapes
rather than background textures [20]. Such knowledge is often task-specific. For
example, the opposite choice of prioritizing color or texture over shape would be
sensible for recognizing traffic signs or segmenting medical images.

Underspecification gap: the difference between the information provided
in a dataset and the information required to perform as desired on a task.

The qualifier “as desired” captures the fact that different use cases require
different properties such as adversarial robustness, interpretability, fairness, or
OOD generalization. The latter is the focus of this paper. Underspecification
arises because these properties do not necessarily correlate with the ERM ob-
jective [77] typically used to train models.

This paper argues that identifying underspecification is important for
assessing the reliability of ML models, their reliance on hidden assumptions,
and for identifying the information missing for OOD robustness. We identify
underspecification by discovering multiple understandings of the data. We
learn multiple predictive models compatible with a given dataset and hypothesis
class (low in-domain risk). We force them to rely on different predictive features
by encouraging orthogonality of their input gradients. We also ensure that these
features remain semantically meaningful by constraining the input gradients to
the data manifold. Training multiple models stands in contrast with the standard
practice of optimizing a single solution to a learning problem – which hides
the existence of underspecification. With our method, we discover predictive
features otherwise ignored by standard ERM. This alone produces candidate
models with superior OOD performance. In addition, we show how to distill
selected features from multiple candidate models into one that is robust across
a wider range of distribution shifts. In all cases, a selection strategy must be
provided (see Section C) such as an OOD validation set, domain expertise, task-
specific heuristics, etc.

Experiments. We apply the method to controlled data (collages [66,72])
and computer vision benchmarks (WILDS-Camelyon17 [41], GQA [32,37]). On
visual question answering, we show that multiple models can produce similar
answers while relying on different visual features (Figure 1).

Implications. Our work complements other studies [12,47] in formalizing
underspecification as a root cause of multiple challenges in ML including short-
cut learning, distribution shifts, and even adversarial vulnerabilities (an extreme
case of OOD inputs). Our formalization of underspecification makes it obvious
that ID and OOD performance are not necessarily coupled. Therefore, without
further assumptions, in-domain validation performance is not a reliable model se-
lection strategy for OOD performance despite contradictory suggestions made in
the literature [24,48]. The prevalence of underspecification [12] also suggests that
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Is the man to the right of the hammer wearing eye glasses? No.

Predictions: yes, yes, yes.

Fig. 1: Example of underspecification in visual question answering. Our method
trains multiple models that each discover different predictive features. We ob-
tain three models producing identical answers on most training and validation
data, even though they rely on different visual clues (evidenced by grad-CAM
visualizations over object proposals [64]). Each model reflects a different un-
derstanding of the task compatible with the data (possibly incomprehensible
to humans) which reveals ambiguity in its specification.

task-specific knowledge and assumptions are often necessary to build robust ML
models, since they cannot emerge from simply scaling up data and architectures.
We summarize our contributions as follows. See Appendix A for related work.
1. We propose a mathematical framework for quantifying and addressing under-

specification.

2. We derive a method to learn a set of models compatible with a given dataset
that exhibit distinct OOD behaviour. We force the models to rely on different
features (independence objective) that are nonetheless semantically meaning-
ful (on-manifold constraint).

3. We use the method for (1) highlighting underspecification in given dataset/ar-
chitecture pairs, and (2) building models with superior OOD performance on
collages [66,72], WILDS-Camelyon17 [41], and GQA [32,37].

2 Formalizing underspecification

Let us focus on binary classification tasks. A dataset provides labeled exam-
ples Dtr“tpxi, yiqui with x P Rdin , yi P t0,1u. The goal of a learning algorithm is
to identify a predictor f : Rdin Ñ R to estimate labels3 of examples from a test
set Dtest“txiui. While the input data x is typically high-dimensional (e.g . vec-
torized images), natural data (e.g . photographs) occupies only a fraction of the
input space assumed to form a low-dimensional manifold [81] M Ă Rdin . The
dimensionality dmanifold (ă din) is known as the intrinsic dimensionality of
the data. Training and test data are drawn from a distribution on this manifold
PID (in-domain examples) while unbiased natural data (free of dataset-specific
selection biases) is drawn from a distribution POOD of typically broader support.

3We define f to output logits. A binary prediction ŷ is obtained as ŷ “ round
`

σ
`

fpxq
˘˘

.
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Inductive biases are the properties of a learning algorithm that determine
what model fθ‹ is returned for a dataset D from a hypothesis class H “ tfθ,@θu

where fθ is a model with free parameters θ. Inductive biases enable generalization
from finite data [49] by encoding assumptions on the relation between D and
Dtest. In particular, classical learning theory assumes that D and Dtest contain
i.i.d. samples from the same distribution. For completeness, we summarize a
standard training workflow.

1. Randomly split the data into training and validation sets: D“Dtr Y Dval.

2. A hypothesis class H “ tfθ,@θu is chosen e.g . by defining a neural architecture
f .

3. Empirical risk minimization serves to optimize the free parameters of f as
θ‹

“ argminθ R
`

fθ,Dtr

˘

where the empirical risk is defined as Rpf,Dq “

Σpx,yqPD Lpred

`

y, σ
`

fpxq
˘˘

{ |D|,
and Lpred is a predictive loss such as binary cross-entropy.

4. Validation performance serves to refine various choices (architecture, regular-
izers, ...) by trial and error, i.e. loosely solving f 1

θ‹1 “ argminf,... Rpfθ‹ ,Dvalq

where R is often substituted with a task-specific metric such as the error rate.

There is often a multitude of models satisfying the above procedure, not
all are equally desirable because they differ in properties that the procedure
does not constrain. The degree of underspecification indicates the importance of
arbitrary and stochastic factors in the outcome of the learning process.

This paper focuses on differences in OOD performance among predictive
models. OOD performance is the predictive performance of a model (in terms of
risk, accuracy, or another task-specific metric) on test data drawn from a distri-
bution POOD‰PID. On OOD data, features that were predictive in the training
data may become irrelevant or misleading, causing a drop in performance of a
model that relies on them. By definition, OOD performance is underspecified by
the ERM objective, since the empirical risk is estimated on in-domain data.

To capture variability in OOD performance, we propose a definition of un-
derspecification based on the number of ways to fit the data with the above
procedure and produce different OOD predictions.4

Definition 1. The degree of underspecification of a dataset D “ Dtr Y

Dval, input manifold M, and hypothesis class H “ tfθ,@θu is the ratio of
volumes volpH1q{ volpHq of the largest subset of models H1 Ă H such that its
elements tfθmum all have, for small constants ϵtr, ϵval:

– A low training risk: Rpfθm
,Dtrq ă ϵtr, @ fθ P H1,

– A low validation risk: Rpfθm ,Dvalq ă ϵval, @ fθ P H1,

– Distinct OOD predictions: P
`

roundpσpfθ1pxqq ‰ roundpσpfθ2pxqq
˘

« 1,
@ fθ1, fθ2 P H1, fθ1‰fθ2, x„POOD.

The next section derives a method to learn a set of models with these properties.

4Previously, [31,65] used volumes of hypothesis spaces to define Rashomon sets.
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3 Proposed method

Overview. We train multiple models with the same architecture and data while
enforcing them to represent different functions and use different features. The
models use different initializations, but this does not always suffice to produce
significantly-different models. We add two regularizers that enforce (1) indepen-
dence of the models (mutually-orthogonal input gradients) and (2) alignment
with the data manifold such that the models learn meaningful features.

Since the constraints follow from Definition 1, the number of models trainable
to satisfy them indicates the degree of underspecification. The only existence of
multiple such models thus highlights cases of underspecification. The models
also discover some predictive features missed by standard ERM, which can be
combined by distillation into a predictor with superior OOD performance. In the
next sections, we implement the two constraints as differentiable regularizers.

3.1 Independent models

To optimize for distinct OOD predictions, we turn the criteria of Definition 1
into a differentiable objective using the concept of independent models [60,61].

Definition 2. A pair of predictors fθ1
, fθ2

are locally independent at x
iff their predictions are statistically independent for Gaussian perturbations
around x: fθ1prxq K fθ2prxq, rx „ N px, σIq.

Definition 3. A set of predictors tfθ1
,..., fθM

u are globally independent
on a dataset D iff every pair of them are locally independent at every x P D.

This formalizes the notion that models can rely on different features. In our
case, we seek a set of models globally independent from one another. We obtain
a tractable objective using the relation between statistical independence and
geometric orthogonality developed in [61].

Proposition 1. A pair of predictors fθ1 , fθ2 are locally independent at x
iff the mutual information MIpfθ1

prxq, fθ2
prxqq “ 0 with rx „ N px, σIq.

For infinitesimally small perturbations (σÑ0), samples rx can be approximated
through linearization by the input gradients ∇xf . These are 1D Gaussian ran-
dom variables whose correlation is given by cos

`

∇xfθ1pxq,∇xfθ2xq
˘

. Their mu-

tual information [23] is ´ 1
2 ln

`

1 ´ cos2
`

∇xfθ1
pxq,∇xfθ2

pxq
˘˘

. Therefore, the
statistical independence between the models’ outputs as their inputs are per-
turbed by small Gaussian variations can be enforced by making their input
gradients orthogonal. Our local independence loss for a pair of models is:

Lindep

`

∇xfθm1
pxq, ∇xfθm2

pxq
˘

“ cos2
`

∇xfθm1
pxq, ∇xfθm2

pxq
˘

(1)

with cos2pv,wq “ pv⊺wq2 { pv⊺vqpw⊺wq. To enforce global independence, this
loss will be applied to all training points and pairs of models in Eq. (3).
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3.2 On-manifold constraint

Fig. 2: Method overview
during training.

The independence constraint (1) makes mod-
els’ input gradients orthogonal to one another.
The number of models satisfying it grows ex-
ponentially with the input dimension (din) but
many are practically irrelevant because the
natural data manifold usually occupies much
fewer dimensions. Intuitively, when the con-
straint affects a model’s gradients in dimen-
sions pointing outward the manifold, it does
not affect its predictions on natural data. Con-
sequently, the independence constraint could be satisfied by models that produce
identical predictions on every natural input (thus defeating its purpose) because
their decision boundaries are identical when projected on the manifold. The is-
sue stems from the isotropic perturbations in Eq. (1). Only perturbations on the
manifold are meaningful.

One straightforward solution would be to enforce independence after pro-
jecting the data on a learned approximation of the manifold. This approach,
proposed in [60,61] failed in our early experiments because of the difficulty of op-
timizing the independence objective under such a strict on-manifold constraint.
Instead, we implement a soft constraint as a regularizer that proved easy to train
and resilient to imperfect models of the manifold.

To learn the data manifold M, we need unlabeled examples, ideally con-
taining the type of OOD data expected at test time e.g . a broad collection of
natural images: DOOD “ txiu „ POOD. We use this data off-line to prepare a
function projMpx,vq that projects an arbitrary vector v at x in the input space
onto the manifold (Figure 3). During training, we penalize each model with
the distance between its input gradients and their projection on the manifold.
The on-manifold loss is defined as

Lmanifold

`

∇fpxq
˘

“
ˇ

ˇ

ˇ

ˇprojM
`

x,∇xfpxq
˘

´ ∇xfpxq
ˇ

ˇ

ˇ

ˇ

2

2
. (2)

We describe possible implementations of projMp¨q in Appendix D with a varia-
tional auto-encoder (VAE) or a simple PCA. In summary, the on-manifold loss
encourages a model to be sensitive to variations in the input that are likely to
be encountered in natural test data. It typically has no effect on in-domain per-
formance (Figure 6c) since it only removes a model’s sensitivity to unnatural
inputs such as variations of isolated pixels unlikely to appear in natural images.

The overall learning objective combines the predictive, independence, and
on-manifold losses:

LpDtr,θ1 ...θM q “ ΣxPDtr

”

p1{Mq ΣM
m“1Lpred

`

y, σpfθm
pxqq

˘

` p1{M2q ΣM
m1“1Σ

M
m2“1λindep Lindep

`

∇xfθm1
pxq,∇xfθm2

pxq
˘

` p1{Mq ΣM
m“1λmanifold Lmanifold

`

∇xfθm
pxq

˘

ı

. (3)
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■

‚

‚

‚

›

Input space Rdin

Data manifold M

Two possible decision boundaries (red/blue),
input gradients at one training point,
and their projection on the manifold.

‚ ■ Training points of two classes.
› Test point, OOD, underspecified.

Fig. 3: Effect of the proposed method in input space. Data such as natural im-
ages is assumed to lie on a low-dimensional manifold. The training set covers a
subset of this manifold (gray ellipse). OOD test data (›) lies outside this sub-
set. In this example, our method discovers two models (red and blue decision
boundaries) whose input gradients are orthogonal (shown at one training point,
in colors matching the boundary). Even though a third model (green vector)
could satisfy the orthogonality constraint, its input gradient would point out-
side the manifold. This would violate the on-manifold constraint, which requires
gradients to closely match their projection on the manifold.

3.3 Fine-tuning

After training a set of models with (3), we propose to relax the independence
and on-manifold constraints (λindep Ð0, λmanifold Ð0) then fine-tune the models.
This eases the optimization and typically allows the models to reach a higher
predictive accuracy. Concretely, we apply binary masks on the data such that
each model is fine-tuned only on the elements most relevant to itself:5

Dm
tr “ tpxi d maskm

i , yiq : pxi, yiq P Dtru (4)

with maskm
i P t0, 1udin . They are computed before starting the fine-tuning to

highlight the data most relevant to each model. Each element (pixel, channel) is
unmasked only for the model with the largest corresponding gradient magnitude:

maskm
i “ 1

`

m“argmax
1ďmďM

∇fθm
pxiq

˘

@ pxi, ¨q P Dtr. (5)

We fine-tune each model on its own masked version of the data.6 This ensures
that the models remain distinct despite disabling the regularizers (λindep Ð 0,
λmanifold Ð0). See Algorithm 1 for a summary.

3.4 Distilling multiple models into one

Finally, after training/fine-tuning a set of models, we propose to combine the
best of them into a global one that uses all of the most relevant features.We
train this global model from scratch, without regularizers, on masked data as
described above, using masks from multiple selected models combined with a

5 In our implementation, masked elements are not replaced with zeros, but rater with
random values from other instances in the current mini-batch.

6We obtain very similar results between fine-tuning and retraining models from scratch
on the masked data.
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Algorithm 1: Training and fine-tuning models.

Inputs: Labeled examples Dtr. Unlabeled examples DOOD (typically
Dtr Ă DOOD). Architecture f .

Result: Set of independent models tfθ1 ... fθM u.
Method:
With DOOD, estimate dimensionality dmanifold [57] and set the number of
models M Ð dmanifold.

With DOOD, prepare function projp¨q by PCA decomp. or by training a VAE.
With Dtr, train M instances of f in parallel (Eq. 3):

tθ1 ...θMu Ð argminLpDtr,θ1 ...θM q.
Determine masks on input data (Eq. 5): tmaskm

i ui,m

foreach m do // Optional fine-tuning on masked data
Dm

tr Ð tpxi d maskm
i , yiqui // Prepare masked data

λindep Ð 0, λmanifold Ð 0 // Use only predictive loss
θm Ð argminLpDm

tr ,θmq // Fine-tune

logical OR. In our experiments, we combine the two models with the highest
accuracies on an OOD validation set. We repeat this pairwise combination as
long the accuracy of the global model increases, usually for 2–3 iterations (as
formalized in Algorithm 2 in the Appendix).

4 Experiments

We first present experiments that validate the method on controlled data with
multiple known features (collages, Section 4.1). We then demonstrate applica-
tions to existing datasets: WILDS-Camelyon17 and GQA (Sections 4.2 and J).

4.1 Experiments on controlled data: collages

This diagnostic dataset contains images with binary labels that are constructed
to contain multiple predictive features [66,72]. Each image contains four tiles
representing one of two classes respectively from MNIST (0/1), CIFAR-10 (au-
tomobile/truck), Fashion-MNIST (pullover/coat), and SVHN (0/1).

– At training time, the labels are perfectly correlated with the four tiles (0/1
respectively for the first/second possible class in each tile). There are (at least)
four equally-valid ways of understanding the task (i.e. relying on any of the
four tiles).

– At test time, we evaluate a model on four test sets that represent different
OOD conditions. In each, only one tile is correlated with the correct label
while others tiles are randomized. By examining the performance on the four
test sets, we can identify which tile(s) the model relies on

Task difficulty. This dataset is surprisingly challenging because the tiles
vary greatly in learning difficulty (e.g . MNIST 0s/1s are very distinct while
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Class 0
Zero, pullover

automobile, zero.

Class 1
One, coat

truck, one.

Fig. 4: Examples of
collages [72]. Tr. la-
bels are correlated
with all four tiles.

Fashion-MNIST pullovers/coats look extremely similar). It would be reasonable
to learn a model that relies on all four tiles. However, an ERM-trained baseline
surprisingly uses only a few MNIST pixels (achieving „99% accuracy on the
MNIST test set and „50% on the others), as shown in previous work on the
simplicity bias of neural networks [72].

We follow [72] and use our method to learn multiple models compatible with
the data. We then report the accuracy of the best model on each test set, i.e.
the best accuracy assuming perfect model selection. This avoids confounding the
performance of the learning algorithm and with that of the selection strategy.

Applying the proposed method. We follow Algorithm 1. We prepare
unlabeled data to defines the data manifold as the union of the training and test
sets, thus covering all combinations of contents of the four tiles. With this data,
we estimate the dimensionality of the manifold with [57] as about 23.8 (σ“0.16
over 10 runs). We prepare two generative models of the manifold: a PCA with
24 components (capturing „85% of the variance) and a VAE with 24 latent
dimensions (details in Appendix F). We define a simple architecture (2-layer
MLPs) and train multiple instances in parallel with the proposed objective. The
only hyperparameters are the number of models and weights of independence/on-
manifold constraints. We plot a range of values in the appendix (Figure 9).

Results. Our method learns models that focus on different parts of the
images. Remarkably, learning as few as 4 models is sufficient to obtain models
with high accuracy on all of four test sets. Let us examine several ablations.

– The baseline (λindep“λmanifold“0) only learns about MNIST.

– The independence constraint (λindep ą, λmanifold “ 0) is crucial for learning
distinct models. On its own, it requires training a very large number of models
("32) before picking up features outside the MNIST tiles. Visualizations of
input gradients (Figure 6) reveal that these models each rely only on a single
or a few pixels. These trivial solutions to the independence constraint, akin
to adversarial examples, are avoided with the on-manifold constraint.

– In the full method (λindep ą 0, λmanifold ą 0) the models discover distinct
features that align with the semantic contents of images. The effect of the on-
manifold constraint on input gradients is striking (Figure 6). It forces models
to be sensitive to natural variations of the data – rather than unlikely single-
pixel patterns. Remarkably, image regions emerge as meaningful fea-
tures without inductive bias for spatial locality (e.g . no convolutions).

Hyperparameters. A number of models between 4 and 24 give excellent
results. As expected, the larger this number, the more granular the features
these models learn (Figure 6). The effect breaks down for ą24 models, matching
theoretical expectations since the dimensionality of the manifold was estimated
at „24. The method is stable over a range of regularizer weights. Additional
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Fig. 5: Collages dataset: accuracy on the four test
sets (columns) of models with best accuracy on
each set (rows). Diagonal patterns indicate that
models specialize and learn different, non-
overlapping features. The baseline only learns
features relevant to MNIST.

Baseline

4 Models

8 Models

12 Models

(a) With standard training,
all models rely on a small,
identical region of the image,
despite the fact that predic-
tive features are present all
over.

+ Independence

(b) Independence
produces distinct
gradients, but many
models are needed
to discover new
features and they
are sensitive to
isolated pixels.

+ On-manifold

(c) The on-manifold
constraint forces gra-
dients to align with
natural variations of
the data. Accuracy is
virtually identical to
the baseline.

+ Indep. + on-manifold

(d) With both con-
straints, we learn
semantically rele-
vant features in all
image regions with
as few as 4 models.

Fig. 6: Input gradients for a random test image from the collages dataset. It
is remarkable that, with the proposed method (d) image regions emerge as
meaningful features without any inductive bias for spatial locality such
as convolutions (models in these experiments are fully-connected MLPs).

comparisons in Table 1 show that a VAE is better than PCA to represent the
manifold. This agrees with the general expectation that natural images form a
non-linear manifold in pixel space. We also found overall results to be robust to
variations in architecture and hyperparameters of the VAE.

Fine-tuning. We report the accuracy of models fine-tuned on masked in-
puts as proposed in Section 3.3. This optional step relaxes the independence con-
straint to maximize each model’s predictive performance. The accuracy jumps
significantly and almost reaches the upper-bound on each test set (Table 1). We
experimented with relaxing both the independence and on-manifold constraints.
Disabling the former has a significant effect. But the latter has no significant
effect on accuracy on its own as expected and discussed in Section 3.2.

Distilling multiple models into one. We report the performance of com-
binations of features described in Section 3.4. This procedure is most effective
after training a large number of models (24 here). This is unsurprising since
models then discover finer-grained features. Each combination selects features
relevant to only one specific tile to achieve near-maximal accuracy on the test
set of that tile. Simple traditional ensembling of models completely failed in our
experiments.

Comparison with existing methods. No other method reported in Ta-
ble 1 performed well on this dataset. The method of Teney et al . [72] is technically
the most similar to ours, but it requires training a much larger number of models
and still achieves much lower accuracy. While all experiments of this section used
a model taking raw pixels as input, we repeated the whole evaluation using a
shared, frozen ResNet to extract features in Appendix H. This implementation
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is computationally appealing for larger-scale applications, and gave essentially
similar findings with higher overall accuracy thanks to the deeper architecture.

Collages (accuracy in %) Best model on

M
N
IS

T

S
V
H
N

F
a
s
h
io

n

C
IF

A
R
-1

0

A
v
e
r
a
g
e

Upper bound 99.9 92.4 80.8 68.6 85.5
(training on test-domain data)

ERM Baseline 99.8 50.0 50.0 50.0 62.5
Spectral decoupling [55] 99.9 49.8 50.6 49.9 62.5
Penalty: gradients’ L1 norm 98.5 49.6 50.5 50.0 62.1
Penalty: g. L2 norm [30] 96.6 52.1 52.3 54.3 63.8
Input dropout (ratio 0.9) 97.4 50.7 56.1 52.1 64.1
Indep. loss (cos. sim.) [60] 99.7 50.4 51.5 50.2 63.0
Indep. loss (dot prod.) [72] 99.5 53.5 53.3 50.5 64.2

With many more models
Indep. (cos. sim.), 1024
models

99.5 58.1 66.8 63.0 71.9

Indep. (dot prod.), 128
models

98.7 84.9 71.6 61.5 79.2

Proposed method (8 models)
Indep. + on-manifold PCA 97.3 69.8 62.2 60.0 72.3

Indep. + on-manifold VAE‹ 96.5 85.1 61.1 62.1 76.2

(‹) + FT (fine-tuning) 99.7 90.9 81.4 67.4 84.8

(‹) + FT + combi. (1ˆ) 99.9 92.2 79.3 66.3 84.4

(‹) + FT + combi. (2ˆ) 99.9 92.5 80.2 67.5 85.0

(‹) + FT + combi. (3ˆ) 99.9 92.3 80.8 68.5 85.4

Table 1: Accuracy on collages
of existing and proposed meth-
ods (8 models per method unless
specified). The 4 test sets sim-
ulate different OOD conditions:
only one tile in each set is cor-
related with the labels. Stan-
dard training only learns a
fraction of predictive fea-
tures. Existing methods cannot
do better than chance except on
MNIST, or they require training
a large number of models. Ours
learns a variety of features and
give near-optimal predictions on
every test set (last row).

4.2 Experiments on real data: WILDS-Camelyon17

Dataset. The WILDS-Camelyon17 benchmark [40] provides histopathology im-
ages to classify as “tumor” or “normal”. The images come from different sets
of hospitals in the training, validation (val-OOD), and test splits (test-OOD).
The challenge is to learn a model that generalizes from the training hospitals
to those of the test set. The original authors [40] trained a Densenet-121 model
from scratch on this data with 10 random seeds. They showed that the per-
formance on val-OOD and test-OOD varies wildly across seeds, demonstrating
that the task is severely underspecified with only the standard training images
(the dataset provides additional hospital labels that could enable generalization;
neither ERM nor our method uses them).

Implementation of our method. We use frozen features (last-layer acti-
vations) from one of the pretrained models from [40] as input. We will show that
we can recover even more variability in performance than the complete mod-
els trained on different random seeds, even while keeping the model frozen (i.e.
retraining only a classifier). We first determined that the best ERM-trained clas-
sifier on frozen features is a simple linear one, rather than an MLP. Our method
simplifies in two ways with a linear classifier. First, input gradients are equal to
the classifier weights, and the proposed regularizers do not require second-order
derivatives anymore during back-propagation. Second, we found empirically that
the soft on-manifold regularizer can be replaced with a hard constraint: we ex-
plicit project the input gradients onto the manifold and apply the independence
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WILDS-Camelyon17 Best accuracy (%) on

val-OOD test-OOD

Pseudo-Label [43] – 67.7 ˘8.2

DANN [17] – 68.4 ˘9.2

FixMatch [68] – 71.0 ˘4.9

CORAL [70] – 77.9 ˘6.6

NoisyStudent [84] – 86.7 ˘1.7

ERM Baseline 84.9 ˘0.1 68.4 ˘0.1

+ Independence constraint 85.3 ˘0.5 74.6 ˘0.9

+ On-manifold soft regularizer, VAE 85.4 ˘0.4 80.3 ˘1.7

+ On-manifold hard projection, VAE 88.2 ˘2.1 76.3 ˘2.8

+ On-manifold soft regularizer, PCA 87.8 ˘0.3 79.0 ˘2.9

+ On-manifold hard projection, PCA‹ 88.4 ˘0.7 81.6 ˘1.4

(‹) + Fine-tuning & distillation 88.4 ˘0.7 82.5 ˘2.4

Table 2: Accuracy on WILDS-
Camelyon17 while training 12
models. Each proposed com-
ponent improves the accuracy
of the best model from each
run. The data appears simple
enough that a PCA approxi-
mates the manifold well enough.
This allows implementing the
on-manifold constraint as a hard
projection instead of a soft reg-
ularizer.
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Fig. 7: Spread of accuracies on WILDS-Camelyon17 of models trained with dif-
ferent ablations of our method. The upper/lower bounds of the shaded areas
show the highest/lowest accuracy of any model from one run, averaged over 6
seeds. The violins show distributions of accuracies over all seeds (hence some
values outside the shaded areas). The independence constraint (gray) produces a
wide variety of models, as opposed to the baseline (red line). However, the high-
est accuracy in each run grows slowly with the number of models. With the on-
manifold constraint (blue), the improvement is larger and requires fewer models.
Fine-tuning/distillation (green) bring additional marginal improvements.

regularizer on these projections, as proposed in [60]. As noted in Section 3.2,
this option completely failed in our early experiments with MLPs, but it seems
viable with linear classifiers. This further simplifies the implementation.

Results. We plot in Figure 12 the spread of accuracies of models trained
with different methods (using features from the first pretrained model from [40],
see Appendix I for similar results with the others). The ERM baseline simply
recovers the accuracy of the original complete Densenet, with essentially no vari-
ation across random seeds. With our independence constraint, the spread of
accuracies significantly widens, both below and above the baseline. In Figure 13,
we see that the models span various trade-offs in accuracy on val-OOD and on
test-OOD, neither of which is correlated with the accuracy on in-domain data
(val-ID), thus showing evidence of underspecification. Back to Figure 12, with
our additional on-manifold constraint, the best models reach higher accura-
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cies. This also tops out when training a handful of models (about 10–14, near
the intrinsic dimensionality of the data estimated at 12 with [57]). Keeping in
mind that we use frozen features, these results show that the ERM-pretrained
model extracts features useful for OOD performance but that are ignored by
the pretrained classifier. Similar findings were recently reported in [39,59]. Our
method recovers these features and produces alternative classifiers with a variety
of trade-offs in performance across various OOD conditions.

Ablations. In Table 2, we compare additional ablations of our method, using
a fixed number of 10 models. The essential components are the indepen-
dence and on-manifold constraints. The fine-tuning and distillation steps
contribute to a marginal improvement. We report similar relative improvements
in Appendix I with other pretrained models, but the absolute performance is
very much dependent on a “good” pretrained model.

Model selection. Our method brings similar relative improvements on ei-
ther val-OOD or test-OOD but typically with different models for each (see Fig-
ure 12) despite both being OOD relative to the training data. Model selection
absent labelled target-domain data therefore remains an issue on this
dataset. Fortunately, only little such data may be sufficient. We repeated a few
experiments while holding out 1% of test-OOD (less than 1,000 instances) and
we observed a 99.87% correlation coefficient between the accuracy on test-OOD
and this held-out data. While all our results assume perfect “oracle” model se-
lection, it seems reasonable that real applications could provide a small amount
of labelled test data to achieve similar results.

5 Discussion

We presented a method that highlights cases of underspecification by train-
ing multiple models with similar in-domain performance yet different OOD be-
haviour. This method offers a partial solution to building robust models since it
discovers features that are otherwise missed by standard ERM due to shortcut
learning or other implicit inductive biases [50,66].

What do we gain from identifying cases of underspecification? The
level of underspecification (indicated by the number of models that can be
trained with the proposed constraints) shows how far from unique a solution
to a learning problem is. Diagnosing underspecification is not a pass-or-fail test:
all but the simplest tasks and models are underspecified to some extent. Mea-
suring underspecification should help determining the level of trust attributed to
an ML model. Our constructive approach has the added advantage of exposing
the range of predictive features present in the data.

Importance to both engineering and science. There is a continuing
source of research questions in the apparent mismatch between empirical prac-
tices in ML and some hard limitations of learning methods. The concept of under-
specification has the potential to unify phenomena including shortcut learning,
distribution shifts, and adversarial robustness. These are important for ML as an
engineering discipline (improving reliability and applicability of ML methods)
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as well as a scientific endeavour (understanding the structure of real-world data
and how/why existing methods work).

A first implication of underspecification is that ERM is insufficient to
guarantee OOD generalization. Identified cases of underspecification point at
the need for additional task-specific information in the design of reliable learning
methods. If such information cannot be integrated, learned models are at risk
of unexpected behaviour when deployed on OOD data, because the depend on
stochastic or arbitrary factors (e.g . texture vs. shape in image classification [20]).

A second implication is that ID and OOD performance are not neces-
sarily coupled. Without further assumptions, in-domain validation is not a re-
liable model selection strategy for OOD performance despite some suggestions
e.g . in [24,48]. It might be useful as a heuristic owing to some inherent structure
in real-world data, but its limits of applicability are yet to be understood.

A third implication is that high OOD performance of a model is no guar-
antee for its reliability. High apparent performance might happen by accident in
an underspecified setting. In such cases, the model behaviour depends on hidden
assumptions and it could still fail unexpectedly. Identifying underspecification
remains important to identify these hidden assumptions, which is particularly
important for high-stakes applications such as medical imaging [5,21].

The proposed analysis also corroborates existing explanations for techniques
that successfully improve generalization, such as data augmentation and con-
trastive learning. Both were indeed shown to depend on the injection of addi-
tional knowledge, respectively in the design of the augmentations [10,34,42] and
pair selection strategy [86]. And this extra knowledge is often task-specific [83].
For example, augmenting images with rotations may help in identifying flowers
but not traffic signs. Injecting task-specific knowledge is sometimes vilified in a
“data-driven” culture. This study suggests that we would rather benefit from
highlighting this practice and making assumptions more explicit, thus helping
one to identify the limits of applicability of various methods.

Conclusion. This paper made theoretical and methodological steps on the
study of underspecification. It complements an observational study [12] with a
method to diagnose and address the problem.

Limitations. The proposed method for building models with better general-
ization is only a partial solution since it requires an external model selection pro-
cedure. New methods for model selection [15,19,35,79], robust evaluation [18,36],
and explainability [22,75] are all suitable to implement this selection. Interactive
approaches [14] are another option that injects expert knowledge. Another possi-
ble extension is to apply the method to the end-to-end training of larger models.
Finally, this work focused on i.i.d. training data. We hope to extend the analysis
to forms of data known to be valuable for OOD generalization such as multi-
ple environments [4,54,11], counterfactual examples [36,71], and non-stationary
data [1,26,56,78]. The analysis of multi-environment training as used for domain
generalization may elucidate why these methods often fail in practice [24].
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35. Immer, A., Bauer, M., Fortuin, V., Rätsch, G., Khan, M.E.: Scalable marginal
likelihood estimation for model selection in deep learning. arXiv preprint
arXiv:2104.04975 (2021) 14, 22

36. Kaushik, D., Hovy, E., Lipton, Z.C.: Learning the difference that makes a difference
with counterfactually-augmented data. arXiv preprint arXiv:1909.12434 (2019) 14

37. Kervadec, C., Antipov, G., Baccouche, M., Wolf, C.: Roses are red, violets are
blue... but should VQA expect them to? In: Proc. IEEE Conf. Comp. Vis. Patt.
Recogn. (2021) 2, 3, 33

38. Khemakhem, I., Kingma, D., Monti, R., Hyvarinen, A.: Variational autoencoders
and nonlinear ica: A unifying framework. In: International Conference on Artificial
Intelligence and Statistics. pp. 2207–2217. PMLR (2020) 20



Predicting is not Understanding 17

39. Kirichenko, P., Izmailov, P., Wilson, A.G.: Last layer re-training is sufficient for
robustness to spurious correlations. arXiv preprint arXiv:2204.02937 (2022) 13

40. Koh, P.W., Sagawa, S., Marklund, H., Xie, S.M., Zhang, M., Balsubramani, A.,
Hu, W., Yasunaga, M., Phillips, R.L., Beery, S., et al.: Wilds: A benchmark of
in-the-wild distribution shifts. arXiv preprint arXiv:2012.07421 (2020) 11, 12, 32

41. Koh, P.W., Sagawa, S., Marklund, H., Xie, S.M., Zhang, M., Balsubramani, A., Hu,
W., Yasunaga, M., Phillips, R.L., Gao, I., et al.: Wilds: A benchmark of in-the-wild
distribution shifts. In: Proc. Int. Conf. Mach. Learn. (2021) 2, 3
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Appendices

A Related work

Underspecification in ML. An empirical study by d’Amour et al . in [12]
showed that models trained with different random seeds have wide variations in
OOD performance despite similar in-domain performance. The effect was sur-
prising in its prevalence but it echoed earlier observations [47]. It results from
the well-known impossibility of achieving OOD generalization solely through
ERM and i.i.d. data [4,63]. Indeed, since this learning objective does not con-
strain the model’s behaviour outside the training distribution (i.e. multiple hy-
potheses are plausible), additional assumptions/expertise is necessary e.g . to
tweak the network architecture to the task. Data-driven OOD generalization
is also possible but it requires heterogeneous (non-i.i.d.) data such as multi-
ple environments [4,54,11], counterfactual examples [28,72], or non-stationary
data [26,33,56]. The impossibility of OOD generalization from i.i.d. data is inti-
mately related to identifiability in causal discovery [6] and non-linear ICA [38],
and the impossibility of unsupervised disentanglement in representation learn-
ing [45].

Multiple hypotheses compatible with the data. The Rashomon ef-
fect [9] is almost synonymous with underspecfication but it is agnostic to OOD
data. The Rashomon set [16] is the set of models of a given class whose training
loss or in-domain (ID) risk lies below a threshold [31,62,65]. Predictive multi-
plicity [8,46,58] refers to the existence of multiple models compatible with the
data that make conflicting predictions (on ID data again, rather than OOD).
This paper is about models with low ID risk, yet different OOD behaviour. We
propose a method to learn multiple models compatible with the data. Re-
lated approaches were described for ensembling [60], interpretability [61], and
control of inductive biases [72]. The number of models required in [72] was very
large. We solve this issue by constraining models to align with the data man-
ifold. Other works concerned with the identification of multiple solutions to a
learning problem include [52], Bayesian deep learning [80], and classical feature
selection [25], none of which are suitable to large-scale models and datasets.

Ensembles. Our method for combining robust features resembles traditional
ensembling, which lowers variance by combining predictors with uncorrelated
errors. In comparison however, we lower prediction bias by selecting features
causally related to the target. The key in our approach is to discover predictive
features that are otherwise missed by ERM.

Diversity in feature space. Allen-Zhu and Li [2] explained the success of
deep ensembles with the use of different features by different networks simply be-
cause of different initializations. Their argument is also based on the ubiquity of
underspecification which they call “multi-view structure” of data. Concurrently
to our work, [85] used this explanation to build better ensembles by encourag-
ing diversity in feature space with a Bayesian framework. Even more recently,
Heljakka et al . [29] showed how to quantify representational (i.e. feature-wise)
multiplicity.



Predicting is not Understanding 21

Diversity in prediction space. Concurrently to our work, [51] and [44] pro-
posed to learn models that maximally disagree in OOD predictions. Both learn
only two models. Obviously, neither would do well on our collage dataset (Sec-
tion 4.1) which requires discovering 4 predictive signals. On real vision datasets,
our experiments also suggest that many predictive features ("2) can be discov-
ered.

B Analogy with disentanglement in representation
learning

There are parallels between our discovery of simple predictive features and the
topic of disentanglement in representation learning. Disentanglement aims to
identify all independent factors of variation in the data-generating process [7]
i.e. in a task-independent manner. In comparison, we are interested only in
features that are correlated with task-specific labels in a given dataset. Many
disentanglement methods are based on the independence of the factors (even
though it is usually insufficient [76]) while we rely on the independence of pre-
dictions with each feature. Our method can therefore be seen as a form of dis-
entanglement in the space of predictors. This parallel also has implications for
identifiability. Disentanglement of the correct generative factors was shown to
be impossible without additional assumptions or supervision [45]. In our setting,
the identification of features that are causally-related to the label (as opposed
to spuriously-correlated) also requires additional information [6,63]. Our formu-
lation relegates this need to an external “model selection strategy” that allows
flexibility in its actual realization.

C Practical considerations

Number of models to train. We initially estimate the dimensionality of the
manifold (dmanifold) from DOOD. This is the upper bound on the number of
predictors aligned with the manifold that can be mutually independent. The di-
mensionality is estimated with a simple method [57] based on distances between
nearest neighbours. Only the worst case (highest degree of underspecification
per Definition 1) should allow training a number of models M “dmanifold while
satisfying the independence and on-manifold constraints. In our experiments,
underspecification is usually less severe. We observed that the value of the pre-
dictive loss (Lpred) on training and validation data would remain high for some
models, while it would converge normally for others. Therefore, monitoring the
loss per model could potentially serve for evaluating the degree of underspeci-
fication of a given setting (dataset and architecture) by noting the number of
models that converge. A thorough investigation and validation of this technique
is an important topic left for future work.

Is the data manifold necessary in the definition of underspecifi-
cation ? Our definition without the reference to the data manifold would be
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pointless because virtually all conceivable models would be severely underspeci-
fied. The manifold (e.g . natural photographs) only fills a fraction of the ambient
input space (e.g . all possible RGB pixel grids). Our definition captures under-
specification with respect to this smaller range of inputs that are expected at
test time.

How to select models to combine into a global predictor? Our ap-
proach is agnostic to the model selection strategy. Many options are possible
to identify models that rely on “robust” features. The simplest is an evaluation
on an OOD validation set. Alternatively, interpretability methods allow domain
experts to inspect models and the features they rely on. The selection may also
be semi-automated with task-specific heuristics [15,19,35,79] or additional anno-
tations e.g . human attention and rationales [64,69].

Computational cost. With parallelization, our method scales sublinearly
in computing time and linearly in memory w.r.t. the number of models. Models
share mini-batches. And since they use the same architecture, most computa-
tions can be parallelized with grouped convolutions (one group per model).
The method is also applicable on a frozen feature extractor (Section 4.2 and Ap-
pendix H). However, fine-tuning a shared extractor with the independence loss
is not possible. The model could simply dispatch redundant features on multiple
channels and satisfy the independence constraint without the desired increase in
diversity. Compared to [72], we significantly reduce the number of models needed
to discover useful features.

D Projections on the manifold

The on-manifold loss defined in Eq. (2) requires projecting a model’s input gra-
dients on the data manifold. The manifold is characterized by a provided set of
unlabeled data DOOD “ txiu „ POOD. We propose two implementations of the
projection function projp¨q, using either a simple principal component analysis
(PCA) model of the manifold or a variational auto-encoder (VAE). A PCA is
fast to evaluate but can only model a linear manifold, which is likely overly
simplistic for most real datasets. A VAE allows learning a non-linear manifold.
Better implementations are probably possible by taking advantage of recent de-
velopments in OOD detection and generative models such as GANs, EBMs, and
diffusion models.

In the case of a PCA model, the projection is a straightforward linear projec-
tion on the top components of a PCA basis of DOOD. In the case of a VAE, we
train an auto-encoder on the data DOOD. We interpret it as a generative model
of the manifold, assuming that inputs to the auto-encoder will be mapped to a
nearby projection on the manifold. We denote the auto-encoder as a function
projψ : Rdin Ñ M of parameters θ such that

projψpxq«x @ x„POOD. (6)

Therefore, the reconstruction error ||x ´ projψpxq|| is minimal for points x on
to the manifold.
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The function proj is trained to reconstruct points, but it is also readily ca-
pable of projecting a vector v P Rdin originating at x. In our case, we will use
it to project the input gradient (v “ ∇xfθpxq). We overload the function as
projψ : Rdin ˆ Rdin Ñ M with

projψpx,vq«v @ x„POOD, px ` vq„POOD. (7)

Here again, the reconstruction error ||v ´ projψpx,vq|| is minimal for a point x
on the manifold and vector v aligned with the manifold. We can therefore
apply projp¨q to our input gradients, measure the distance with their projection
on the manifold, and use this distance as our on-manifold loss in Eq. (2).

Reconstructing vectors with an auto-encoder. This section describes
how to take a standard auto-encoder, typically trained to reconstruct a point x
of its input space, and use it to reconstruct a vector v in this space (input
gradients in our case). The auto-encoders used this work are compositions of
linear layers, ReLU activations, and a sigmoid output activation. Table 3 provides
the equivalent operations performed during forward propagation in any such
layer for reconstructing an input or gradient.

Table 3: Operations performed at each layer of a VAE during forward propaga-
tion for reconstructing points (left column) and vectors/gradients (right column).

Operation on point x Operation on vector v

Linear layer
x Ð Wx ` b v Ð Wv

ReLU activation
x Ð x d 1px ą 0q v Ð v d 1px ą 0q

Sigmoid activation
x Ð σpxq “ 1{p1 ` e´x

q v Ð v σpxq
`

1 ´ σpxq
˘

E Distilling multiple models into one

After training a set of models, we propose to combine the best of them into one
a global predictor with superior OOD performance. We train this predictor with
the same fine-tuning as described in Section 3.3, using masks of selected models
aggregated with a logical OR. We outline in Algorithm 2 a simple procedure to
iteratively combine models pairwise and greedily.

F Experimental details: collages

Collages dataset, raw pixels as input. The collages dataset is described
in [72]. We used the 4-block ordered version (each of the four source datasets ap-
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Algorithm 2: Distilling multiple models into one with greedy pairwise
combinations.

Inputs:
S “ tfθ1 ... fθM u: Set of independent models.
getNBestModelsp¨q: Model selection strategy, e.g . evaluation on OOD
validation set.

Result:
fθ‹ : Best combined model according to given strategy.

Method:
λindep Ð 0, λmanifold Ð 0 // Use only predictive loss
do

tθk,θlu Ð get2BestModelspSq

mask‹
i Ð maskk

i _ maskl
i @i // Combine masks

D‹
tr Ð tpxi d mask‹

i , yiqui // Prepare masked data
θ‹ Ð argminLpDm

tr ,θkq // Fine-tune
S Ð S

Ť

θ‹ // Append to set of models
while get1BestModelpSq “ θ‹ // New combination is best
θ‹ Ð get1BestModelpSq // Return best model

pear in the same quadrant in every instance). We re-generated the collages with
bilinear downsampling by 1/4th using the code from the authors.7 The reason
we do not use full-size images is purely computational. The original data [72]
used nearest-neighbour downsampling because it preserves the contrast and dy-
namic range, but bilinear downsampling produces smoother images that better
match the manifold assumption of natural data that is important in this work.
The bilinear downsampling causes a compression of the dynamic range that is
uneven across the tiles and mostly affects SVHN and CIFAR. To compensate for
it, we apply a standard local contrast normalization (adapthisteq in Matlab).
We also replace the pixels with a constant value near 0 with small noise. These
pixels exist in the MNIST data but are again unrepresentative of natural data.

In Matlab code:

% Local contrast normalization
img = adapthisteq(img, ’NumTiles’, [2 2]);

% Replace dark pixels with small random values
img(img < .05) = rand(nnz(img < .05), 1) * .05;

Collages dataset, ResNet features as input. We obtain feature maps
by passing full-resolution images of collages into a standard frozen ImageNet-
pretrained ResNet-18 [27]. We chose to use feature maps from an intermediate
layer res3b relu because it retains a reasonable spatial resolution (8ˆ8 with 128
channels). The independence loss (1) for these experiments uses a dot product
rather than a cosine similarity. It works better but we don’t know why.

7https://github.com/dteney/collages-dataset

https://github.com/dteney/collages-dataset
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Hyperparameters. See Table 4. The classifiers’ hyperparameters are chosen
to optimize the baseline reported as “Upper bounds” in the results. None of these
hyperparameters are particularly tuned to the proposed methods.

Baselines. The “dropout” baseline in Table 1 is implemented with as a
standard dropout on the input pixels, with a different dropout mask for each
model. The idea is that each model sees a different (dropped-out) version of the
input, and therefore might pick up different features.

G Experimental details: GQA

VQA Model. For our experiments on visual question answering, we use a sim-
plified version of the classical BUTD model [73]. For the text input (question),
we use standard 300-dimensional GloVE embeddings [53] (frozen) averaged over
the sequence. For the image input, we use the object features provided with
the GQA dataset. These are 2048-dimensional from a “bottom-up” object de-
tector [3]. We average and L2-normalize these features to obtain a single 2048D
vector representing each image. The text and question vectors are linearly pro-
jected to a common dimension (256), combined with an element-wise product,
then passed through a 1-layer MLP to obtain scores over candidate answers.

Grad-CAM Rank correlation. The rank correlation reported in Table 8 is
the Spearman rank correlation of grad-CAM scores on the validation set, average
over questions and pairs of models. The grad-CAM scores correspond to the
2048D input gradients multiplied by the unpooled (36 ˆ 2048D) object features.
The grad-CAM scores are used because they provide a spatial importance map
over the image despite the model using globally-pooled features (hence an input
gradient that is spatially uniform over the image).
The proposed method is applied in the same way as with the collages. Almost all
hyperparameters are remarkably identical to those for the collages (see Table 5).
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Table 4: Hyperparameters used on the collages dataset.

Hyperparameter Collages, pixels as input ResNet features as input

Classifier
Input dimensions 16ˆ16ˆ1 (grayscale) 8ˆ8ˆ128 (res3b relu layer)
Architecture 1 Hidden layer (fully-connected) 1 Hidden layer (channel-wise)

8 neurons 16 neurons
Output layer (fully-connected). Output layer (fully-connected)

Hidden Activations Leaky ReLU, leak scale 0.01 Leaky ReLU, leak scale 0.01
Output activation Sigmoid Sigmoid
Mini-batch size 256 256
Optimizer Adam Adam
Learning rate 0.002 0.001
Optimization length 10,000 Updates 30,000 Updates

No early stopping No early stopping

PCA Manifold model
Number of components 24 –
Retained variance 85% –

VAE Manifold model
Architecture 2-Hidden layer MLP 2-Hidden layer MLP

128 neurons per layer 128 neurons per layer
Latent dimensions 24 24
Hidden activations ReLU ReLU
Output activations Sigmoid Sigmoid
Mini-batch size 256 128
Optimizer Adam Adam
Learning rate 0.001 0.001
Optimization length 100 Epochs 300 Epochs
Weight of KL loss 0.01 0.01

(small to prioritize accurate reconstructions)
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Table 5: Hyperparameters used on GQA and WILDS-Camelyon17.

Hyperparameter GQA WILDS-Camelyon17

Classifier
Input dimensions 1ˆ300 (text) 1ˆ1024 (DenseNet features)

1ˆ2048 (image)
Hidden layers dimension 256 –
Hidden activations Leaky ReLU –
Output activations Sigmoid Sigmoid
Mini-batch size 256 256
Optimizer Adam Adam
Learning rate 0.002 0.001
Optimization length 50,000 Updates (40 epochs) 12,000 Updates (10 epochs)

No early stopping

PCA Manifold model
Number of components 168 (performs best) Same as number of models
Retained variance 85% Varies: 75% with 2 components,

85% with 3, 90% with 6,
95% with 13, 97% with 25

VAE Manifold model
Architecture 2-Hidden layer MLP 1-Hidden layer MLP

512 neurons per layer 128 neurons per layer
Latent dimensions 32 14
Hidden Activations ReLU ReLU
Output activation None None
Mini-batch size 256 256
Optimizer Adam Adam
Learning rate 0.001 0.001
Optimization length 100 Epochs 20 Epochs
Weight of KL loss 0.01 0.01
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H Additional results: collages

We provide below additional results on the collages dataset. We also include
experiments using features from a ResNet-18 as inputs rather than raw
pixels. We use a standard ResNet-18 pretrained on ImageNet then kept frozen.
Our method is applied identically as in other experiments, except that the in-
dependence and on-manifold constraints are now applied in the space of ResNet
feature maps rather than in pixel space. The manifold model is a VAE trained on
such feature maps. The behaviour of our method with ResNet features
is qualitatively the same as in other experiments. This demonstrates the
applicability of the method on features from deep architectures.
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(c) Input grad. L2
norm.
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(d) Indep. loss (cos.
sim.)
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(e) Dot prod. on
Grad-CAM.
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(f) Indep. loss (dot
prod.)
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(g) Indep. loss (cos.
sim.) + on-manifold
(PCA).

4 8 12 16 20 24 32 36
Number of models

5.00

4.00

3.00

2.00

1.00

0.00

In
de

pe
nd

en
ce

 lo
ss

 w
/ 

on
-m

an
ifo

ld
 c

on
st

ra
in

t (
VA

E)

60

65

70

75

80

(h) Indep. loss (cos.
sim.) + on-manifold
(VAE).
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(i) Indep. loss (cos.
sim.) + on-manifold
(VAE) + fine-tuning.
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(j) Indep. loss (cos.
sim.) + on-manifold
(VAE) + fine-tuning
+ combinations.

Fig. 8: (Collages, pixels as input) Accuracy (average over the 4 test sets)
of existing methods (first row) and ablations (second row) for various
hyperparameters and numbers of models. The only existing methods with non-
trivial performance (e.g . (f)) require training at least an order of magnitude
more models than ours (j).
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(a) Pixels as input.
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(b) ResNet features as input.

Fig. 9: (Collages) Accuracy of the proposed method (average over the 4 test
sets) for various loss weights of the independence and on-manifold losses (with
12 models). Performance is stable over a range of values and both losses
are important, as seen from the leftmost & lowermost cells. Performance is also
repeatable: each cell reports a single run i.e.not averaged over multiple random
seeds.
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(b) Pixels as input + fine-
tuning.
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(c) ResNet features as in-
put.

Fig. 10: (Collages) Accuracy of the proposed method as a function of the num-
ber of models trained. Non-trivial accuracy is obtained on all 4 test sets with as
few as 4 models. In line with our theoretical predictions, the accuracy decreases
after ą24 models, which is the recommended value based on the intrinsic dimen-
sionality of the dataset (Section C).
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(b) ResNet features as input.

Fig. 11: (Collages) Accuracy on the 4 test sets (columns) of models with the
best accuracy on each set (rows). The diagonal pattern indicates that the models
specialize and learn different, non-overlapping features.

Table 6: Accuracy of the proposed method and ablations using ResNet features
as input. The independence and on-manifold constraints are both important for
high performance. There remains a small gap with the upper-bound accuracy,
but we achieve drastically better results than the baseline.

Collages dataset, ResNet features as input (accuracy in %) Best model on
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Upper bounds (training on OOD data) 100.0 98.0 92.3 89.9 95.1

Baseline 99.8 49.9 50.7 49.9 62.6

Independence loss
4 models 86.8 60.2 62.1 51.6 65.2
8 models 88.4 61.5 63.3 51.9 66.3
16 models 91.6 59.3 59.9 52.1 65.7
24 models 93.9 58.2 57.7 52.1 65.5

Independence loss + on-manifold constraint (VAE)
4 models 99.6 71.7 76.1 68.3 78.9
8 models 99.2 86.8 76.3 67.8 82.5
16 models 99.5 90.0 77.5 76.1 85.8
24 models 99.2 93.0 80.1 76.0 87.1
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I Additional results: WILDS-Camelyon17
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Fig. 12: Spread of accuracies on WILDS-Camelyon17 of models trained with dif-
ferent ablations of our method. The upper/lower bounds of the shaded areas
show the highest/lowest accuracy of any model from one run, averaged over 6
seeds. The violins show the distribution of accuracies over all seeds (hence some
values outside the shaded areas). Take-aways. The independence constraint
(gray) produces a wide variety of models compared to the baseline (red). How-
ever, the highest accuracy in each run grows slowly with the number of models.
With the on-manifold constraint (blue), the improvement is clearly larger and
only requires a handful of models. The fine-tuning and distillation (green) bring
an additional marginal improvement.

Fig. 13: On WILDS-Camelyon17, each model (same colors as Figure 12) achieves
a different trade-off in performance on different splits, as seen with test-OOD vs.
val-ID/val-OOD (left/right, respectively). Each dot represents one model at one
training epoch. We plot every epoch since each model moves on these charts as
training progresses. The proposed method (green) produces models with much
better performance on all splits (toward the upper right) than the baseline (red).
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Table 7: Best accuracy (%) on the test-OOD split of WILDS-Camelyon17 (av-
erage over 6 random seeds). We show the difference in performance between the
baseline and various ablations of our method while training 12 models (as in
Table 2), starting with each of the 10 pretrained models provided by the dataset
authors [40]. While the ranking of methods is roughly similar, the abso-
lute accuracy (first and last rows) is highly variable across pretrained
models. A possible solution for eliminating this variability would be to apply
our method during pretraining – at far greater computational expense than when
training linear classifiers.

WILDS-Camelyon17 Pretrained model

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

ERM Baseline 68.4 78.0 73.3 60.4 78.3 78.5 64.4 74.2 71.9 60.2

˘0.1 ˘0.1 ˘0.0 ˘0.1 ˘0.0 ˘0.1 ˘0.1 ˘0.0 ˘0.2 ˘0.1

+ Independence con-
straint

+6.2 +4.5 +0.8 +4.4 -1.5 +2.9 +1.3 +0.8 +4.1 +2.3

+ On-manifold soft reg-
ularizer, VAE

+11.9 +7.1 +0.6 +11.5 -1.0 +5.1 +3.6 +2.2 +6.2 +2.3

+ On-manifold hard
projection, VAE

+7.9 +4.2 +2.2 +12.9 -0.3 +7.4 +9.9 +2.6 +7.1 +4.5

+ On-manifold soft reg-
ularizer, PCA

+10.6 +4.7 +2.6 +8.6 -0.4 +6.4 +7.4 +2.9 +8.4 +4.2

+ On-manifold hard
projection, PCA‹

+13.2 +5.8 +2.6 +12.2 +0.1 +5.3 +7.2 +3.4 +6.7 +3.4

(‹) + Fine-tuning &
distillation

+14.1 +6.3 +2.8 +15.1 +0.9 +5.7 +9.3 +3.8 +6.7 +3.5

(‹) + Fine-tuning &
distillation

82.5 84.3 76.2 75.5 79.3 84.2 73.8 78.0 78.6 63.7

˘2.4 ˘2.1 ˘0.4 ˘2.1 ˘0.4 ˘0.6 ˘2.5 ˘1.8 ˘1.0 ˘0.4
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J Experiments on visual question answering

In this section, we demonstrate the applicability of our method on a more com-
plex task. We choose visual question answering (VQA) because it is notorious for
dataset biases [74] that cause shortcut learning [13]. We train a simple architec-
ture (details in Appendix G) on the GQA dataset [32] and report accuracy on the
GQA and GQA-OOD [37] validation sets. We focus on binary questions to lighten
the computational expense. As input the model, we use frozen 2048-dimensional
image features (globally-pooled bottom-up features [3]). Our method is applied
in the space of these features. In Table 8, we observe that our method produces
models with slightly better accuracy on all test sets. The independence regular-
izer alone is not sufficient, most likely because it is unable to discover meaningful
features in the large 2048-dimensional space. The on-manifold constraint does
solve this difficulty. Interestingly, the individual models are better as well as a
simple ensemble of all of these models. This suggests a benefit from the greater
variety of features learned collectively by the models. We show in Figure 1 and
in Appendix J that the models typically focus each on different regions of images
(with grad-CAM-weighted visualizations as in [64]). It is important to note that
our method is applied across channels of image features, and that the spatial
diversity emerges naturally. We quantitatively verify this increase in diversity in
Table 8 with the average Spearman rank correlation of grad-CAM scores across
models.

Table 8: Application to visual question answering. Models trained with the pro-
posed method achieve higher accuracy. They also show higher diversity in the
image regions they rely on (last column, lower correlation of grad-CAM scores).

GQA yes/no N. of GQA Val. GQA Val. GQA-OOD GQA-OOD Grad-CAM

(accuracy in %) models (best) (ensemble) Val-head (best) Val-tail (best) rank corr.

Baseline 3 67.9 69.3 70.4 66.5 0.68
Baseline 16 68.6 68.9 71.2 67.3 –

+ Independence 3 67.6 69.2 70.5 67.1 0.57
+ Independence 4 67.6 69.4 70.1 66.2 –
+ Independence 8 67.8 70.0 70.7 66.7 –
+ Independence 12 68.1 70.3 70.6 69.8 –
+ Independence 16 68.1 70.5 71.1 69.6 –

+ Ind. + on-manifold 3 68.7 69.7 71.9 72.5 0.59
+ Ind. + on-manifold 4 69.2 70.4 72.9 70.5 –
+ Ind. + on-manifold 8 68.8 70.0 71.5 69.1 –
+ Ind. + on-manifold 12 69.0 70.2 72.6 69.4 –
+ Ind. + on-manifold 16 69.3 70.3 72.4 71.5 –
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Are the animals of different types? Yes.

Predictions: yes, yes, yes.

Is the fence made of metal? No.

Predictions: no, no, no.

In which part of the picture is the train? Left.

Predictions: left, left, left.

Are there both a keyboard and a desk in this photograph? No.

Predictions: no, yes, no.

What is the bench on? Platform.

Predictions: platform, platform, clock.

What is the piece of furniture that the book is on? Bed.

Predictions: bed, nightstand, nightstand.

Fig. 14: Examples from the GQA validation set. We show the input question,
ground truth answer, and predicted answer from 3 models trained with our
method. The input images are weighted with grad-CAM scores over object de-
tections. The models often predict the same answer while focusing on different
regions. This diversity in spatial locations emerges naturally: our independence
constraint is applied across the channels of globally-pooled visual features.
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The experiments above use only the binary (yes/no) question of the GQA
dataset [32]. We repeated them with the full dataset. The setup, model, and
hyperparameters are unchanged. The models’ accuracy remains close to that of
the baseline (Table 9) even when the independence constraint induces the models
to focus on different input features. In Figure 14, we include examples from
the validation set that illustrate this effect. Contrary to Section J, we did not
observe improvements in accuracy when training three models with our method.
Our ongoing work is exploring the range of hyperparameters (larger number of
models, different regularizer weights) to further investigate these observations.

Table 9: Experiments on the full GQA dataset. Models maintain very similar
accuracy across the board while focusing on different image features.

GQA full N. of GQA Val. GQA Val. GQA-OOD GQA-OOD Grad-CAM

(accuracy in %) models (best) (ensemble) Val-head (best) Val-tail (best) rank corr.

Baseline 3 49.7 52.3 53.3 35.6 0.1404

With PCA manifold model

+ Independence 3 50.9 52.7 54.4 35.0 0.2230

+ Ind. + on-manifold 3 51.0 52.5 54.7 35.2 0.1868

With PCA manifold model

+ Independence 3 50.7 51.7 55.1 34.0 0.1626

+ Ind. + on-manifold 3 50.7 51.6 55.8 33.8 0.1012


