
Neural-Sim: Learning to Generate Training Data
with NeRF (appendix)

Yunhao Ge1, Harkirat Behl2∗, Jiashu Xu1∗, Suriya Gunasekar2, Neel Joshi2,
Yale Song2, Xin Wang2, Laurent Itti1, and Vibhav Vineet2

1 University of Southern California
2 Microsoft Research

1 Implementation Details

1.1 Visualization of reparametrization of pose sampling

We visualize the reparametrization of pose sampling in Fig. 1 as discussed in the
Section 3.1 Tool 1 in the main paper.

log(𝑝1) log(𝑝2) … log(𝑝𝑘) 𝐺1 …𝐺2 𝐺𝑘

exp(𝑧𝑖/𝜏 )

σi=1
k exp(𝑧𝑖/𝜏 )

𝜏

𝑦1 … 𝑦𝑘𝑦2
360
𝑘 ×0.5 …360

𝑘 ×1.5
360
𝑘 ×(𝑘−0.5)

×

+

𝑏𝑗
𝑐𝑒

𝑏𝑗
𝑠𝑡 𝑏𝑗

𝑒𝑛

𝑏𝑗
𝑠𝑡 + 𝜀 ×(𝑏𝑗

𝑒𝑛 - 𝑏𝑗
𝑠𝑡 ) 𝜀

𝑉𝑗

Bin sample with 
Gumble-Softmax

Pose sample 
from Uniform

Fig. 1: Reparametrization of pose bin sampling: We first discretize the pose space
into a set of k bins, which we will then sample to generate the view parameters
for the NeRF. To backpropagate through the sampling process, we approximate
the sample from the categorical (i.e. bin) distribution by using a Gumble-softmax
“reparameterization trick”. Within each bin we sample uniformly.

* Equal contribution as second author



2 Y. Ge et al.

1.2 Memory Efficiency

Tool 2: Twice-forward-once-backward As discussed in the main paper Sec. 3.1
(Tool2), the full gradient update of our bi-level optimization problem involves
using the approximation of ∇NeRF in Eq. 5 and back in Eq. 2. There are three
terms in this computation with the following dimensions:

(1)
∂(
∂l(xj,θ̂(ψt))

∂θ )

∂xj
∈ Rm×d, (2)

∂xj
∂ψ ∈ Rd×k, and (3)∇TV = H(θ̂(ψt), ψ)

−1 dLval(θ̂(ψt))
dθ ∈

Rm×1, where m = |θ| is the # of parameters in object detection model, d is the
# of pixels in x, and k is # of pose bins.

Specifically, if we follow the sequence of (3)-(1)-(2), first, the output of (3)
is a 1 ×m vector and can be used as the weight to compute (1) with Pytorch
weighted autograd. In this case, we do not need to explicitly store the huge
matrix (Rm×d) of (1) and the corresponding large computation graphs of each
element in it. Similarly, the result of previous step ((3)-(1)) is a 1× d dimension
vector and we can use it as the weight to compute (2) with Pytorch weighted
autograd. Finally, we obtain the gradient as a 1× k dimension vector.

Tool 3: Patch-wise gradient computation As discussed in the main paper Sec.
3.1 (Tool3), patch-wise gradient computation helps to save the memory cost of
computing (1)-(2) sequence of the gradient. Table. 1 shows the details about the
memory cost when we use different patch sizes. Specifically, if we keep NeRF
chunk as 512 fix, when we increase the patch size by multiplying 2 each time,
the memory cost of gradient computation will also approximately doubled. With
Patch-wise gradient computation, image size would not be the bottleneck of
gradient computation.

Patch Size Gradient Computation Memory Cost Total Memory Cost
512 (32x16) 1910 MB 6450 MB
256 (16x16) 974MB 5514MB
128 (16x8) 464MB 5004MB
64 (8x8) 216MB 4756MB

Table 1: Patch-wise optimization memory cost comparison with different patch-
size, for the total memory cost we fix the NeRF chunk as 512.

1.3 Comparison with the graphics pipeline

We provide additional quantitative results to demonstrate that NeRF can re-
place traditional graphics pipelines like BlenderProc [2] when generating data
for downstream computer vision tasks such as object detection. Results are pro-
vided in the Fig. 2.

To test this, we consider objects from YCB-video datasets. We render images
from NeRF and BlenderProc [2] using the same camera pose and zoom param-
eters. We use these images to conduct multi-class object detection tasks under



Neural-Sim 3

the same training and test setting. As shown NeRF generated data can achieve
the same accuracy as that of BlenderProc on downstream object detection tasks.

0 20 40 60 80 100

NeRF v.s. BlenderProc

BlenderProcNeRF

Multiple: Pose partial;  Zoom partial

Train/test distribution overlap

Single: Pose full;  Zoom partial

Single: Pose no;  Zoom full

Single: Pose partial;  Zoom full

Single: Pose full;  Zoom full

Fig. 2: Object detection performance using NeRF and Blender synthesized im-
ages. The X-axis is mAP. Single means each test image contains one object,
multiple means each test image contains multiple objects.

1.4 Influence of optimization parameters

We briefly describe the effects of different parameters used in our bilevel op-
timization updates. In particular, we show the effect of Gubmel softmax tem-
perature parameter used in the main paper. Fig. 3 shows the Gaumble softmax
performance under different temperatures. If the temperature parameter is very
large, initial categorical distribution takes form of uniform distribution after
Gumbel updates and at a lower temperature, the distribution becomes peaky.
In our experiments, we have used a parameter value of 0.1.

We used stochastic gradient descent with momentum for ψ parameter up-
dates with learning rates of 1e-5 and momentum value of 0.9 value. Further, on
Y CB − video dataset, we use warm start to conduct experiment.

1.5 Optimization Runtime

We now provide running time details of our end-to-end pipeline. Each iteration
involves data generation through NeRF, detection model training, backpropaga-
tion through detection model including hessian-vector product evaluation, and
backpropagation through data generation process. For Y CB − synthetics ex-
periments described in Sec.4.2 in the main paper, it takes roughly ten minutes
to complete one end-to-end computation. Further, time depends on the image
resolution generated by NeRF, and detection model training.



4 Y. Ge et al.

Original probability Gumbel-max (argmax) Gumbel-softmax 𝝉 = 0.01 Gumbel-softmax 𝝉 = 0.1 Gumbel-softmax 𝝉 = 5

O
ri

gi
n

al
 p

ro
b

ab
ili

ty
O

ri
gi

n
al

 p
ro

b
ab

ili
ty

Category Category Category Category

Fr
eq

u
en

cy
Fr

eq
u

en
cy

Fig. 3: Effect of Gubmel softmax temperature parameter used to approximate
the initial distribution.

Finally, it should be noted that this pipeline does not involve any human
effort. In comparison, the traditional graphics pipeline will involve human expert
involvement for creating good 3D models of objects.

1.6 Rendering from SFM

In order to generate images from a traditional graphics pipeline, one needs to
have accurate 3D object models including accurate geometry, texture, materials
of objects. Capturing these accurate properties of the objects requires human
expert involvement. However, if we use a standard computer vision pipeline like
structure-from-motion [5] pipeline to generate 3D models, the quality of images
generated by these models are not as high as that of NeRF. Please refer to the
Fig. 4. Thus involving human experts to improve 3D model quality for traditional
graphics limits their scalability, and is also expensive. In contrast, NeRF only
requires images along with camera pose information, providing benefits over
traditional graphics pipelines.

1.7 NeRF-in-the-wild

Fig. 5 shows the results of NeRF-in-the-wild (nerf-w) on controllable illumi-
nation change which allows smooth interpolations between color and lighting.
The experiments have been conducted on the YCB-objects. For each object,
we conduct interpolations between the appearance embedding of two training
images (left, right), which results in rendering (middle) where illumination are
interpolated but geometry is fixed.



Neural-Sim 5

Real image , obtain pose by
(msr-reconstruction.azurewebsites.net)

(1) Reconstructed from SFM (2) Rendered from NeRF

Fig. 4: Quality of images rendered using 3D model generated using a standard
structure-from-motion pipeline. In comparison, NeRF can generate high-quality
images without needing high-quality 3D models.

l

Fig. 5: NeRF-in-the-wild illumination rendering control on YCB objects. Inter-
polations between the appearance embedding of two training images (left, right),
which results in rendering (middle) where illuminations are interpolated but ge-
ometry is fixed.



6 Y. Ge et al.

2 Dataset Information

2.1 YCB object visualization

Experiments have been conducted on 21 objects from YCB-video datasets. These
objects are: masterchef can, cracker box, sugar box, tomato soup can, mustard
bottle, tuna fish can, pudding box, gelatin box, potted meat can, banana, pitcher
base, bleach cleanser, bowl, mug, power drill, wood block, scissor, large marker,
large clamp, extra large clamp, foam brick. These objects are showed in Fig. 6.

Fig. 6: Object from YCB-video dataset [6]. master chef can, cracker box, sugar
box, tomato soup can, mustard bottle, tuna fish can, pudding box, gelatin box,
potted meat can, banana, pitcher base, bleach cleanser, bowl, mug, power drill,
wood block, scissor, large marker, large clamp, extra large clamp, foam brick

2.2 YCB synthetic dataset details

In order to train NeRF, we first use 3D YCB object models from the BOP-
benchmark page [3]. We use BlenderProc [2] to generate 100 images per object.
These images are captured from poses that are sampled from a uniform distribu-
tion. These images along with their corresponding pose values are used to train
NeRF. NeRF training takes almost 20 hours for each object.



Neural-Sim 7

2.3 YCB-in-the-wild dataset

As described in the main paper, in order to evaluate the performance of the
proposed NS and NSO approaches on a real-world dataset, we have created
a real-world YCB-in-the-wild dataset. The dataset has 6 YCB objects in it,
which are the same as in the YCB-synthetic dataset: masterchef, cheezit, gelatin,
pitcher, mug, driller. All images are captured using a smartphone camera in
common indoor environments: living room, kitchen, bedroom and bathroom,
under natural pose and illumination. We manually labelled each image with
object bounding boxes. Further, to explore the effect of distribution shifts on
the object detection task, we manually labelled the object pose in each image
using the the same eight bins discussed earlier. The dataset consists of total
around 1300 test images with each object having over 200 images. Images from
the dataset capturing different environment properties are shown in Fig. 7.

Fig. 7: Images from our YCB-in-the-wild dataset. It consists of six YCB objects
masterchef, cheezeit, gelatin, pitcher, mug, driller captured in common indoor
environments: living room, kitchen, bedroom, bathroom.

2.4 YCB-video dataset

Images from the YCB-video dataset captured in different scenes are shown in
Fig. 8.

3 Additional Experiments

We provide additional experiments below.



8 Y. Ge et al.

Fig. 8: Example images from the YCB-Video test set.

Test distribution

Train start distributions

One variation for single object
Pitcher multi-model: two models 
Pitcher multi-model: three models
Pitcher zoom

2 5

0

10

20

30

40

50

60

70

80

90

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8

Before optimization distribution

Test distribution train-1-start distribution train-2-start distribution

0

5

10

15

20

25

30

35

40

45

50

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8

End optimization distribution

Test distribution train-1-end distribution train-2-end distribution

Train end distributions 
match test distribution

Fig. 9: Interpretability results on multi-modal test distributions. Visualization
provides evidence that the proposed Neural-Sim (NSO) approach generates in-
terpretable outputs. In the shown example, test images are sampled from multi-
modal distribution bin 1 and bin 6 as dominant bins. For Neural-Sim optimiza-
tion (NSO), initial training pose distributions are uniform and bin 8 as dominant
bin. Observe the bin distribution at the optimization - the final bin distribution
at the end of Neural-Sim (NSO) training matches with the test bin distribution.

3.1 Interpretable experiments visualization

In order to support the claim that the proposed Neural-Sim Optimization (NSO)
approach can learn interpretable results, we provide additional visualization on
the YCB-in-the-wild dataset illustrated in Fig. 9, Fig. 10 and Fig. 11. In partic-
ular, we demonstrate interpretability of our method on two scenarios. First, we
conduct experiments where test images are generated from multi-modal distri-
butions - two modal and three modal distributions. Second, we also show results
on zoom experiments on cheeze box and driller objects. In both these experi-
ment setup, we consider two starting bin distributions for training: a uniform
distribution and a randomly selected bin as a dominant bin. As shown in the fig-
ure, we observe that no matter what the starting training distributions our NSO
approach use, the final learnt distributions match with the test distributions.

Finally, we also provide qualitative comparison between images generated
from the learned distributions using the proposed NSO approach and the baseline
Auto-Sim approach. Fig. 12 provides visualization for Cheeze box and Fig. 13
for pitcher object. We have visualized eighteen images sampled from the learned
distributions from the NSO and Auto-Sim approaches. We observe that the
proposed NSO approach can generate images that resemble the test images in
both these objects. However, Auto-Sim generates images where objects are not
always aligned with test images. These visualizations provide ample evidence



Neural-Sim 9

One variation for single object
Pitcher multi-model: two models 
Pitcher multi-model: three models
Pitcher zoom

2 7 8

Test distribution

Train start distributions

0

10

20

30

40

50

60

70

80

90

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8

Before optimization distribution

Test distribution train-1-start distribution train-2-start distribution

0

10

20

30

40

50

60

70

80

90

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8

End optimization distribution

Test distribution train-1-end distribution train-2-end distribution

Train end distributions 
match test distribution

Fig. 10: Interpretability results on multi-modal test distributions. Visualization
provides evidence that the proposed Neural-Sim (NSO) approach generates in-
terpretable outputs. In the shown example, test images are sampled from multi-
modal distribution bin 1, bin 3 and bin 5 as dominant bins. For Neural-Sim
optimization (NSO), initial training pose distributions are uniform and bin 7 as
dominant bin. Observe the bin distribution at the optimization - the final bin
distribution at the end of Neural-Sim (NSO) training matches with the test bin
distribution.

0

20

40

60

80

100

bin1 bin2 bin3 bin4

End optimization distribution

Test distribution train-1-end distribution

One variation for single object
Pitcher multi-model: two models 
Pitcher multi-model: three models
Pitcher zoom

2 7 8

Test distribution

Train start distributions

Train end distributions 
match test distribution

0

20

40

60

80

100

bin1 bin2 bin3 bin4

Before optimization distribution

Test distribution train-1-start distribution

Fig. 11: Interpretability results on zoom test distributions. Visualization provides
evidence that the proposed Neural-Sim (NSO) approach generates interpretable
outputs on driller and cheeze box. Observe the bin distribution at the end of the
optimization - the final bin distribution at the end of Neural-Sim (NSO) training
matches with the test bin distribution.



10 Y. Ge et al.

to support the significant improvement in performance achieved by our NSO
approach over the baseline.

Test Distribution Training images generated by Auto-Sim 

Training images generated by NS Training images generated by NSO

Fig. 12: Visualization of cheeze box images generated from the learned distribu-
tions using the proposed NSO approach and the baseline Auto-Sim approach.
Observe how images generated from our approach align with the test distribu-
tion. In comparison, there are many noisy samples in the Auto-Sim approach.

3.2 Detection visualization

Object detection results from our pipeline on YCB-in-the-wild and YCB-video
datasets are shown in Fig. 14.

3.3 Full YCB-Video dataset results

If we use 100% full YCB-Video training images to train RetinaNet, the mean
Average Precision (mAP) reaches 58.5% on all 21 classes. After we use NSO with
combine optimization which combines both real-world training images and NeRF
synthesized images into training and optimization, the accuracy can improve
from 58.3% to 58.8%



Neural-Sim 11

Test Distribution Training images generated by Auto-Sim 

Training images generated by NS Training images generated by NSO

Fig. 13: Visualization of pitcher images generated from the learned distributions
using the proposed NSO approach and the baseline Auto-Sim approach. Observe
how images generated from our approach align with the test distribution. In
comparison, there are many noisy samples in the Auto-Sim approach.



12 Y. Ge et al.

(a) YCB-in-the-wild dataset

(b) YCB Video dataset

Fig. 14: Visualization for detection results on YCB-in-the-wild and YCB-Video
datasets.



Neural-Sim 13

3.4 Extension to ObjectNet dataset

We conduct experiments on ObjectNet [1] dataset, which is a large real-world
dataset for object recognition. The dataset consists of 313 object classes with
113 overlapping ImageNet classes. In order to synthesize training images, we
use CO3D [4] dataset that provides data to train NeRF. There are 17 classes
that overlap with ImageNet and ObjectNet classes. After we trained NeRFs for
these classes, we find by using NeRF synthesized data to finetune an ImageNet
pretrained model provides a 4% improvement on the 17 ObjectNet classes.

4 Limitations and Dataset copyright

In this work, we have focused on optimizing camera pose, zoom factor, and
illumination parameters. In the real world, there are other scene parameters
that affect accuracy, like materials, etc. However, our approach can be extended
to include other parameters by incorporating new advances in neural rendering.

Dataset copyright. We used publically available data. The YCB-Video dataset
is released under the MIT License. Further, we will release our YCB-in-the-wild
dataset under the creative commons license.

Societal impact Our work focuses on using neural rendering for generating images
for solving downstream computer vision tasks. This provides an opportunity
to reduce reliance on human or web-captured training data that has potential
privacy issues.



14 Y. Ge et al.

References

1. Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., Tenenbaum,
J., Katz, B.: Objectnet: A large-scale bias-controlled dataset for pushing the limits
of object recognition models. Advances in neural information processing systems 32
(2019)

2. Denninger, M., Sundermeyer, M., Winkelbauer, D., Zidan, Y., Olefir, D., Elbadrawy,
M., Lodhi, A., Katam, H.: Blenderproc. arXiv preprint arXiv:1911.01911 (2019)

3. Hodan, T., Michel, F., Brachmann, E., Kehl, W., GlentBuch, A., Kraft, D., Drost,
B., Vidal, J., Ihrke, S., Zabulis, X., et al.: Bop: Benchmark for 6d object pose esti-
mation. In: Proceedings of the European Conference on Computer Vision (ECCV).
pp. 19–34 (2018)

4. Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny,
D.: Common objects in 3d: Large-scale learning and evaluation of real-life 3d cate-
gory reconstruction. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 10901–10911 (2021)

5. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June
2016)

6. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: A convolutional neu-
ral network for 6d object pose estimation in cluttered scenes. arXiv preprint
arXiv:1711.00199 (2017)


	Neural-Sim: Learning to Generate Training Data with NeRF (appendix)

