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Abstract. Training computer vision models usually requires collecting
and labeling vast amounts of imagery under a diverse set of scene con-
figurations and properties. This process is incredibly time-consuming,
and it is challenging to ensure that the captured data distribution maps
well to the target domain of an application scenario. Recently, synthetic
data has emerged as a way to address both of these issues. However,
existing approaches either require human experts to manually tune each
scene property or use automatic methods that provide little to no con-
trol; this requires rendering large amounts of random data variations,
which is slow and is often suboptimal for the target domain. We present
the first fully differentiable synthetic data pipeline that uses Neural
Radiance Fields (NeRFs) in a closed-loop with a target application’s
loss function. Our approach generates data on-demand, with no hu-
man labor, to maximize accuracy for a target task. We illustrate the
effectiveness of our method on synthetic and real-world object detec-
tion tasks. We also introduce a new “YCB-in-the-Wild” dataset and
benchmark that provides a test scenario for object detection with var-
ied poses in real-world environments. Code and data could be found at
https://github.com/gyhandy/Neural-Sim-NeRF.
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1 Introduction

The traditional pipeline for building computer vision models involves collecting
and labelling vast amounts of data, training models with different configura-
tions, and deploying it to test environments [24,37,42]. Key to achieving good
performance is collecting training data that mimics the test environment with
similar properties relating to the object (pose, geometry, appearance), camera
(pose and angle), and scene (illumination, semantic structures)[2].

However, the traditional pipeline does not work very well in many real-world
applications as collecting large amounts of training data which captures all vari-
ations of objects and environments is quite challenging. Furthermore, in many
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Fig. 1: (a) On-demand synthetic data generation: Given a target task and a
test dataset, our approach “Neural-sim” generates data on-demand using a fully
differentiable synthetic data generation pipeline which maximises accuracy for
the target task. (b) Train/test domain gap causes significant detection accuracy
drop (yellow bar to gray bar). We dynamically optimize the render parameters
(pose/zoom/illumination) to generate the best data to fill the gap (blue bar).

applications, users may want to learn models for unique objects with novel struc-
tures, textures, or other such properties. Such scenarios are very common par-
ticularly in business scenarios where there is desire to create object detectors for
new products introduced in the market.

Recent advances in rendering, such as photo-realistic renderers [10,21] and
generative models (GANs [6], VAEs [12,25]), have brought the promise of gener-
ating high-quality images of complex scenes. This has motivated the field to ex-
plore synthetic data as source of training data [13,28,14,23,27,38,40,44,18,52,19].
However, doing so in an offline fashion has similar issues as the traditional
pipeline. While it alleviates certain difficulties, e.g., capturing camera/lighting
variations, it create dependency on 3D asset creation, which is time-consuming.

Recently, a new image generation technique called the Neural Radiance Field
(NeRF) [34] was introduced as a way to replace the traditional rasterization
and ray-tracing graphics pipelines with a neural-network based renderer. This
approach can generate high-quality novel views of scenes without requiring ex-
plicit 3D understanding. More recent advancements in NeRFs allow to control
other rendering parameters, like illumination, material, albedo, appearance, etc.
[43,33,51,5,29]. As a result, they have attracted significant attention and have
been widely adopted in various graphics and vision tasks [16,5,43,36]. NeRF
and their variants possess some alluring properties: (i) differentiable rendering,
(ii) control over scene properties unlike GANs and VAEs, and (iii) they are
data-driven in contrast to traditional renderers which require carefully crafting
3D models and scenes. These properties make them suitable for generating the
optimal data on-demand for a given target task.

To this end, we propose a bilevel optimization process to jointly optimize
neural rendering parameters for data generation and model training. Further, we
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also propose a reparameterization trick, sample approximation, and patch-wise
optimization methods for developing a memory efficient optimization algorithm.

To demonstrate the efficacy of the proposed algorithm, we evaluate the al-
gorithm on three settings: controlled settings in simulation, on the YCB-video
dataset [47], and in controlled settings on YCB objects captured in the wild.
This third setting is with our newly created “YCB-in-the-wild” dataset, which
involves capturing YCB objects in real environments with control over object
pose and scale. Finally, we also provide results showing the interpretability of
the method in achieving high performance on downstream tasks. Our key con-
tributions are as follows:

(1) To the best of our knowledge, for the first time, we show that NeRF can
substitute the traditional graphics pipeline and synthesize useful images to train
downstream tasks (object detection).

(2) We propose a novel bilevel optimization algorithm to automatically opti-
mize rendering parameters (pose, zoom, illumination) to generate optimal data
for downstream tasks using NeRF and its variants.

(3) We demonstrate the performance of our approach on controlled settings
in simulation, controlled settings in YCB-in-wild and YCB-video datasets. We
release YCB-in-wild dataset for future research.

2 Related work

Traditional Graphics rendering methods can synthesize high-quality im-
ages with controllable image properties, such as object pose, geometry, texture,
camera parameters, and illumination [38,10,21,27,39]. Interestingly, NeRF has
some important benefits over the traditional graphics pipelines, which make it
more suitable for learning to generate synthetic datasets. First, NeRF learns to
generate data from new views based only on image data and camera pose in-
formation. In contrast, the traditional graphics pipeline requires 3D models of
objects as input. Getting accurate 3D models with correct geometry, material,
and texture properties generally requires human experts (i.e. an artist or mod-
eler). This, in turn, limits the scalability of the traditional graphics pipeline in
large-scale rendering for many new objects or scenes. Second, NeRF is a differ-
entiable renderer, thus allowing backpropagation through the rendering pipeline
for learning how to control data generation in a model and scene-centric way.

Deep generative models, such as GANs [22,6], VAEs [12,25] and normalizing
flows [9] are differentiable and require less human involvement. However, most
of them do not provide direct control of rendering parameters. While some re-
cent GAN approaches allow some control [48,1,20] over parameters, it is not as
explicit and can mostly only change the 2D properties of images. Further, most
generative models need a relatively large dataset to train. In comparison, NeRF
can generate parameter-controllable high-quality images and requires a lesser
number of images to train. Moreover, advancements in NeRF now allow the
control of illumination, materials, and object shape alongside camera pose and
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scale [43,33,51,5,29]. We use NeRF and their variants (NeRF-in-the-wild [33]) to
optimize pose, zoom and illumination as representative rendering parameters.
Learning simulator parameters. Related works in this space focus on learn-
ing non-differentiable simulator parameters for e.g., learning-to-simulate (LTS)
[41], Meta-Sim [30], Meta-Sim2 [11], Auto-Sim [4], and others [49,17,32]. Our
work in contrast has two differences: (i) a difference in the renderer used (NeRF
vs traditional rendering engines), and (ii) a difference in the optimization ap-
proach. We discuss the different renderers and their suitability for this task in
the previous subsection.

LTS [41] proposed a bilevel optimization algorithm to learn simulator pa-
rameters that maximized accuracy on downstream tasks. It assumed both data-
generation and model-training as a black-box optimization process and used
REINFORCE-based [45] gradient estimation to optimize parameters. This re-
quires many intermediate data generation steps. Meta-sim [30] is also a RE-
INFORCE based approach, which requires a grammar of scene graphs. Our
approach does not use scene grammar. Most similar to our work is the work of
Auto-Simulate [4] that proposed a local approximation of the bilevel optimization
to efficiently solve the problem. However, since they optimized non-differentiable
simulators like Blender [10] and Arnold [21], they used REINFORCE-based [45]
gradient update. Further, they have not shown optimization of pose parame-
ter whose search space is very large. In comparison, our proposed Neural-Sim
approach can learn to optimize over pose parameters as well.

3 Neural-Sim

The goal of our method is to automatically synthesize optimal training data to
maximize accuracy for a target task. In this work, we consider object detection
as our target task. Furthermore, in recent times, NeRF and its variants (NeRFs)
have been used to synthesize high-resolution photorealistic images for complex
scenes [43,33,51,5,29]. This motivates us to explore NeRFs as potential sources
of generating training data for computer vision models. We propose a technique
to optimize rendering parameters of NeRFs to generate the optimal set of images
for training object detection models.

NeRF model: NeRF [34,50] takes as input the viewing direction (or camera
pose) denoted as V = (ϕ, ρ), and renders an image x = NeRF(V ) of a scene as
viewed along V . Note that our proposed technique is broadly applicable to dif-
ferentiable renderers in general. In this work, we also optimize NeRF-in-the-wild
(NeRF-w) [33] as it allows for appearance and illumination variations alongside
pose variation. We first discuss our framework for optimizing the original NeRF
model and later we discuss optimization of NeRF-w in Section 3.2.

Synthetic training data generation: Consider a parametric probability
distribution pψ over rendering parameters V , where ψ denotes the parameters
of the distribution. It should be noted that ψ corresponds to all rendering pa-
rameters including pose/zoom/illumination, here, for simplicity, we consider ψ to
denote pose variable. To generate the synthetic training data, we first sample ren-
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Fig. 2: Neural-Sim pipeline: Our pipeline finds the optimal parameters for gen-
erating views from a trained neural renderer (NeRF) to use as training data for
object detection. The objective is to find the optimal NeRF rendering param-
eters ψ that can generate synthetic training data Dtrain, such that the model
(RetinaNet, in our experiments) trained on Dtrain, maximizes accuracy on a
downstream task represented by the validation set Dval.

dering parameters V1, V2, ..., VN ∼ pψ. We then use NeRF to generate synthetic
training images xi = NeRF(Vi) with respective rendering parameters Vi. We use
an off-the-shelf foreground extractor to obtain labels y1, y2, . . . , yN . the training
dataset thus generated is denoted as Dtrain = {(x1, y1), (x2, y2), . . . , (xN , yN )}.

Optimizing synthetic data generation Our goal is to optimize over the
rendering distribution pψ such that training an object detection model on Dtrain

leads to good performance on Dval. We formulate this problem as a bi-level
optimization [8,15,4] as below:

min
ψ

Lval(θ̂(ψ)); s.t. θ̂(ψ) ∈ argmin
θ

Ltrain(θ, ψ), (1a)

where θ denotes the parameters of the object detection model, Ltrain(θ, ψ) =

EV∼pψ l(x, θ) ≈ 1
N

∑N
i=1 l(xi, θ) is the training loss over the synthetic dataset

from NeRF, 3 and Lval is the loss on the task-specific validation set Dval.
The bi-level optimization problem in (1) is challenging to solve; for example,

any gradient based algorithm would need access to an efficient approximation of
∇ψ θ̂(ψ), which in turn requires propagating gradients through the entire training
trajectory of a neural network. Thus, we look to numerical approximations to
solve this problem. Recently, Behl et. al. [4] developed a technique for numerical
gradient computation based on local approximation of the bi-level optimization.
Without going into their derivation, we borrow the gradient term for the outer
update, which at time step t takes the form:

∂Lval(θ̂(ψ))
∂ψ

∣∣∣∣∣
ψ=ψt

≈−

∇NeRF︷ ︸︸ ︷
∂

∂ψ

[∂Ltrain(θ̂(ψt), ψ)
∂θ

]T ∣∣∣∣∣
ψ=ψt

H(θ̂(ψt), ψ)
−1 dLval(θ̂(ψt))

dθ︸ ︷︷ ︸
∇TV

.

(2)

3 For simplicity, we have dropped the dependence of loss ℓ on labels y
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We have divided the gradient term into two parts: ∇NeRF corresponds to
backpropagation through the dataset generation from NeRF, and ∇TV corre-
sponds to approximate backpropagation through training and validation (Fig. 2).
∇TV is computed using the conjugate gradient method [4]. However, [4] treated
the data generation as a black box and used REINFORCE [46] to compute the
approximate gradient because they used non-differentiable renderers for data
generation. However, REINFORCE is considered noisy process and is known to
lead to high-variance estimates of gradients. In contrast, NeRF is differentiable,
which gives us tools to obtain more accurate gradients. We propose an efficient
technique for computing ∇NeRF , which we discuss in the next section.

3.1 Backprop through data generation from NeRF

A good gradient estimation should possess the following properties: (i) high
accuracy and low noise, (ii) computational efficiency, (iii) low memory footprint.
We leverage different properties of NeRF, i.e., its differentiability and pixel-wise
rendering, to design a customized technique which satisfies the above properties.

In computation of ∇NeRF in (2), we approximate Ltrain(θ, ψ) using samples

in Dtrain as Ltrain(θ, ψ) ≈ 1
N

∑N
i=1 l(xi, θ). Using chain rule we then have partial

derivative computation over l(x, θ) as follows:

∂

∂ψ

[
∂l(xi, θ̂(ψt))

∂θ

]
=

[
∂(∂l(xi,θ̂(ψt))∂θ )

∂xi

][
∂xi
∂Vi

][
dVi
dψ

]
(3)

The first term is the second order derivative through a detection network and
can be computed analytically for each image xi. The second term is the gradi-
ent of the rendered image w.r.t NeRF inputs, which can be obtained by back-
propagating through the differentiable NeRF rendering xi = NeRF(Vi). While
both these terms have exact analytical expressions, naively computing and us-
ing them in (2) becomes impractical even for small problems (see below in Tool2
and Tool3 for details and proposed solutions). Finally the third term dVi

dψ re-
quires gradient computation over probabilistic sampling Vi ∼ pψ. We consider
pψ over discretized bins of pose parameters. For such discrete distributions dVidψ is
not well defined. Instead, we approximate this term using a reparameterization
technique described below in Tool1. We summarize our technical tools below:

– For distributions pψ over a discrete bins of pose parameters, we propose a
reparametrization of ψ that provides efficient approximation of dVidψ (Tool1).

– We dramatically reduce memory and computation overhead of implementing
the gradient approximation in (2) using a new twice-forward-once-backward
approach (Tool2). Without this new technique the implementation would
require high computation involving large matrices and computational graphs.

– Even with the above technique, the computation of first and second terms
in (3) has a large overhead on GPU memory that depends on image size. We
overcome this using a patch-wise gradient computation approach (Tool 3).
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Fig. 3: A concrete example to one time sample, starting form a particular value
of ψ, we can follow reparametrization sampling and obtain a pose. Each sample
represents a pose that is input in NeRF to render one image.

Tool 1: Reparametrization of pose sampling NeRF renders images xj using
camera pose Vj=(ϕi, ρj), where ϕj ∈ [0, 360], ρj ∈ [0, 360]. For simplicity we
describe our method for optimizing over ϕ, while keeping ρ fixed to be uniform.

We discretize the pose into k equal sized bins over the range of ϕ as B1 =[
0, 360k

)
, B2 =

[
360
k ,

360×2
k

)
, . . .. and define the distribution over ϕ as the categor-

ical distribution with pi as the probability of ϕ belonging to Bi. This distribu-
tion is thus parametrized by ψ ≡ p = [p1, ..., pk]. To back propagate through the
sampling process, we approximate the sample from the categorical distribution
by using Gumble-softmax “reparameterization trick” with parameters y ∈ Rk,
where yi are given as follows: yi = GSi(p) = exp[(Gi+ log(pi))/τ ]/

∑
j exp[(Gi+

log(pj))/τ ]. Where Gi ∼ Gumbel(0, 1) are i.i.d. samples from the standard Gum-
bel distribution and τ is temperature parameter. The random vector y defined
as above satisfies the property that the coordinate (index) of the largest element
in y ∈ Rk follows the categorical distribution with parameter p.

We now approximate sampling from the categorical distribution (see Figure
3 for depiction). Denote the bin center of Bi as B̄

ce
i = 360(i− 0.5)/k; and the

bin range as b̄ra = 360/k. We generate Vj = (ϕj , ρj) ∼ pψ as below:
– Generate yi’s for i = 1, 2, . . . k
– Define bcej =

∑
i yiB̄

ce
i as the approximate bin center.

– Define the bin for the jth sample centered around bcej as [bstj , b
en
j ] = [bcej −

b̄ra/2, bcej + b̄ra/2]
– We sample ϕj from uniform distribution over [bstj , b

en
j ] which has a reparametriza-

tion for diffentiability: U(bstj , benj ) ≡ (1− ϵ)bstj + ϵbenj s.t. ϵ ∼ U(0, 1).
– ρj ∼ U [0, 360], or can follow same process as ϕj .
Note that in general the approximate bin centers bcej need not be aligned with

original categorical distribution, however we can control the approximation using
the temperature parameter τ . We now have the full expression for approximate
gradient of ∇NeRF using (3) and reparametrization as follows:

∇NeRF ≈ 1

N

N∑
j=1

∂(
∂l(xj ,θ̂(ψt))

∂θ )

∂xj

∂xj
∂Vj

∂Vj
∂(bstj , b

en
j )

∂(bsti , b
en
i )

∂y

∂y

∂p
. (4)

Below we present tools that drastically improve the compute and memory effi-
ciency and are crucial for our pipeline.
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Tool 2: Twice-forward-once-backward The full gradient update of our bi-
level optimization problem involves using the approximation of∇NeRF in (4) and
back in (2). This computation has three terms with the following dimensions:

(1)
∂(
∂l(xj,θ̂(ψt))

∂θ )

∂xj
∈ Rm×d, (2)

∂xj
∂ψ ∈ Rd×k, (3)∇TV = H(θ̂(ψt), ψ)

−1 dLval(θ̂(ψt))
dθ ∈

Rm×1, where m = |θ| is the # of parameters in object detection model, d is the
# of pixels in x, and k is # of pose bins.

Implementing eq. (2) with the naive sequence of (1)-(2)-(3) involves com-
puting and multiplying large matrices of sizes m × d and d × k. Further, this
sequence also generates a huge computation graph. These would lead to pro-
hibitive memory and compute requirements as m is often in many millions. On
the other hand, if we could follow the sequence of (3)-(1)-(2), then we can use
the produce of 1×m output of (3) to do a weighted autograd which leads com-
puting and storing only vectors rather than matrices. However, the computation
of (3) needs the rendered image involving forward pass of (2) (more details in
appendix.).

To take advantage of the efficient sequence, we propose a twice-forward-once
backward method where we do two forward passes over NeRF rendering. In the
first forward path, we do not compute the gradients, we only render images
to form Dtrain and save random samples of y, ϕj used for rendering. We then
compute (3) by turning on gradients. In the second pass through NeRF, we keep
the same samples and this time compute the gradient (1) and (2).

Tool 3: Patch-wise gradient computation Even though we have optimized
the computation dependence on m = |θ| with the tool described above, comput-
ing (1)-(2) sequence in the above description still scales with the size of images
d. This too can lead to large memory footprint for even moderate size images.
To optimize the memory further, we propose patch-wise computation, where we
divide the image into S patches x = (x1, x2, . . . , xS)) and compute (3) as follows:

∂

∂ψ

∂l(x, θ̂(ψt))

∂θ
=

S∑
c=1

∂(∂l(x
c,θ̂(ψt))
∂θ )

∂xc
∂xc

∂ψ
. (5)

Since NeRF renders an image pixel by pixel, it is easy to compute the gradient
of patch with respect to ψ in the memory efficient patch-wise optimization.

3.2 Nerf-in-the-wild

NeRF-in-the-wild (NeRF-w) extends NeRF model to allow image dependent
appearance and illumination variations such that photometric discrepancies be-
tween images can be modeled explicitly. NeRF-w takes as input an appearance
embedding denoted as ℓ alongside the viewing direction V to render an image as
x = NeRF(V, ℓ). For NERF-w, the optimization of pose (V) remains the same
as discussed above. For efficient optimization of lighting we exploit a noteworthy
property of NeRF-w: it allows smooth interpolations between color and lighting.
This enables us to optimize lighting as a continuous variable, where the lighting
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(ℓ) can be written as an affine function of the available lighting embeddings (ℓi)
as ℓ =

∑
i ψi ∗ ℓi where

∑
i ψi = 1. To calculate the gradient from Eq. 3, ∂xi∂ℓ is

computed in the same way as described above utilizing our tools 2 and 3, and
the term dℓ

dψ is straightforward and is optimized with projected gradient descent.

4 Experiments

We now evaluate the effectiveness of our proposed Neural-Sim approach in gen-
erating optimal training data on object detection task. We provide results under
two variations of our Neural-Sim method. In the first case, we use Neural-Sim
without using bi-level optimization steps. In this case, data from NeRF are
always generated from the same initial distribution. The second case involves
our complete Neural-Sim pipeline with bi-level optimization updates (Eq. 2). In
the following sections, we use terms NS and NSO for Neural-Sim without and
Neural-Sim with bi-level optimization respectively.

We first demonstrate that NeRF can successfully generate data for down-
stream tasks as a substitute for a traditional graphic pipeline (e.g., Blender-
Proc) (see appendix for results) with similar performance. Then we conduct
experiments to demonstrate the efficacy of Neural-Sim in three different scenar-
ios: controllable synthetic tasks on YCB-synthetic dataset (Sec. 4.1); controllable
real-world tasks on YCB-in-the-wild dataset (Sec. 4.2); general real-world tasks
on YCB-Video dataset (Sec. 4.3). We also show the interpretable properties of
the Neural-Sim approach (NSO) during training data synthesis (Sec. 4.4). All
three datasets are based on the objects from the YCB-video dataset [47,26,7].
It contains 21 objects and provides high-resolution RGBD images with ground
truth annotation for object bounding boxes. The dataset consists of both digital
and physical objects, which we use to create both real and synthetic datasets.
Implementation details: We train one NeRF-w model for each YCB object
using 100 images with different camera pose and zoom factors using Blender-
Proc. We use RetinaNet [31] as our downstream object detector. To accelerate
the optimization, we fix the backbone during training. During bi-level optimiza-
tion steps, we use Gumble-softmax temperature τ = 0.1. In each optimization
iteration, we render 50 images for each object class and train RetinaNet for two
epochs. More details are in the appendix.
Baselines: We compare our proposed approach against two state-of-the-art ap-
proaches that learn simulator parameters. First is Learning to simulate (LTS)
[41] which proposed a REINFORCE-based simulator optimization approach.
Also note that the meta-sim [30] is a REINFORCE-based approach. Next, we
consider Auto-Sim [4] which proposed an efficient method to learn simulator pa-
rameters. We implemented LTS and received code from the authors of Auto-Sim.

4.1 YCB-synthetic dataset

Next, we conduct experiments on a YCB-synthetic dataset to show how NSO
helps to solve a drop in performance due to distribution shifts between the
training and test data.
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Fig. 4: Neural-Sim performance on YCB-Synthetic. When there are distribution
gap between train and test sets ((a) pose (b) zoom (c) illumination gap), with the
gap increase, object detection faces larger accuracy drop (black line). With the
help of Neural-Sim (NSO) in blue line, the performance drop are filled. Observe
improvement of NSO over LTS [41] (red line) and Auto-Sim [4] (green line).

Dataset setting We select six objects that are easily confused with each other:
masterchef and pitcher are both blue cylinders and cheezit, gelatin, mug and
driller are all red colored objects. To conduct controlled experiments, we generate
data with a gap in the distribution of poses between the training and test sets.
For this, we divide the object pose space into k= 8 bins. For each objects oj and
pose bin i combination, we use BlenderProc [10] to synthesize 100 images. These
images of the six selected objects with pose bin-labels form YCB-synthetic data.

Train/test biasness We create controlled experiments by varying the degree of
pose distribution overlap between the training and test sets. For each object (e.g.
pitcher) we fix its pose distribution in the test set (e.g. images are generated with
pose from bin 1) and change its pose distribution in training set in three ways.
First, images are generated with pose with same distribution as test set (bin1 is
dominant), uniform distribution (pose values uniformly selected from bin1 to bin
8) and totally different distribution from the test set (other bins are dominant
except bin 1). We introduce such pose biasness in two of the six objects, pitcher
and driller. For other four objects, test images are generated from an uniform
distribution. The test set has 600 images (100 images per object).

Results Quantitative results are shown in Fig. 4. First, we show the perfor-
mance of our NS based training images rendered using three initial distributions
described earlier. We observe that the object detection performance drops by
almost 30% and 10% for pitcher and driller objects respectively when there is
object pose gap between training and test distributions.

Our NSO is able to automatically find the optimal pose distribution of the
test set. NeRF then uses the optimal distribution to synthesize training data. The
object detection model trained on the optimal data helps improve performance
significantly; average precision accuracy for the pticher and driller objects have
been improved by almost 30% and 10%, respectively. The blue lines in Fig. 4
represent the performance of NSO which fill the gap caused by distribution
mismatch. Note there is similar significant improvement in experiments where
there is gap in camera zoom when using the proposed NSO approach.
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Table 1: Large scale YCB-synthetic experiments

Objects mAP
master
chef can

cracker
box

sugar
box

tomato
soup can

mustard
bottle

tuna fish
can

pudding
box

gelatin
box

potted
meat can

banana

NS 68.4 93.5 96.6 58.3 83.9 78.4 44.3 78.0 65.2 55.3 89.4
Auto-Sim 69.3 96.0 82.5 92.3 37.4 81.3 52.0 80.6 79.4 74.4 83.4

NSO 82.1 98.5 98.4 98.2 81.8 90.5 64.6 84.1 57.6 92.2 91.6

Objects
pitcher
base

bleach
cleanser

bowl mug
power
drill

wood
block

scissor
large
marker

large
clamp

extra large
clamp

foam
brick

NS 29.0 49.9 78.7 46.8 89.3 97.8 67.9 42.9 47.8 72.7 69.6
Auto-Sim 7.7 81.5 78.3 60.0 83.2 95.6 64.1 41.5 46.6 79.0 57.9

NSO 83.5 93.4 98.5 87.9 93.6 98.7 55.3 56.9 50.8 78.6 68.2

We compare our NSO with LTS [41] and Auto-Sim [4] that use REINFORCE
for non-differentiable simulator optimization (Fig. 4(a)(b)). We observe that on
pose optimization, NSO achieves almost 34% and 11% improvement over LTS
and Auto-Sim respectively on the pitcher object. We observe similar behaviour
on zoom optimization. This highlights the gradients from differentiable NSO are
more effective and generate better data than LTS and Auto-Sim.
Experiments on illumination optimization. To verify the effectiveness of
Neural-Sim on illumination, we substitute vanilla NeRF model with NeRF-w.
We conduct similar experiments as the pose and zoom experiments in Sec. 4.1
on illumination with YCB-synthetic dataset. The results show in Fig. 4(c). NSO
has great performance on illumination optimization with 16% and 15% improve-
ments on driller and banana objects respectively.
Large scale YCB-Synthetic dataset experiments Here we highlight the
results of our large-scale experiments on the YCB-synthetic dataset. Experi-
ments demonstrate that our proposed NSO approach helps to solve a drop in
performance due to distribution shifts between the train and test sets. We use
the same setting as previous experiment except we conduct object detection on
all 21 objects on the YCB-Synthetic dataset. The test set has 2100 images (100
images per object). The experiment results are shown in Table. 1. Note that our
proposed NSO achieves improvements of almost 14 % and 13 % points over NS
and Auto-Sim baselines respectively.

4.2 YCB-in-the-wild dataset

To evaluate the performance of the proposed NS and NSO approaches on a
real world dataset, we have created a real world YCB-in-the-wild dataset. The
dataset has 6 YCB objects in it, which are same as in the YCB-synthetic dataset:
masterchef, cheezit, gelatin, pitcher, mug and driller. We manually labelled both
the object bounding box and the object pose. (More details in the appendix.)

To explore the performance of the NS and NSO under the training and test
distribution gap on the YCB-in-the-wild, we use the same experiment setup as in
Sec. 4.1. The test images are selected from YCB-in-the-wild and training images
are synthesized by NeRF. The training data is generated under two categorical
distributions: uniform distribution and a random bin as dominant bin.
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Fig. 5: Performance of Neural-Sim on the YCB-in-the-wild dataset. We observe
that the Neural-Sim optimization (NSO) can consistently achieve 20% to 60%
improvement in accuracy over our method without optimization (NS) case and
large improvements over LTS (up to 58%) and Auto-Sim (up to 60%). Here each
bin on x−axis represents bin from which test data is generated. We observe large
improvement in both single-modal and multi-modal test data.

Quantitative results are provided in the Fig. 5. First we highlight the per-
formance achieved by our NS approach to generate data according two differ-
ent initial pose distributions. We observe that NS generated data helps achieve
up to 30% in object detection accuracy on different objects starting from two
different initial distributions. Moreover, our NSO approach achieves remarkable
improvement in every experimental setup. For example, on pitcher, starting from
uniform and random distributions, our optimization improve performance by al-
most 60%. Compared with other optimization methods LTS and Auto-Sim, we
observe large improvement upto 58% improvement over LTS and 60% improve-
ment over Auto-Sim on the pitcher object. This highlights three points. First,
NeRF can be used to generate good data to solve object detection task in the
wild; far more importantly, our Neural-Sim with bi-level optimization (NSO) ap-
proach can automatically find the optimal data that can help achieve remarkable
improvements in accuracy on images captured in the wild. Third, the gradients
from NSO are more effective and generate better data than LTS and Auto-Sim.

4.3 YCB Video dataset

To show the performance of the proposed NS and NSO approaches on a gen-
eral real world dataset, we also conduct experiments on the YCB-Video dataset
[47,26]. Each image in this dataset consists of multiple YCB objects (usually 3 to
6 different objects) in a real world scene. After sampling frames from 80 videos,
YCBVtrain consists of over 2200 images, YCB-Video testset contains 900 images.
Both train and test sets have all 21 YCB objects. In order to show the benefit of
synthetic data, we create two different training scenarios (1) Few-shot setting,
where we randomly select 10 and 25 images from (YCBVtrain) to form different
few shot training sets. (2) Limited dataset setting, where we randomly select
1%, 5%, 10% images from (YCBVtrain) to form limited training sets.
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Few-shot setting 0-shot 10-shot 25-shot
Only YCBV-train N/A 0.45 0.49

train(pre)+ours (w/o opt) 2.3 3.9 4.6
train(pre)+ours (with opt) 4.5 4.9 4.9

Learning-to-sim (com) N/A 12.4 22.5
Auto-Sim (com) N/A 12.9 22.2

train(com)+ours (w/o opt) N/A 12.2 21.0
train(com)+ours (with opt) N/A 13.1 23.0

(a) Zero and few-shot setting (YCB-Video).

Percent of YCBVtrain 0.01 0.05 0.1
Only YCBV-train 5.77 8.88 12.5

Only images to train NeRF 3.9 3.9 3.9
train(pre)+ours (w/o opt) 7.9 11.8 14.4
train(pre)+ours (with opt) 8.9 12.4 14.5

Learning-to-sim (com) 36.9 44.1 48.2
Auto-Sim (com) 37.1 43.7 48.3

train(com)+ours (w/o opt) 36.7 43.6 47.9
train(com)+ours (with opt) 37.4 44.9 48.9

(b) limited data setting (YCB-Video)

Table 2: YCB-Video performance. Observe large improvement of the proposed
Neural-Sim approaches before and after optimization over the baselines.

Using a similar setting as in Sec. 4.2, we demonstrate performance of NS
and NSO approaches starting from uniform distributions and compare with four
baselines. First baseline-1 involves training RetinaNet using few-shot or limited
training images from YCBVtrain data, and baseline-2 involves training Reti-
naNet using the images that were used to train NeRF. Baseline-3 is LTS and
baseline-4 is Auto-Sim. Further, we combine the real-world few-shot or limited
training images along with NeRF synthesized images during our Neural-Sim
optimization steps. This Combined setting reduces the domain gap between syn-
thetic and real data. All the models have been evaluated on YCB-Video testset.

For the normal Few-shot setting (rows 2, 3, 4 in Tab. 2(a)), NS starting from
the uniform distribution achieves almost 3.45 and 4.11% improvement over the
baseline-1 in 10 and 25 shots settings, respectively. Further, when we use NSO,
we observe improvements of 4.45, 4.41% over the baseline-1 and 1.0, 0.3% im-
provements over the NS case in 10, 25 shot settings respectively. We also observe
almost 1.8% improvement in the zero-shot case. In addition, for the Combined
Few-shot setting (rows 5,6,7,8 in Table. 2(a)), we observe similar large improve-
ments in accuracy. We observe similar large performance improvements in the
limited data settings (Table. 2(b)). Please refer to the appendix for more results
and discussion including the results on ObjectNet[3] dataset.

4.4 Interpretability of Neural-Sim

We raise a question: does the Neural-Sim optimization provide interpretable
results? In order to demonstrate this behavior, we conduct experiment on YCB-
in-the-wild dataset illustrated in Fig 6. Generally, we find that no matter what
the starting distributions the Neural-Sim approach used, the learned optimal ψ∗

is always aligned with the test distribution. More visualizations in the appendix.

5 Discussion and Future Work

It has been said that “Data is food for AI”[35]. While computer vision has made
wondrous progress in neural network models in the last decade, the data side has
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Fig. 6: NSO generates interpretable outputs. In the shown example, test images
are sampled from distribution bin 1 as dominant bin. For Neural-Sim optimiza-
tion (NSO), initial training pose distributions are uniform and bin 4 as dominant
bin. Observe the bin distribution at the optimization - the final bin distribution
at the end of Neural-Sim training matches with the test bin distribution.

seen much less advancement. There has been an explosion in the number and
scale of datasets, but the process has evolved little, still requiring a painstak-
ing amount of labor. Synthetic data is one of the most promising directions for
transforming the data component of AI. While it has been used to show some im-
pressive results, its wide-spread use has been limited, as creating good synthetic
data still requires a large investment and specialized expertise.

We believe we have taken a big step towards making synthetic data easier
to use for a broader population. By optimizing for how to synthesize data for
training a neural network, we have shown big benefits over current synthetic
data approaches. We have shown through extensive experiment that the data
found by our system is better for training models. We have removed the need
for any 3D modeling and for an expert to hand-tune the rendering parameters.
This brings the promise of synthetic data closer for those that don’t have the
resources to use the current approaches.

We have handled camera pose, zoom and illumination; and our approach can
be extended to other parameters (such as materials, etc.), by incorporating new
advances in neural rendering. For future work, we hope to improve the ease of
use of our approach, such as performing our optimization using lower quality,
faster rendering using a smaller network for the neural rendering component,
and then using the learned parameters to generate high quality data to train the
final model. We hope that our work in this space will inspire future research.
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