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Abstract. Pruning is an effective technique for convolutional neural
networks (CNNs) model compression, but it is difficult to find the opti-
mal pruning policy due to the large design space. To improve the usability
of pruning, many auto pruning methods have been developed. Recently,
Bayesian optimization (BO) has been considered to be a competitive
algorithm for auto pruning due to its solid theoretical foundation and
high sampling efficiency. However, BO suffers from the curse of dimen-
sionality. The performance of BO deteriorates when pruning deep CNNs,
since the dimension of the design spaces increase. We propose a novel
clustering algorithm that reduces the dimension of the design space to
speed up the searching process. Subsequently, a rollback algorithm is
proposed to recover the high-dimensional design space so that higher
pruning accuracy can be obtained. We validate our proposed method
on ResNet, MobileNetV1, and MobileNetV2 models. Experiments show
that the proposed method significantly improves the convergence rate
of BO when pruning deep CNNs with no increase in running time. The
source code is available at https://github.com/fanhanwei/BOCR.
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1 Introduction

Convolutional neural networks (CNNs) are becoming popular due to their high
performance and universality. There is a growing trend to apply CNNs in dif-
ferent scenarios such as object detection, speech recognition, etc. However, the
high performance of CNNs is at the expense of their large model size and high
computing complexity, which have prevented them from having broader usage.
To solve this problem, network pruning [5] has been proposed to reduce the
model size with little accuracy loss. Many works, e.g., [4,8,20,42,47], have been
proposed to prune CNNs with different granularity. Among these works, chan-
nel pruning [8,42], which reduces the model size and computing complexity by
removing the redundant channels on the feature map, is widely adopted due to
its high efficiency in hardware implementation.

As the depth of CNNs rapidly increases, the design space of the pruning
policies, which indicates the preservation ratio of each layer of the CNN model,
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becomes too large to be fully explored by handcrafted efforts. To reduce the
manpower overhead introduced by the pruning process while exploring the de-
sign space of pruning, reinforcement learning (RL) [9,45] and general probabilis-
tic algorithms [18,19,46] are utilized to automate the channel pruning process.
However, the above methods lead to a large time overhead as they need massive
data and training trials to converge. To increase the practicality of auto pruning,
a better algorithm is expected to search the design space more efficiently.

Bayesian optimization (BO) [25] is an effective method for tuning the hyper-
parameters for the black-box function with high sample efficiency. Therefore,
BO is considered to be a competitive candidate algorithm for building the au-
tomatic pruning agent [3,22,35]. However, BO suffers from a fatal drawback
that the sampling efficiency of BO drops significantly when dealing with high-
dimensional problems. Thus, it would be challenging to prune very deep networks
with the BO agent. Currently, the BO-based pruning framework is usually used
to deal with shallow networks to maintain high efficiency, and an enhanced BO
agent is needed to provide better results when dealing with modern CNN mod-
els. Although many algorithms [14,21,29,39,40] have been proposed to mitigate
the performance degradation of high-dimensional BO, these works only provide
general solutions based on theoretical analysis, which might not be practical for
specific applications. When applying BO to CNN pruning, specialized methods
can be developed based on our prior knowledge about CNN pruning.

In this work, observing that some CNN layers have similar redundancy, we
propose to cluster the layers by exploiting the similarity of their intrinsic prop-
erties and train the BO agent in a low-dimensional space. However, the di-
mensionality reduction risks missing the optimal pruning policy since the low-
dimensional BO does not explore the whole design space. To achieve optimum, we
propose a rollback algorithm in which we recover the original high-dimensional
searching space for the BO agent and perform a fine-grained search with the
low-dimensional data as the prior knowledge. In addition, to fully utilize the
information collected during the policy searching in a low-dimensional space,
we propose an adaptive searching domain scaling scheme to reduce the work-
load of the BO agent after rollback so that a faster fine-grained search can be
achieved. Our proposed methods not only improve the performance of the BO
agent significantly but enjoys simple implementation.

In summary, we make the following contributions:

1. We propose to solve the high-dimensional problem with a clustering-based
dimension reduction scheme so that the BO agent can prune CNNs efficiently.

2. A rollback algorithm is used to recover the high-dimensional space so that
the optimal pruning policy will not be missed, and the accuracy of the pruned
model can be further improved.

3. Experiments show that our methods explore the design space with a consid-
erable improvement in accuracy than naive BO with no increase in running
time. When pruning ResNet56, our method delivers a 2.2% higher accuracy.
For challenging tasks like pruning MobileNetV1 and MobileNetV2 on Ima-
geNet, our method achieves a 2.0% and 1.9% higher accuracy, respectively.
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2 Related Work

2.1 CNN Pruning

CNN model pruning has become a heated topic as CNNs are widely used in
resource-constrained devices. A significant number of research works have been
proposed to prune CNNs by removing the unimportant weights [5,26,11,34]. Re-
cently, many research works focused on layer-wise channel pruning as it can
achieve competitive performance while being hardware-friendly[8,42]. However,
determining the optimal preservation ratio of each layer for the input models
is challenging even for experts. In [9], the authors employed a deep determin-
istic policy gradient (DDPG) agent [17], which is one of the most popular RL
algorithms for continuous action spaces, to automatically generate the optimal
pruning policy for channel pruning so that human efforts can be released from
the tedious handcrafted work. In [36], this RL-based auto pruning scheme was
further extended to model quantization for the first time. In the recent work [45],
the graph encoder and decoder were applied to generate the states for the RL,
which further improved the learning outcome. Other works utilized probabilistic
algorithms e.g., simulated annealing [18], evolutionary [19] and MCMC [46], to
sample the pruning policy. Both RL and probabilistic algorithms need massive
iterations to converge, causing the pruning process to be time-consuming. There-
fore, it is of great interest to develop a better auto pruning agent to improve the
convergence speed.

2.2 BO-based Auto Pruning and High-dimensional BO

BO is an optimization framework that employs a continuously updated proba-
bilistic model to predict the performance and variation of the design space so
that sampling efficiency can be maximized. Nowadays, BO is widely used to
tune hyperparameters, and it has become a natural thought to apply BO to
CNN pruning. A few works [3,22,35] on automatically pruning CNN based on
a BO agent are introduced here. In [35], the author proposed a fine-pruning
method, which applied a BO agent to automatically adapt the layer-wise prun-
ing parameters over time as the network changes. The work in [3] further im-
proved this framework by setting constraints on BO and designing a cooling
scheme to prune the CNN model to a user-specified preservation ratio gradu-
ally. However, these works dismissed the curse of high dimensionality of BO as
they only conducted experiments on shallow networks such as AlexNet [15]. In
[22], the authors successfully applied BO to prune deeper networks with an ef-
ficient acquisition function and a fast quality measure of the sampled network.
However, the high-dimensional problem of the BO agent was not fundamentally
solved. As an open problem, high-dimensional BO has attracted the attention of
many researchers. [29] found that the length scale, a hyperparameter of Gaus-
sian kernel that controls the smoothness, significantly impacts the performance
of high-dimensional BO. Therefore, the author proposed an algorithm to tune
the length scale in each iteration. However, the algorithm was only validated on



4 H. Fan et al.

squared exponential (SE) kernel, which is known to be unrealistic for modeling
many physical processes [30]. Besides, there are two mainstream solutions for
high-dimensional BO. One of them is additive-GP [14,21,31,38], which assumes
an additive structure of the target function, making it not applicable to layer-
wise pruning. The other is the random embedding approach [16,28,39,40], which
maps the high-dimensional problem to an efficient subspace with the assump-
tion that the unimportant dimensions can be replaced by the combinations of
the important dimensions. Although the recent research [37] showed that the
important layers might exist, obtaining the proper embedding is very difficult
for random embedding methods.

Considering the above research gaps, we propose a novel clustering algorithm
to reduce the dimensionality based on a moderate assumption that similar layers
can share the same preservation ratios. Then, a rollback algorithm is followed to
further boost the accuracy.

3 Methodology

In this section, we introduce our methodology by forming the auto pruning task
as a BO process. The frequently used variables are shown in Table 1.

3.1 Channel Pruning with BO

In this work, we mainly focus on channel pruning as it can achieve a good trade-
off between model size and accuracy while being hardware-friendly. We adopt the
magnitude-based channel pruning scheme along with the weight reconstruction
method proposed in [8] to prune the neural network. However, our proposed
framework also can be applied to other pruning schemes. In channel pruning, a
weights tensor with the shape of n×c×k×k is pruned into n×c′×k×k, so the
preservation ratio p is c′/c. Then, the problem becomes determining the optimal
pi for layer i to maximize the accuracy of the pruned network while satisfying

variable meaning

i index of layer

n number of input channels for layer

k kernel size

c, c′ number of output channels before/after pruning

t the tth iteration of BO process

Θ,Θ′ network model before/after pruning

pi preservation ratio for layer i

ptarget target preservation ratio

N number of layers of the network

P pruning policy for the model

Table 1: Variables in this work.



BO with Clustering and Rollback for CNN Auto Pruning 5

the constraints, which can be formulated as the following optimization problem:

max
P

f(Θ′)

s.t. pf ≤ ptarget

Θ′ = Pruning(Θ,P)

pf = Flops(Θ′)/F lops(Θ),

(1)

where the Pruning and Flops functions are well-defined and can be implemented
explicitly in the program. f is the target function, which is usually a black-
box function. In our case, it is the accuracy of the pruned network and can be
measured by conducting inferences on the images in the validation set.

This problem is hard to solve since there is no explicit form of f due to
the complex relationship between channel pruning policy and the corresponding
accuracy. An alternative method is to build a fast model to approximate the
black box function f by iteratively interacting with the channel pruner, and
the optimal pruning policy P∗ can be achieved by finding the maximum of the
model. BO, which models the black-box function with a continually updated
probabilistic model, e.g. Gaussian Process (GP) model [23], becomes promising
for optimizing expensive black-box functions due to its high sample efficiency.

During the BO process, we note the sampled policy in the tth iteration as
Pt ∈ RN , where N is the depth of the network. Similarly, the pruning policies
for time 1 to t can be noted as P1:t. As we have mentioned before, we assume
that the pruning samples can be modeled as a GP model, and therefore we have

f (Θ,P1:t) ∼ N (m(P1:t),K (P1:t,P1:t)) , (2)

where m is the mean function, and K(P1:t,P1:t) is the variance matrix. In the
following discussion, we denote f(Θ,P1:t) by f(P1:t) for simplicity. Then, the
joint distribution of the previous samples together with the next sample can be
represented by[

f(P1:t)

f(Pt+1)

]
∼ N

(
m(P1:t)

m(Pt+1)
,

[
K(P1:t,P1:t), k(P1:t,Pt+1)

k(Pt+1,P1:t), k(Pt+1,Pt+1)

])
(3)

and the probabilistic prediction of the next sample can be obtained by

f(Pt+1) ∼ N (µ(Pt+1), σ(Pt+1))

µ(Pt+1) = k(Pt+1,P1:t)K(P1:t,P1:t)
−1f(P1:t)

σ(Pt+1) = k(Pt+1,Pt+1)

− k(Pt+1,P1:t)K(P1:t,P1:t)k(P1:t,Pt+1)

(4)

This means that the mean for the unexplored pruning policy Pt+1 can be pre-
dicted via the history samples, and the corresponding variance of the prediction
can also be obtained.

To enhance the sampling efficiency, a cheap surrogate function, which is called
the acquisition function, is built to recommend the next sample point with the
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Fig. 1: Solving the auto pruning problem by BO.

highest potential to maximize the objective function. Expected Improvement
(EI) [1,24], which is defined by E[max(f(P)− f(P+), 0)], aims to find the sam-
pling point that has the highest expected improvement over the current optimal
policy P+, and has become one of the most popular acquisition functions over
the past years. In this work, we utilize EI to sample the pruning policies. The
framework for the BO-based auto pruning scenario thus can be illustrated by Fig.
1. We first evaluate the randomly generated policies as the initial samples. The
initial policies are sampled according to the Sobol sequence [12,13] to make the
BO process more stable as Sobol is an evenly distributed quasi-random low de-
pendency sequence and has an overwhelming advantage in providing stable and
evenly distributed samples. Then, we build the GP model to estimate the poli-
cies’ mean and variance at unobserved locations according to equation 4. Next,
the EI-based acquisition function is computed to indicate the potential benefits
of each unexplored policy. Finally, the recommended policy, which shows the
highest potential of obtaining a better-pruned network, will be given by solving
the maximum value of the acquisition functions and will serve as the next sam-
ple to update the GP model. By iterating this process, the recommended policy
can keep improving until convergence. Based on the theoretical research of [2],
the simple regret of BO, which defines as f(P∗) − f(Pt), is upper bounded by
O(t−1/N ), showing that the convergence rate of BO will significantly decrease as
the CNN models get deeper. Therefore, we propose a layer clustering algorithm
to solve this problem.
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Fig. 2: The distributions of the channel importance of the layers.

3.2 Layer Clustering

To reduce the dimensionality of BO-based auto pruning, we consider clustering
the layers and sharing the same preservation ratio within a cluster. As we fre-
quently observed that several layers have similar preservation ratios, we assume
that sharing the same preservation ratio among similar layers will not affect the
pruning result. Aiming to exploit the similarity between layers, we propose three
different measures and experimentally compare their effectiveness.

Inspired by [9] which used the layer structure parameters to form the envi-
ronment states of the RL agent, we define a structural vector and measure the
similarity based on the Euclidean distance between the vectors. Our proposed
structural vector includes basic parameters e.g., the number of input channels
(n), number of output channels (c), and kernel size (k). In addition, we take
the number of parameters and Flops into account as they show the computation
complexity of a layer. We also include the size and the dimensional change of
the output feature map to compare the features extracted by the layers.

Another idea is to compare the distributions of the weights inside the layers.
Since we adopt the importance-based pruning scheme that removes the less sig-
nificant part of the weights, layers with similar distributions are more likely to
have close preservation ratios. Note that, although we choose magnitude as the
importance in this work, our method can also apply to another kind of impor-
tance e.g., gradient-based [6], Nisp [44], etc. We utilize Gaussian kernel-density
estimation (GKde) to fit the Gaussian distribution of each layer’s channel im-
portance. The distributions of the layers usually have different biases and do not
overlap. Considering whether a channel is redundant depends on its position in
the layer it belongs to, layers with different biases can have similar percentages
of redundancy. Thus we relocate the distributions by subtracting their medians
to make different distributions comparable. Fig. 2 shows the distributions of
different layers in MobilenetV1 and MobilenetV2, and it is obvious that some
layers have similar channel importance distributions. Next, we compare two dif-
ferent methods to measure the similarity between distributions. One of them is
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Jensen–Shannon divergence (JSD), known as the symmetric version of KL diver-
gence, which focuses on the information gap. The other is the Euclidean distance
which focuses on shape. To find the best approach to measure the similarity of
the layers, a set of experiments is conducted and will be shown in the experiment
section.

Taking the similarity measures as the distance between the layers, the hierar-
chical agglomerative clustering (HAC) [41] can be adopted to cluster the layers
as it has no limitation on the measure of distance while other methods may re-
quire the observations of the data. To minimize the total within-cluster variance,
we update the distance between clusters with the Ward linkage method, whose
details can be found in [27]. Another characteristic of HAC is that the existing
clusters will not split when we decrease the number of clusters C, and results
of different C are stored after one single run. This characteristic is useful to the
rollback algorithm, which will be introduced in the next subsection.

After dividing the layers into C clusters, we only need to train a C-dimensional
GP model instead of the high-dimensional model, improving the upper bound
of the simple regret to O(n−1/C). We assign the same preservation ratios for
each cluster so that the C-dimensional vector generated by the low-dimensional
model can be extended to the N -dimensional pruning policy P.

3.3 Rollback for Higher Accuracy

With the layer clustering algorithm, we can efficiently obtain high-quality prun-
ing policies. However, the possibility exists that we miss the optimal pruning pol-
icy since the low-dimensional BO does not explore the whole design space. There-
fore, we propose to recover the original dimensionality after the low-dimensional
model converges so that the whole design space can be reached and the optimal
will not be missed. It is difficult for BO to find the peaks of the acquisition func-
tion in high-dimensional space[29], leading to random-like searching. However,
with the data collected in the low-dimensional space, BO can easily locate the
peaks and exploit better results when returning to the high-dimensional space
as sufficient prior knowledge about the peaks is provided. To achieve this, we
propose a rollback algorithm that rebuilds the GP model to search the whole
design space with plenty of prior knowledge, which is presented in Alg. 1.

Direct Rollback A simple way to rollback is to build a D-dimensional model
directly. To achieve this, we record the pruning policy P every iteration. Re-
call that P is extended from the low-dimensional sample of BO based on the
clustering, thus we can recover the dimensionality of BO by rebuilding the GP
model with P1:t. Since BO updates by fitting a new GP model every iteration,
rebuilding the GP model causes no extra time overhead. Our experiments show
that our rollback algorithm can further improve the results by discovering better
pruning policies that the clustering-based BO can not reach.

Gradual Rollback A more sophisticated way is to gradually rollback to reduce
the learning gap between the low and high-dimensional space. To be detailed, a
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Algorithm 1: Rollback the Clustered BO

Input: C-dimensional GP model MC , Original dimensionality D,
Max iteration T
Result: D-dimensional GP model

1 converge counter = 0;
2 while t < T/2 do
3 Obtain Pt from MC and Record Pt;
4 if f(Pt) > f(P+) then
5 Push Pt to the Best Queue;
6 converge counter = 0;

7 if converge counter ≥ 20 then
8 break;
9 update MC ;

10 converge counter ++;

11 Obtain the D-dimensional clustering result;
12 Reform P1:t based on the D-dimensional clustering;
13 Perform adaptive searching domain scaling;
14 Generate the D-dimensional GP model;

cluster number C∗, which satisfies C < C∗ < N , can be chosen as the bridge
stage so that we can first rollback to C∗-dimensional space and then rollback
to the original dimensionality. As we mentioned in the last subsection, a nice
feature of HAC is the consistency of results among different cluster numbers.
Therefore, there is no mismatch between the corresponding dimensions after
rollback. In addition, as all results of HAC are saved after one single run, we
can obtain the clustering result of C∗ clusters without extra computation. To
build the C∗-dimensional GP model, we only need to remove the dimensions
that remain in clusters from P1:t. The effectiveness of gradual rollback is shown
in the experiment section, and a detailed analysis of different choices of C∗ is
shown in the supplementary material.

Adaptive Searching Domain Scaling To boost the efficiency of BO in high-
dimensional space, we propose an adaptive searching domain scaling scheme,
where we shrink the searching domain according to the history data collected
during the low-dimensional BO process. We store the pruning policies with the
highest accuracy in the Best Queue, which has ten entities, as we observe that
ten entities can decrease the searching domain to a reasonable extent. Then, the
searching domain of the high-dimensional BO process can be formulated as

D =

[
min
i,j

P∗i
j ,max

i,j
P∗i

j

]C
, (5)

where i ranges from 1 to 10, indicating the index of the high-performance samples
in the queue. j ranges from 1 to C, indicating the index of the clusters.
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4 Experiments

In our experiments, we use GpyOpt [33] as the naive BO agent and implement
the proposed methods based on it. We adopt Matern5/2 as the GP kernel as
recommended in [30]. The hyperparameters of the kernel are decided by maxi-
mum likelihood estimation. RL agent in [9] is chosen as a baseline. To make a fair
comparison, we adopt the same channel pruning scheme for all the methods. The
accuracy is estimated based on a random subset of the training set, whose sizes
are 5000 and 3000 for Cifar10 and ImageNet, respectively. We conduct our exper-
iments on several representative CNN model architectures, including ResNet56
trained on Cifar10 [7], MobileNetV1 [10] and MobileNetV2 [32] both trained on
ImageNet. We run each experiment for 200 epochs and report the mean (m) and
the standard deviation (σ) of 10 different seeds. Note that our research focuses
on the optimization process of auto pruning. Therefore, we perform a detailed
analysis of the convergence process and all the experiment results are obtained
before finetuning.

4.1 Analysis of Similarity Measures

To analyze the three proposed similarity measures, we perform layer clustering
based on each of them and compare the searching results. Table 2 shows the
cluster number C and the mean of top-1 accuracy along with the variance.
As shown in Table 2, the structure-based measure provides the best result for
ResNet56, while Euclidean distance of distributions performs the best for the
other two models.

We believe that significant architectural differences between the models lead
to this result. ResNet56 has a plain architecture, as it is composed of repeated
layers of only three different structures. Therefore, when the dimensionality re-
duces to three, the structure-based measure can achieve high accuracy while
others suffer a considerable loss. Similarly, the structure-based measure achieves
high accuracy for MobileNetV1 as it has five layers that share the same struc-
ture. However, the other layers of MobileNetV1 have different structures, which
limits the effectiveness of the structure-based measure. For MobileNetV2, the
distribution-based measure outperforms the structure-based measure by a large
margin, showing its superiority in dealing with complex CNN models.

Except for ResNet56, which is unsuitable for distribution-based measures,
Euclidean distance provides higher accuracy and lower variance than JSD. We
explain this result in terms of the meaning of Euclidean distance and JSD.
Euclidean distance focuses on the relative position of the weights, which has a
significant impact on the importance-based pruning method. JSD measures the
difference in information, which is not closely related to the importance-based
pruning. Thus, Euclidean distance better measures the similarity among layers.

To summarize, the structure-based measure is suitable for simple models with
repeated layers while the Euclidean distance of distributions is effective for com-
plex models. Therefore, we adopt the structure-based measure for ResNet56 and
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ResNet56 MobileNetV1 MobileNetV2

C 3 6 6

Structure 91.68 (0.43) 48.46 (1.39) 50.31 (0.71)

JS 90.78 (0.27) 47.99 (1.98) 52.49 (1.27)

Euclidean 88.95 (0.55) 48.50 (1.20) 52.57 (0.98)

Table 2: Comparison of Similarity Measures.

method top-1 m top-1 σ top-5 m top-5 σ

RL 87.69 3.39 99.42 0.33

Naive BO 90.29 1.63 99.72 0.11

Layer Clustering 91.68 0.43 99.77 0.06

Rollback 92.53 0.56 99.86 0.05

Table 3: Performance for ResNet56.

adopt the Euclidean distance of distributions for MobileNetV1 and MobileNetV2
in the following experiments.

4.2 Experiments on ResNet56

ResNet56 is a representative model architecture trained on Cifar10 and it has a
considerably large depth, leading to very high dimensions for layer-wise pruning
tasks. Although the first layers of the residual branches are not prunable because
the input feature maps are shared with the shortcut branches, there remain 28
layers to be pruned, which will cause the curse of dimensionality problem for the
naive BO agent. While with layer clustering, there are only three parameters left
for the BO agent to optimize.

In Table 3, we list the mean value m and the standard deviation σ of both
top-1 and top-5 accuracy achieved by different methods when pruning 50% Flops
for ResNet56. Our proposed layer clustering method improves BO’s performance
with 1.4% higher top-1 accuracy. The rollback scheme further improves the ac-
curacy by 0.9%. Note that in [9], the author shows that AMC can achieve a
90.2% top-1 accuracy in 400 epochs. Our proposed rollback method can achieve
93.14 % within 200 epochs, which is significantly better than [9].

Table 3 also shows that the BO agent outperforms RL in efficiency by a
large margin. It can be observed that the BO-based searching scheme is more
stable than the RL-based counterpart and converges much faster, as the σ of
the RL agent is much higher than our proposed layer clustering and the rollback
algorithm. In Fig. 3a, we show the effectiveness of the proposed methods in
detail. The solid lines in the figure refer to the means, and the shaded areas refer
to the corresponding σ. The layer clustering method can significantly boost the
convergence of the BO agent. After its convergence, the rollback scheme turns
the design space back into a high-dimensional space and can further improve the
accuracy of the pruned network.
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Fig. 3: Comparison of BO-based methods.

Note that all methods take around 800 seconds to finish 200 epochs in our
device, which indicates the time spent for each trial in BO and RL is close and
the time overhead of rollback is ignorable. Thus, our method is also much more
efficient from the perspective of wall clock time.

4.3 Experiments on MobileNetV1

MobileNetV1 is a popular single-branch network trained on ImageNet and it is
known to be challenging to prune due to its compact design. As the layers of
MobileNet consist of pairs of depth-wise convolution and point-wise convolution
layers, we only consider the point-wise convolution layers when searching for
the pruning policy, and the corresponding channels in the depth-wise layer will
be removed accordingly. We also note that the first layer is not prunable as its
channel should be in line with the input images, and similarly for the final linear.
As a result, there are 13 parameters for BO to optimize. We prune 50% Flops
and we divide the layers into 6 clusters.

In Table 4, we show the accuracy and corresponding σ for the proposed
methods on MobileNetV1. Similar to the result of ResNet56, BO-based methods
achieve significantly better results than the RL agent. Our rollback-based BO
can achieve the best top-1 accuracy of 52.7%, while the best top-1 accuracy
of the RL counterparts is 50.2%. Additionally, the layer clustering-based BO
outperforms the original BO agent by 1.1% and 0.9% in top-1 and top-5 accuracy.
The rollback scheme further improves the accuracy by 0.9% and 0.5% in top-1
and top-5 accuracy, respectively. Note that it is normal that the σ gets higher
after rollback as the simple regret increases in high-dimensional space.

In Fig. 3b, we compare the three BO-based methods in detail. The layer
clustering method speeds up the convergence of the BO agent significantly, based
on which rollback scheme further improves the accuracy.

4.4 Experiments on MobileNetV2

We also validate our method on the modern efficient network MobileNetV2,
which is trained on ImageNet. As an improved version of MobileNetV1, Mo-
bileNetV2 is even more compact than MobileNetV1, making it challenging to
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method top-1 m top-1 σ top-5 m top-5 σ

RL 45.61 1.95 71.88 1.87

Naive BO 47.39 1.39 73.11 1.47

Layer Clustering 48.49 1.20 74.03 0.87

Rollback 49.34 2.01 74.52 1.66

Table 4: Performance for MobileNetV1.

method top-1 m top-1 σ top-5 m top-5 σ

RL 43.15 5.45 69.84 5.01

Naive BO 51.09 1.97 77.13 1.33

Layer Clustering 52.57 0.98 78.45 1.12

Rollback 52.86 0.61 78.57 0.70

Table 5: Performance for MobileNetV2.

prune. It adopts an inverted residual structure while keeping the depth-wise and
point-wise design, leading to complex architecture. We use the same experimen-
tal setting as in Sec. 4.2 and 4.3 for the residual structure and the depth &
point-wise structure, and there are 18 parameters for the BO agent to optimize.
We divide the layers into 6 clusters and preserve 60% Flops.

As shown in Fig. 3c, the layer clustering algorithm successfully boosts the
convergence of BO, which is consistent with previous experiments. Table 5 shows
that our layer clustering algorithm can raise the top-1 accuracy over the naive
BO agent by 1.5% while achieving a much lower σ. Moreover, our method out-
performs the RL-based counterpart by a large margin as RL can not converge
within the same iterations for this challenging task.

However, the rollback method only improves the top-1 accuracy of layer
clustering by 0.29% which is 3× lower than the previous experiments. The reason
is that the original dimensionality of MobileNetV2 is higher than MobileNetV1,
resulting in a learning gap after performing the direct rollback. This motivates
us to develop the gradual rollback algorithm. Note that since the image size of
Cifar10 is much smaller than ImageNet, the design space of ResNet56 is also
smaller. Therefore, the learning gap is alleviated for ResNet56.

4.5 Gradual Rollback for Higher Dimensionality

In this section, we demonstrate the effectiveness of the gradual rollback scheme
with experiments on MobileNetV2. Both the structure-based measure and Eu-
clidean distance of distributions are included for the layer clustering phase. To be
fair, the bridge stage C∗ is 15 for both experiments. Table 6 shows the top-1 ac-
curacy achieved by the layer clustering algorithm and compares the improvement
provided by rollback and gradual rollback. Results show that gradual rollback
successfully mitigates the learning gap and outperforms direct rollback. Addi-
tionally, when an inferior measure is chosen for the layer clustering, gradual
rollback can make up for it by significantly increasing the accuracy.
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models Layer clustering Direct Rollback Gradual rollback

Structure 51.06 +0.41 +1.60

Euclidean 52.57 +0.29 +0.44

Table 6: Comparison between Direct and Gradual Rollback.

top1 4 5 6 7 8 9

MobiletNetV1 47.65 47.12 47.7 (0.65) 47.7 (2.19) 45.82 46.27

MobiletNetV2 49.48 50.6 52.11 50.93 50.95 50.43

Table 7: Comparison of different cluster numbers. In parentheses is the σ.

4.6 Choice of the Cluster Number

The choice of the cluster number C is a common problem for clustering algo-
rithms. In this work, if C is large, the sampling efficiency of BO will decrease.
When C is small, good pruning policies are more likely to be excluded from the
searching space. For models with plain architecture like ResNet56, the number
of different layers they contain is a good choice for C. However, there is no ob-
vious choice of C for complex models. To analyze the effect of C, we set C to
different values and test them on MobileNetV1 and MobileNetV2. As shown in
Table 7, choices around 6 lead to the best results. Note that the architecture
of MobileNetV1 and MobileNetV2 are quite different, showing the generality of
this result. Therefore, cluster numbers around 6 are reasonable choices.

5 Conclusion

We have analyzed the similarity between the CNN layers and proposed a novel
layer clustering algorithm to boost the sampling efficiency of BO for CNN prun-
ing. To further improve the accuracy of the output pruning policy, we developed
a rollback algorithm to recover high-dimensional design space and perform a fine-
grained search with the data collected in the low-dimensional space as the prior
knowledge. Our experiments have validated the effectiveness of the proposed al-
gorithms. In the future, we intend to extend our work to other layer-wise pruning
methods that measure the importance of channels with different metrics. We are
also interested in the theoretical proof for the rollback algorithm.
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