
A Algorithm for Few-Shot Learning

Algorithm 1 Meta-LSTM for few-shot learning with smoothness-inducing reg-
ularization

1: Input: the set of meta-sets Dmeta, step sizes η1 and η2, number of inner itera-
tions K, the number of total steps Ttotal, classifier parameterized by θ, optimizer
parameterized by ϕ

2: repeat
3: Initialize θ randomly, reset LSTM hidden state
4: Sample a dataset D = {Dtrain, Dtest} from Dmeta

5: L ← 0
6: for t = 0, . . . , Ttotal − 1 do
7: Feed a batch of data (x, y) from Dtrain to the classifier, obtain state st
8: Update θ as demonstrated in Section 3.1
9: s′t ← st + 0.05 ∗ N (0, I)
10: for k = 1, . . . ,K do ▷ Find the perturbed state iteratively
11: s′t ← ΠB(st,ϵ)(η1 sign(∇s′t

d(u(st), u(s
′
t))) + s′t)

12: end for
13: Rt+1 ← ∥u(st)− u(s′t)∥2 ▷ Regularization term
14: L ← L+ λRt+1

15: end for
16: Sample a batch of data (x, y) from Dtest

17: L ← L+ ℓ (f(θTtotal(ϕ);x), y)
18: Update ϕ by L using Adam with the step size η2
19: until converged

B Experiment Summary

We provide a summary of experiments for image classification in Table x.

Table 1. Test accuracy of different regularizers.

Dataset Descritption Result

MNIST
Training LeNet with different initializations Figure 3b, 3e

Generalization to longer steps Figure 3c, 3f

CIFAR10

Training a 3-layer CNN for 10K steps Figure 4
Transferred training of ResNet-18 Figure 5a, 5d

Training on unseen data Figure 5b, 5e
Transferred training of ResNet-18 on CIFAR100 Figure 5c, 5f



C Implementation Details

Extra time cost caused by our regularization term has little impact on the ef-
ficiency of applying the neural optimizer. As the dimension of the state is rel-
atively small, the gradient can be obtained efficiently considering the computa-
tional complexity of backpropagation. Specifically, training time per epoch for
SimpleOptimizer is 38.21s while for our method is 97.31s. As we only train the
learned optimizer for a few epochs and then apply it to the target task, we care
more about time for deploying the neural optimizer. This time is nearly the same
as the hand-designed ones. Moreover, since PGD has been acknowledged as a
practical and effective method in adversarial attacks, it is feasible to obtain s′

in our case.

For DMOptimizer [1], we adopt a 2-layer LSTM with the hidden size of 10,
while for SimpleOptimizer [2], we just use a 1-layer RNN with the hidden size
of 10. As to few-shot learning, Meta-LSTM leverages its specific 2-layer LSTM
structure described in [7].

As mentioned, we use grid search to determine the learning rate for each
hand-designed optimizer. Specifically, for all hand-engineered optimizers includ-
ing SGD, SGDM, Adam, AMSGrad, and RMSProp, we only tune one hyperpa-
rameter, learning rate, and leave the rest with their default values. We adopt
a simple yet effective grid search to find the best learning rate for these opti-
mizers, and the search space is [10−4, 10−3, 10−2, 10−1, 1], which is a frequently
used range in many papers related to optimization algorithms [3]. For the Sim-
pleOptimizer, we use recommended hyperparameters, optimizer structures, and
state definitions in [1] and [2] respectively. Finally, we set the learning rate to
0.1 for SGD and SGDM, 10−3 for Adam, AMSGrad and RMSProp. As to our
smoothed optimizer, with all other settings the same as SimpleOptimizer, we
tune two additional hyperparameters ϵ and λ, where HPO is also conducted by
grid search with ϵ ∈ [10−2, 10−1, 1] and λ ∈ [10−1, 1, 10, 102]. We tune ϵ and λ
for each task. During evaluation, we train the optimizee by a specific optimizer
without early-stopping.

Furthermore, these neural optimizers have their different state descriptions.
The input state is the concatenation of preprocessed gradient and the original
parameter value in DMOptimizer [1]. We only have the gradient normalized by
the second momentum as the state in SimpleOptimizer [2]. The state of Meta-
LSTM [7] is based on DMOptimizer with an extra feature, the original gradient.

On the other hand, for fairness of the comparison, it is helpful to adopt a
more performant HPO method. Therefore, we conduct Hyperband [4] to search
for the best learning rate for our five hand-designed optimizers. We choose hy-
perparameters for Hyperband with η = 3, R = 10000. Results are presented in
Figure 4 in the link. Marginal improvement can be observed over grid search
but our smoothed optimizer still outperforms all the baselines when training a
3-layer CNN on CIFAR10. In fact, image classification tasks on CIFAR10 have
been explored extensively, and a grid search within [10−4, 10−3, 10−2, 10−1, 1]
is sufficient to lead to a comparable performance with other effective HPO al-



gorithms such as Hyperband. Hence, it is efficient to use grid search, which
guarantees a fair comparison at the same time.

0 2000 4000 6000 8000 10000

Step

0.8

1.0

1.2

1.4

1.6

1.8

2.0
L

os
s

Training Loss

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(a)

0 2000 4000 6000 8000 10000

Step

0.75

1.00

1.25

1.50

1.75

2.00

2.25

L
os

s

Testing Loss

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(b)

Fig. 1. Learning curves of different optimizers with Hyperband as HPO algo-
rithm.

D Additional Experimental Results

D.1 Accuracy with a longer horizon

Since we try to point out and solve current problems in existing learned opti-
mizers, and do not aim at outperforming the state-of-the-art results, we choose
the number of iterations as 1000 for MNIST and 10000 for CIFAR10, based on
settings of previous neural optimizers [1,5,6]. To support the effectiveness of our
smoothed optimizer, we showed the results of MNIST for a longer horizon of
10000 steps in Figure 2. It can be observed that our proposed method is still
the best with fastest convergence rate and best testing accuracy. In addition, all
baselines achieves satisfactory accuracies, which are comparable to existing ones
in LeNet. Specifically, among those baselines, SGD obtains the best test accu-
racy of 98.93% while our smoothed optimizer reaches 99.16%. This experiment
further validates advantages of the smoothness-inducing neural optimizer.

D.2 Smoothness Comparison

In this section, we conduct an experiment on MNIST to demonstrate the smooth-
ness of the neural optimizer trained with our proposed regularization. Specifi-
cally, we perturb the state which is the optimizer input with the noise δ ∼
N (0, 0.1) for each time step and observe performance changes in terms of learn-
ing curves. We plot differences in loss between the optimizer with normal states
and with perturbed states in Figure 3. Note that the difference is calculated by

diff = lossps − lossns



0 2000 4000 6000 8000 10000

Step

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

Training Accuracy

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(a)

0 2000 4000 6000 8000 10000

Step

0.90

0.95

1.00

A
cc

u
ra

cy

Testing Accuracy

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(b)

Fig. 2. Accuracy curves on MNIST with LeNet for 10000 steps.

0 25 50 75 100 125 150 175 200
Step

0.25

0.30

0.35

0.40

0.45

Di
ffe

re
nc

e

Training Loss Difference
SimpleOptimizer
Smoothed-Simple

(a) Training

0 25 50 75 100 125 150 175 200
Step

0.25

0.30

0.35

0.40

Di
ffe

re
nc

e

Testing Loss Difference
SimpleOptimizer
Smoothed-Simple

(b) Testing

Fig. 3. Loss difference of SimpleOptimizer and Smoothed-Simple.

where ps means perturbed states and ns means normal states. As we can see,
performances of both SimpleOptimizer and SmoothedSimple decline while on
the other hand, the drop is relatively smaller of our smoothed optimizer than
that of the original one. This phenomenon shows that our method can boost the
smoothness of neural optimizers confronted with state disturbance.

D.3 Results on tiny-ImageNet

We evaluate the optimizers on tiny-ImageNet, which is a relatively larger dataset
extracted from ILSVRC-12 [8]. 100 classes are selected from this dataset, among
which the training set, validation set, and testing set consist of 70, 20, and 10
classes respectively. We implement an experiment targeted at a 10-class classi-
fication problem, in which the optimizer is trained on the training set, selected
on the validation set, and evaluated on the testing set. To avoid overfitting, we
adopt a L1 regularization when training classifiers. As can be observed in Figure
4, the learned optimizer with a smooth regularizer performs consistently better
than hand-designed methods. Specifically, it learns about 2 times faster than
Adam, and converges to a lower loss value in both training and testing stage.
Furthermore, our method improves the non-smooth SimpleOptimizer noticeably
as well.



0 2000 4000 6000 8000 10000

Step

1.4

1.6

1.8

2.0

2.2

L
os

s

Training Loss

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(a) Training loss

0 2000 4000 6000 8000 10000

Step

1.4

1.5

1.6

1.7

1.8

1.9

2.0

L
os

s

Testing Loss

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(b) Test loss

Fig. 4. Learning curves of classification on tiny-ImageNet.

D.4 Accuracy Curves

In this section, we provide more trajectories of accuracy.

0 2000 4000 6000 8000 10000

Step

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Training Accuracy

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(a)

0 2000 4000 6000 8000 10000

Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Testing Accuracy

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(b)

Fig. 5. Accuracy curves of different optimizers on CIFAR10, ResNet-18.

D.5 Results on RNN

To our knowledge, existing methods of learning to learn [1,6] still focus on com-
puter vision and there is little discussion about applying learned optimizers to
language tasks. However, we tried to leverage the neural optimizer to train a
simple RNN for binary sentiment analysis on the SST dataset. Specifically, the
network under investigation is a bi-directional LSTM with the hidden size of
100. We train the neural optimizer for 200 steps as well on this task and evalu-
ate it for 2000 training steps. Currently we have some preliminary results in the
following table as well as in Figure 7. As we can see, there exists a gap between
neural optimizers and conventional ones but our proposed regularization still
works to improve the vanilla simple optimizer. For more complex architectures
like Transformer, the current design of the neural optimizer like BackproPaga-
tion Through Time (BPTT) is incapable to handle such a large model due to



0 2000 4000 6000 8000 10000

Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Training Accuracy

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(a)

0 2000 4000 6000 8000 10000

Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy

Testing Accuracy

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(b)

Fig. 6. Accuracy curves of different optimizers on CIFAR100, ResNet-18.

memory constraints. Overall, it remains a research challenge to extend the neu-
ral optimizer to other domains besides computer vision and this is an interesting
future direction.

0 250 500 750 1000 1250 1500 1750 2000

Step

0.4

0.6

0.8

1.0

1.2

L
os

s

Training Loss

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(a) Training loss

0 250 500 750 1000 1250 1500 1750 2000

Step

0.5

0.6

0.7

0.8

0.9

1.0

L
os

s

Testing Loss

Adam

SGD

SGDM

AMSGrad

RMSProp

SimpleOptimizer

Smoothed-Simple

(b) Test loss

Fig. 7. Learning curves of sentiment analysis on SST.

References

1. Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., De Freitas, N.: Learning to learn by gradient descent by gradi-
ent descent. In: Advances in neural information processing systems. pp. 3981–3989
(2016)

2. Chen, P.H., Reddi, S., Kumar, S., Hsieh, C.J.: Learning to learn with better con-
vergence (2020), https://openreview.net/forum?id=S1xGCAVKvr

3. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

4. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research 18(1), 6765–6816 (2017)

5. Lv, K., Jiang, S., Li, J.: Learning gradient descent: Better generalization and longer
horizons. In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70. pp. 2247–2255. JMLR. org (2017)

https://openreview.net/forum?id=S1xGCAVKvr


Optimizer Test Accuracy

Adam 76.85 ± 1.23%
SGD 54.23 ± 1.58%
SGDM 55.65 ± 2.32%

AMSGrad 74.33 ± 0.86%
RMSProp 75.79 ± 1.04%

SimpleOptimizer 50.04 ± 0.05%
Smoothed-Simple 63.57 ± 1.43%

Table 2. Test accuracy of sentiment analysis.

6. Metz, L., Maheswaranathan, N., Nixon, J., Freeman, C.D., Sohl-Dickstein, J.: Un-
derstanding and correcting pathologies in the training of learned optimizers. arXiv
preprint arXiv:1810.10180 (2018)

7. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR
(2017)

8. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recogni-
tion challenge. International journal of computer vision 115(3), 211–252 (2015)


	Learning to Learn with Smooth Regularization

