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This document presents the detailed illustration of some used techniques
(Sec. A), the introduction of our experimental settings and implementation de-
tails (Sec. B), and the detailed analysis and discussion of our method (Sec. C).

A Theoretical Deviation

A.1 2×2 Givens Rotation

Our goal is to eliminate the sub-diagonal/super-diagonal entry of a 2×2 matrix.
Consider a given vector xT=[x1,x2]. We can set the entries of Givens rotation
as:
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Then the rotation can eliminate the entry by:
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For the simplicity concern, we use c and s to represent cos θ and sin θ, respec-
tively. Let us extend the vector x to a symmetric matrix X. The Givens rotation
is applied by an orthogonal similarity transform:
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As can be seen, the symmetric and orthogonal form still manifests after rotation.
From Eq. (1) and Eq. (2), we have cx2+sx1=0. Injecting this relation into Eq. (3)
leads to the re-formulation:[
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The magnitude of sub-diagonal entries gets smaller. A series of such Givens
rotations moving along the diagonal form the orthogonal matrix Qk for a QR
iteration:

Qk = R0:2R1:3 . . .RN−2:N (5)

where the sub-script of R denotes the region where the the rotation is applied.
Notice that the successive Givens rotations still keep the tri-diagonal form of
the matrix but gradually reduce the strength of super-diagonal entries. This
accounts for why the QR iterations can transform a tri-diagonal matrix into a
diagonal one.

A.2 Convergence of QR iteration

We give the proof for the theorem about convergence speed of QR iterations.

Theorem 2 (Convergence of QR iteration) Let T be the positive definite
tri-diagonal matrix with the eigendecomposition QΛQT and assume QT can be
LU decomposed. Then the QR iteration of T will converge to Λ.

Proof. Since we have T=QΛQT , then:

Tk = QΛkQT = (Q0 . . .Qk)(Rk . . .R0) (6)

By assuming QT=LU, this equation can be written as:

QΛkLU = (Q0 . . .Qk)(Rk . . .R0)

QΛkLΛ−k = (Q0 . . .Qk)(Rk . . .R0)U
−1Λ−k

(7)

For ΛkLΛ−k, its entry is defined by:

(ΛkLΛ−k)i,j =


li,j(

λi

λj
)k i > j

1 i = j

0 otherwise

(8)

When k→∞, we have ( λi

λj
)k→0 and ΛkLΛ−k→I. Due to the uniqueness of the

QR factorization, we also have Q0. . .Qk→Q and Rk. . .R0U
−1Λ−k→I. Then

the QR iterations can be formulated as:

(QT
k . . .QT

0 )T(Q0 . . .Qk)→QTTQ = Λ (9)

As seen above, the QR iteration converges to the eigenvalue.

This theorem implies that the convergence speed of QR iterations is actually
dependent on the adjacent eigenvalue ratio λi/λj for i>j.
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A.3 Wilkinson Shift

TheWilkinson shift denotes extracting the two eigenvalues from the right bottom
2×2 block of a matrix and uses them as the shift coefficients. This can be also
accomplished by Givens rotation. Consider the general form of the orthogonal
transform by Givens rotation in Eq. (3). Setting the off-diagonal entries to zero
leads to the linear equations:{

(x1 − x3)cs+ x2(c
2 − s2) = 0

c2 + s2 = 1
(10)

Let we define two variables by:

m =
x1 − x3

2x2
, n =

s

c
= tan θ (11)

Then Eq. (10) is equivalent to:

n2 − 2mn− 1 = 0 (12)

The above equation has two roots that are defined by

n = m±
√

1 +m2 (13)

We select the smaller one to ensure that the rotation angle θ is within 45 degrees.
Then the entries of the rotation are given by:

c =
1√

1 +m2
, s = cn (14)

The two eigenvalues are derived and used as the shifts.

A.4 Implicit Q Theorem

In the paper, we present the following implicit Q theorem without proof.

Theorem 3 (Implicit Q Theorem) Let B be an upper Hessenberg and only
have positive elements on its first sub-diagonal. Assume there exists a unitary
transform QHAQ=B. Then Q and B are uniquely determined by A and the
first column of Q.

Now we give a short proof and illustrate why the theorem cannot be directly
applied in our case.

Proof. Since the QR iteration is a unitary transform, we can write QHAQ=B
as:

AQ = QB (15)

If we represent Q by a vector of columns Q=[q0,. . .,qn−1], Eq. (15) can be
re-written as:

A[q0,. . .,qn−1] = [q0,. . .,qn−1]B (16)
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Recall that B is a tri-diagonal matrix and only has non-zero entries at bi−1,i,
bi,i, and bi+1,i. Relying on this property, we have:

Aqi+1 = bi−1,iqi−1 + bi,iqi + bi+1,iqi+1

qi+1 =
Aqi+1 − bi−1,iqi−1 − bi,iqi

bi+1,i

(17)

Since q is orthogonal, i.e., qTq=I, we have:

bi+1,i = ||Aqi+1 − bi−1,iqi−1 − bi,iqi||2

qi+1 =
Aqi+1 − bi−1,iqi−1 − bi,iqi

||Aqi+1 − bi−1,iqi−1 − bi,iqi||2
(18)

As indicated above, each column of Q and the sub-diagonal entries of B can be
uniquely computed by the previous columns.

This theorem presents an algorithm that could greatly simplify the QR iter-
ations without explicit Givens rotations. However, as can be seen from Eq. (17),
the theorem relies on the assumption that the sub-diagonal entry bi+1,i is non-
zero. In our case, any Givens rotation aims at zeroing out the sub-diagonal entry
bi+1,i. As a consequence, bi+1,i are very small and even can be zero after rota-
tion, which violates the assumption. This is more serious for batched matrices,
as more matrices could amplify the probability. Directly applying the theorem
could introduce large round-off errors and may cause data overflow.

Nonetheless, this theorem implies that the i-th column of Q only depends on
the previous two columns of Q and B, but not on the columns after i-th column.
This shows that the i-th Givens rotation will only affect part of Q. Therefore,
we propose our economic eigenvector calculation to involve part of the matrix
for each rotation.

B Experimental Settings

B.1 Implementation Details

All the source codes are implemented in Pytorch 1.7.0 with the self-contained
CUDA wrapper. Older versions till 1.0.0 should be also compatible. We com-
pare our method with the function torch.svd, which calls the LAPACK’s SVD
gesdd routine that uses the divide-and-conquer strategy to solve the eigenvalue
problem. Some other functions, such as torch.symeig and torch.eig, can be
also adopted to perform the ED. However, we empirically found that they are
not as numerically stable as torch.svd and often cause the network to fail in
converging. We thus only compare our method with the function torch.svd.
All the numerical tests are conducted on a workstation equipped with a GeForce
GTX 1080Ti GPU and a 6-core Intel(R) Xeon(R) GPU @ 2.20GHz. The com-
putational time is measured based on 10, 000 randomly generated matrices. We
note that if a low-level programming language (e.g., CUDA C++) is used to
implement our algorithm, the speed might get further improved.
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For our method, the threshold for the dimension reduction is set as 1e−5.
Our process of batched Givens diagonalization lasts n iterations, where each
iteration consists of two sequential QR iterations with Wilkinson shifts. We use
the techniques implemented in [6] for the backward gradient computation.

B.2 Decorrelated BN

To perform the ZCA whitening, given the reshaped feature map X∈RC×BHW ,
the covaraince of the feature is first computed as:

A = (X− µ)(X− µ)T + ϵI (19)

where A∈RC×C , µ is the mean of X, and ϵ is a small positive constant to
ensure the positive-definitiveness of A. Afterwards, the inverse square root of
the covaraince is applied to whiten the feature:

Xwhitened = A− 1
2X (20)

Compared with the BN, the whitened feature map Xwhitened further eliminates
the data correlation between the features. The statistics µ and A− 1

2 during the
training phase are stored and used in the inference stage.

In the practical implementation, one often split the feature X into multiple
groups in the channel dimension and attain a mini-batch of matrices. This di-
vision allows each group to have own training statistics, which could improve
the stability and generalization performance. This is particularly helpful in the
regime of small batch sizes [3]. Let G denote the group numbers. Then the split
can be formally defined by:

X ∈ RC×BHW → X ∈ R
C
G×G×BHW (21)

The covariance is changed accordingly as:

A ∈ RC×C → A ∈ R
C
G×G×G (22)

As indicated above, the covariance becomes a mini-batch of matrices. The cal-
culation raises the need of our batch-friendly ED algorithm.

As depicted in Fig. 1, we insert the decorrelated BN layer after the first
convolution layer of the ResNet-18 architecture. For the calculation of backward
gradients, we use the Taylor polynomial for gradient approximation [6, 7]. The
degree of the Taylor polynomial is set to 9. For the other settings, we follow the
experiments in [7].

B.3 Second-order Vision Transformer

Fig. 2 depicts the architectural overview of the second-order vision transformer.
In the ordinary vision transformer [2], only the class token is used to output the
class predictions, which results in the need of pre-training on ultra-large-scale
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Fig. 1. The detailed architecture changes of ResNet-18 after replacing the BN layer
with the ZCA whitening meta-layer. Following [7], we reduce both the kernel size and
the strides of the first convolution layer. The rest blocks of the model are not modified.

datasets. In the second-order vision transformer, the covariance square root of
the visual tokens are utilized to assist the classification task. The process can be
formulated as:

y = FC(c) + FC((XXT )
1
2 ) (23)

where c is the class token, X denotes the visual token, and y is the final class
predictions. Equipped with the covariance pooling layer, the So-ViT model is
free of pre-training and can achieve comparable performances with CNNs even
if trained from scratch.

Fig. 2. Scheme of the second-order vision transformer [9]. The covariance square root
of the visual token is utilized to assist the classification task, which removes the need
of pre-training on ultra-large-scale datasets.

For training transformer architectures, people often use some advanced mixed-
precision training techniques such as NVIDIA Apex. Due to the use of low-
precision weights and data, these techniques can not only accelerate the training
process, but also can reduce the risk of gradient explosion. However, as pointed
out in [6], the low precision often poses a challenge to the SVD. As the SVD
often needs double precision to attain the effective numerical representation of
the eigenvalues, using a low precision (i.e., float or half) can cause the network
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to fail in converging. To avoid this issue, we first train the model using Newton-
Schulz iteration that computes the approximate matrix square root for the first
50 epochs. Then we switch to the SVD or our Batched ED and continue the
training. This hybrid approach can avoid the non-convergence at the beginning
of training.

We set the spatial dimension of the visual tokens to 32×32 and 36×36 in
our paper. The batch size is set as 768. For the other experimental settings, we
follow [9].

B.4 Universal Style Transfer

Table 1. The LPIPS distance and the user preference (%) on each sub-set of the
Artworks [4] dataset. We report the time consumption of the forward ED process that
is conducted 10 times to exchange the style and content feature at different network
depths.

Solver Group Size Time (s)
LPIPS [10] (↑) Preference (↑)

Vangogh Monet Cezanne Ukiyoe Vangogh Monet Cezanne Ukiyoe

SVD
64 256×4×4

3.146 0.5448 0.5317 0.6035 0.6306 44 47 49 53
Batched ED 0.089 0.5346 0.5027 0.6229 0.6589 52 49 45 45

SVD
32 128×8×8

2.306 0.5298 0.5127 0.5751 0.6713 44 47 50 50
Batched ED 0.257 0.5096 0.5258 0.6208 0.6239 55 45 48 47

SVD
16 64×16×16

1.973 0.4987 0.5257 0.5882 0.6630 41 48 45 51
Batched ED 0.876 0.5085 0.5151 0.6041 0.6498 57 43 49 42

Following [7], we adopt the WCT process in the network architecture pro-
posed in [1] for the universal style transfer. Fig. 3 displays the overview of the
model. The WCT performs successive whitening and coloring transform on the
content and style feature. Consider the content feature Xc∈RB×C×H×W and
the style feature Xs∈RB×C×H×W . We first divide the features into groups and
reshape them as:

Xc∈RB×C×H×W→Xc∈R
BC
G ×G×HW

Xs∈RB×C×H×W→Xs∈R
BC
G ×G×HW

(24)

where G denotes the group number. Subsequently, we remove the style informa-
tion from the content feature as:

Xwhitened
c =

(
(Xc − µ(Xc))(Xc − µ(Xc))

T
)− 1

2

Xc (25)

Then we extract the desired style information from the style feature Xs and
transfer it to the whitened content feature:

Xcolored
c =

(
(Xs − µ(Xs))(Xs − µ(Xs))

T
) 1

2

Xwhitened
c (26)

The resultant feature Xcolored
c is compensated with the mean of style feature

and combined with the original content feature:

X = α(Xcolored
c + µ(Xs)) + (1− α)Xc (27)
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Fig. 3. The architecture overview of our model for neural style transfer. Two encoders
take input of the style and content image respectively, and generate the multi-scale
content/style features. A decoder is applied to absorb the feature and perform the
WCT process at 5 different scales, which outputs a pair of images that exchange the
styles. Finally, a discriminator is further adopted to tell apart the authenticity of the
images.

where α is a weight bounded in [0, 1] to control the strength of style transfer.
Finally, we feed the resultant feature X into the decoder to generate the realistic
image where the style is transferred.

For the loss functions, we follow [1] and use the cycle-consistent reconstruc-
tion loss in both the latent and the pixel space. The image is resized to the
resolution of 216×216 before passing to the network, and the model is trained
for 100, 000 iterations. The batch size is set to 4.

Table 1 displays the detailed quantitative evaluation. As suggested in [5, 8],
we use the metrics LPIPS score between each pair of transferred image and the
content image as well as the user preference. For the user study, we randomly
select 100 images from each dataset and ask 20 volunteers to vote for the image
that characterizes more the style information. In certain cases where the volun-
teer thinks neither of the two generated images correctly carries the style, he/she
can abstain and does not vote for any one.

C Detailed Analysis and Comparison

C.1 Speed Comparison against EIG

Though torch.eig is not numerically stable, its speed is usually faster than
torch.svd. To ensure a fair comparison, we also compare our ED solver against
torch.eig in Table 2. Our method is more efficient in the regime of large batch
sizes. When the batch size is small, our method also has comparable speed. The
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Table 2. Speed comparison against torch.eig. The results (ms) are reported in the
format of our BatchedED / torch.eig.

Batch Size
Matrix Dim

4 8 16 24

1 4/5 8/8 53/25 98/59
4 6/7 13/9 75/44 113/68
16 7/10 18/10 88/69 146/92
64 8/40 24/49 90/130 170/210
256 9/160 26/163 98/219 191/343
1024 9/610 28/625 117/749 270/890

time cost of our BatchedED grows cubically versus matrix dimensions, whereas
the cost of torch.eig drastically increases when the batch size increases. This
demonstrates that our method is more batch-efficient, while torch.eig/svd is
more dimension-efficient.

C.2 Error Evaluation

Fig. 4. The error of eigenvalue estimation ||Λ − Λ̂||F for a mini-batch of matrices
where Λ̂ denotes the ground truth eigenvalue computed by SVD, and Λ represents the
eigenvalue of our Batched ED.

Fig. 4 displays the computation error of the eigenvalue for a mini-batch of
matrices in different dimensions. When the batch size or matrix dimension in-
creases, the error increases accordingly. However, the overall error is at an ac-
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ceptance level for (<2e−4). The computer vision experiments in the paper also
demonstrate that such a small error will not affect the performance.

C.3 Memory Usage Comparison

Fig. 5. The comparison of GPU memory for a mini-batch of 32×32 matrices.

Fig. 5 displays the GPUmemory usage (MB) of performing the ED for a mini-
batch of 32×32 matrices. For a single matrix, both methods consume almost the
same memory. When the input scales to batched matrices, our Batched ED uses
slightly less memory than the default LAPACK’s SVD routine.

C.4 Average Reduction Times

As discussed in the paper, the speed of our Batched ED is greatly improved by
the reduction times r for the matrix shrinkage. More specifically, the time com-
plexity is reduced byO(−256n(1+r)) for deriving eigenvalues and byO(−(2r+1)n4)
for eigenvectors. Since our double Wilkinson shifts guarantee that the last two
diagonal entries converge to zero quickly, i.e., λi−µ

λj−µ=∞, the matrix dimension

is very likely to shrink by one every QR iteration or every other QR iteration.
According to our observations, the average reduction times r is mainly in the
range [n3 ,

3n
4 ].

C.5 Why Batched ED Outperforms SVD

In some experiments of the paper, our Batched ED can even achieve slightly
better performances than the SVD. We think it is related to the implementation
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technique and the data precision. Due to the computation of secular equations,
the divide-and-conquer strategy used in the torch.svd naturally requires a
higher precision than the QR iterations of our method. Solving secular equations
needs to perform the rational osculatory interpolation and it is more likely to
trigger round-off errors when using a low data precision. In the regime of single-
precision or half-precision, our QR-based Batched ED algorithm might have a
slight advantage.

C.6 Limitation of Our Method

Fig. 6. Time consumption for a mini-batch of 40×40 matrices.

As discussed in the paper, our Batched ED fully utilizes the power of GPUs
and can be very fast against varying batch sizes for small and medium matrices.
However, one accompanying limitation is the cubic time cost O(n3) to the matrix
dimension, which constrains our method to be applicable only to small-sized
and moderate-sized matrices. A interesting question is to investigate where the
critical point of our method against SVD lies, i.e., from what matrix dimension
on, our method is no longer competitive against the SVD. Fig. 6 presents the
time comparison for a mini-batch of matrices in the size 40×40. Our method
only has the marginal advantage over the SVD when the batch size is larger
than 1024. This concludes that when the matrix dimension is larger than 40 and
the batch size is small, torch.svd can be a drop-in replacement for our method.

A similar question is when the batch size is fixed, in what range of matrix
dimensions, our method holds a speed advantage over SVD. From the numerical
test in the paper, we already know that when the matrix dimension is smaller
than 24, our Batched ED is consistently faster than the SVD. So the critical
point should be larger than matrix dimension 24. Fig. 7 compares the time
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Fig. 7. Time consumption of our Batched ED against SVD for a mini-batch of matrices
in different batch sizes and matrix dimensions. Lines with the same batch sizes are in
the same color.

consumption for batched matrices in batch sizes 512, 256, 128, and 64. The
intersections of each pair of lines locate the critical points. For batch sizes 64
and 128, the intersection points are at matrix dimensions 26 and 28, respectively.
When the batch size is 256, our method has a faster speed for matrix dimensions
less than 33. As for matrices in batch size 512, the intersection might be around
40. Larger batch sizes would make our Batched ED more advantageous.
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