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Abstract. EigenDecomposition (ED) is at the heart of many computer
vision algorithms and applications. One crucial bottleneck limiting its
usage is the expensive computation cost, particularly for a mini-batch
of matrices in the deep neural networks. In this paper, we propose a
QR-based ED method dedicated to the application scenarios of com-
puter vision. Our proposed method performs the ED entirely by batched
matrix/vector multiplication, which processes all the matrices simultane-
ously and thus fully utilizes the power of GPUs. Our technique is based
on the explicit QR iterations by Givens rotation with double Wilkinson
shifts. With several acceleration techniques, the time complexity of QR
iterations is reduced from O(n5) to O(n3). The numerical test shows that
for small and medium batched matrices (e.g., dim<32) our method can
be much faster than the Pytorch SVD function. Experimental results on
visual recognition and image generation demonstrate that our methods
also achieve competitive performances.

Keywords: Differentiable SVD, Global Covariance Pooling, Universal
Style Transfer, Vision Transformer

1 Introduction

The EigenDecomposition (ED) or the Singular Value Decomposition (SVD) ex-
plicitly factorize a matrix into the eigenvalue and eigenvector matrix, which
serves as a fundamental tool in computer vision and deep learning. Recently,
many algorithms integrated the SVD as a meta-layer into their models to perform
some desired spectral transformations [33, 32, 30, 5, 22, 9, 44, 23, 8, 13, 46, 45, 37].
The applications vary in global covariance pooling [30, 43, 37], decorrelated Batch
Normalization (BN) [22, 44, 23, 38], Perspective-n-Points (PnP) problems [5, 8,
13], and Whitening and Coloring Transform (WCT) [31, 9, 46].

The problem setup of the ED in computer vision is quite different from other
fields. In other communities such as scientific computing, batched matrices rarely
arise and the ED is usually used to process a single matrix. However, in deep
learning and computer vision, the model takes a mini-batch of matrices as the
input, which raises the requirement for an ED solver that works for batched
matrices efficiently. Moreover, the differentiable ED works as a building block
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Fig. 1. The speed comparison of our Batched ED against the torch.svd. (Left) Time
consumption for a mini-batch of 4×4 matrices with different batch sizes. (Right) Time
consumption for matrices with batch size 512 but in different matrix dimensions.

and needs to process batched matrices millions of times during the training and
inference. This poses a great challenge to the efficiency of the ED solver and
could even stop people from adding the ED meta-layer in their models due to
the huge time consumption (see Fig. 1).

In the current deep learning frameworks such as Pytorch [36] or Tensor-
flow [1], the ED solvers mainly adopt the SVD implementation from the linear
algebra libraries (e.g., LAPACK [3] and Intel MKL [42]). These solvers can ef-
ficiently process a single matrix but do not support batched matrices on GPUs
well. Most of the implementations are based on the Divide-and-Conquer (DC)
algorithm [11, 20]. This algorithm partitions a matrix into multiple small sub-
matrices and performs the ED simultaneously for each sub-matrix. Aided by the
power of parallel and distributed computing, its speed is only mildly influenced
by the matrix dimension and can be very fast for a single matrix. The core of
the DC algorithm is the characteristic polynomials det(λI−A)=0, which can
be solved by various methods, such as secular equations [20] and spectral divi-
sion [34]. However, solving the polynomial requires simultaneously localizing all
the eigenvalue intervals for each individual matrix. Despite the high efficiency
for a single matrix, these DC algorithms do not scale to batched matrices.

Except for the DC algorithm, some ED solvers would use the QR iteration.
The QR iteration has many implementation methods and one particular batch-
efficient choice is by Givens rotation. The Givens rotation can be implemented
via matrix-matrix multiplications, which naturally extends to batched matri-
ces. During the QR iterations, the Givens rotation is applied successively to
annihilate the off-diagonal entries until the matrix becomes diagonal. The major
drawback limiting the usage of QR iterations is the O(n5) time cost, which makes
this method only applicable to tiny matrices (e.g., dim<9). To alleviate this is-
sue, modern QR-based ED implementations apply the technique of deflation [2,
6, 7], i.e., partition the matrix into many sub-matrices. The deflation technique
can greatly improve the speed of the QR iterations but only works for an indi-
vidual matrix. For the QR iteration, the convergence speed is related with the
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adjacent eigenvalue ratio λi+1

λi
. For multiple matrices within a mini-batch, the

off-diagonal entries of each matrix converge to zero with inconsistent speed and
where each matrix can be partitioned is different. Consequently, the deflation
technique does not apply to batched matrices either. To give a concrete exam-
ple, consider 2 matrices of sizes 8×8 in a mini-batch. Suppose that the deflation
would split one into two 3×3 and 5×5 matrices, while the other matrix might be
partitioned into two 4×4 matrices. In this case, the partitioned matrices cannot
be efficiently processed as a mini-batch due to the inconsistent matrix sizes.

To attain a batch-friendly and GPU-efficient ED method dedicated to com-
puter vision field, we propose a QR-based ED algorithm that performs the ED
via batched matrix/vector multiplication. Each step of the ED algorithm is care-
fully motivated for the best batch-efficient and computation-cheap consideration.
We first perform a series of batched Householder reflectors to tri-diagonalize the
matrix by the batched matrix-vector multiplication. Afterward, the explicit QR
iteration by matrix rotation with double Wilkinson shifts [47] is conducted to
diagonalize the matrix. The proposed shifts make the last two diagonal entries
of the batched matrices have consistent convergence speed. Thereby the conver-
gence is accelerated and the matrix dimension can be progressively shrunk dur-
ing the QR iterations. Besides the dimension reduction, we also propose some
economic computation methods based on the complexity analysis. The time
complexity of QR is thus reduced from O(n5) to O(n3). The numerical tests
demonstrate that, for matrices whose dimensions are smaller than 24, our Py-
torch implementation is consistently much faster than the default SVD routine
for any batch size. For matrices with larger dimensions (e.g., dim=32 or 36),
our method could also have an advantage when the batch size is accordingly
large (see also Fig. 1). We validate the effectiveness of our method in several
applications of differentiable SVD, including decorrelated BN, covariance pool-
ing for vision transformers, and neural style transfer. Our Batched ED achieves
competitive performances against the SVD.

The contributions of the paper are summarized threefold:

– We propose an ED algorithm for a mini-batch of small and medium matrices
which is dedicated to many application scenarios of computer vision. Each
step of ED is carefully motivated and designed for the best batch efficiency.

– We propose dedicated acceleration techniques for our Batched ED algorithm.
The progressive dimension shrinkage is proposed to reduce the matrix size
during the iterations, while some economic computation methods grounded
on the complexity analysis are also developed.

– Our batch-efficient ED algorithm is validated in several applications of dif-
ferentiable SVD. The experiments on visual recognition and image genera-
tion demonstrate that our method achieves very competitive performances
against the SVD encapsuled in the current deep learning platforms.
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2 Related Work

In this section, we discuss the related work in computing the differentiable ED
and its applications.

2.1 Computing the Differentiable ED

To perform the ED, modern deep learning frameworks (e.g., Pytorch and Tensor-
flow) call the LAPACK’s SVD routine by default. The routine uses the Divide-
and-Conquer algorithm [11, 20] to conduct the ED. Assisted by the power of
parallel and distributed computing, the divide-and-conquer-based ED can si-
multaneously process each sub-matrix and achieve high efficiency for a single
matrix regardless of the matrix size. However, solving the core characteristic
polynomials requires simultaneously finding all the eigenvalue intervals for each
individual matrix, which causes this algorithm unable to scale to batched matri-
ces well. There are also some routines that use QR iterations with deflation for
performing the ED [6, 7]. Equipped with the deflation technique to partition the
matrices, the QR iteration can also have a fast calculation speed. When it comes
to a mini-batch of matrices, the off-diagonal entries of each matrix converge to
zero with different speeds, and where each matrix can be partitioned is incon-
sistent. Hence, the deflation technique cannot be applied to batched matrices.

For the back-propagation of the ED, it suffers from the numerical instability
caused by the close and repeated eigenvalues. Recently, several methods have
been proposed to solve the instability issue [44, 45, 37]. Wei et al. [44] propose
to use Power Iteration (PI) to approximate the SVD gradients. Song et al. [37]
propose to use Padé approximants to closely estimate the gradients. Despite the
applicability of these methods, a more practical approach is to divide the features
X∈RC×BHW into groups X∈RG×C

G×BHW in the channel dimension and attain
a mini-batch of small covariance matrices XXT∈RG×C

G×C
G [22, 35], which can

keep more channel statistics and naturally avoid the gradient explosion issue
caused by the rank-deficiency. This also raises the need of such an ED solver
that works for batched matrices efficiently.

To attain the batch-efficient ED algorithm dedicated to computer vision field,
we propose our QR-based algorithm for small and medium batched matrices. We
motivate each step of our ED algorithm for the best batch efficiency. Our ED
solver integrates double Wilkinson shifts [47] to guarantee that the last two
diagonal entries have consistent convergence speed within the mini-batch, and
consequently the matrix dimension can be progressively reduced. With several
other acceleration technique grounded on the complexity analysis, our solver can
be much faster than Pytorch SVD for a mini-batch of small matrices.

2.2 Applications of the Differentiable ED

The need for differentiable ED arises in numerous applications of computer vi-
sion. Some methods adopt the end-to-end ED to compute the matrix square root
of the global covariance feature before the fully-connected layer [33, 30, 29, 43, 37,
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Fig. 2. Visual illustration of our batched Householder tri-diagonalization. After (n−2)
designed reflections, the symmetric matrix A is reduced to a tri-diagonal matrix T.

48, 16, 39, 40]. Such approaches are termed as Global Covariance Pooling (GCP)
methods, and they have achieved state-of-the-art performances on both generic
and fine-grained visual recognition. Another line of research uses the ED to per-
form the decorrelated batch normalization (BN) [22, 25, 35, 23, 38, 24, 38]. The
process resembles the ZCA whitening transform to compute the inverse square
root for eliminating the correlation between features. The differentiable ED can
be also applied in the area of neural style transfer. As pointed out in [17, 18],
the feature covariance naturally embeds the style information. Some methods
use the differentiable ED to perform successive WCT on the feature covariance
for the universal style transfer [31, 9, 10]. In the geometric vision, the ED is of-
ten applied to solve the PnP problem and estimate the camera pose [28, 5, 8, 13].
Besides the main usages above, there are some other minor applications [12, 41].

3 Methodology

In this section, we present our method that performs the Batched ED. Our
algorithm is implemented via the sequential batched Householder reflectors to
tri-diagonalize the matrix and the batched QR iteration to diagonalize the tri-
diagonal matrix. Both processes are GPU-friendly and batch-efficient. Now we
illustrate each process in detail. Notice that every step is applied on batched
matrices for the best efficiency.

3.1 Batched Tri-diagonalization based on Householder Reflection

Given the Hermitian matrix A, the tri-diagonalization process is defined as:

A = PTPT (1)

where T is a tri-diagonal matrix, and P is an orthogonal matrix. To perform such
an orthogonal similarity transform, we can decompose P into n−2 Householder
reflectors. This leads to the re-formulation:

T = PTAP = (Hn . . .H4H3)
TA(Hn . . .H4H3) (2)

Each reflector is both orthogonal (HHT=I) and unitary (H=HT ). The reflector
is constructed using an vector:

H = I− 2
uuT

||u||2F
(3)
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The matrix H reflects the vector u along the direction that is perpendicular to
the hyper-plane orthogonal to u. This property can be used to tri-diagonalize a
symmetric matrix by reflecting each row and column sequentially. A Householder
reflection is computed by:

HAH = (I− 2
uuT

||u||2F
)A(I− 2

uuT

||u||2F
)

= A− puT − uqT

(4)

where the temporary variables q, p, and K are defined as:

q = p−Ku,p =
2Au

||u||2F
,K =

uTp

||u||2F
(5)

As can be seen, Eq. (4) actually defines a symmetric rank-2 update on A. By
some deductions on Eq. (4), each Householder reflector can be designed to in-
troduce zero entries to a row and a column (see Fig. 2). We omit the derivation
of the vector for conciseness and give the result here:

ui = [0, . . . , ai,i, ai,i+1, . . . , ai,n−1, σ],

σ = ±
√

a2i,i + a2i,i+1 + · · ·+ a2i,n−1

(6)

where ai,j denotes the entry ofA at i-th row and j-th column, and the sign of σ is
usually chosen as sign(ai,n) to reduce the round-off error. By such a construction,
only n−2 reflections are needed to transform the symmetric matrix into the tri-
diagonal form. Each householder reflection needs 2 matrix-matrix multiplication,
which takes O(2n3) complexity. However, as indicated in Eq. (4) and Eq. (5),
the calculation can be reduced to one matrix-matrix multiplication and two
matrix-vector multiplication, which needs the complexity of O(n3+2n2).

When the eigenvector is required, we can calculate P by accumulating the
Householder reflectors:

P = Hn . . .H4H3 (7)

The computation needs (n−2) matrix multiplication where the complexity of
each multiplication is O(n3). We note this step can be further accelerated by:

Theorem 1 (WY representation [4]) For any accumulation of m House-
holder matrices H1. . .Hm, there exists W,Y∈R(n−2)×m such that we have the
relation I−2WYT=H1. . .Hm. Computing W and Y takes O((n−2)m) time and
(m−1) sequential Householder multiplications.

Relying on this theorem, we can divide the accumulation Hn. . .H4H3 into
(n−2)/m sub-sequences and compute them in parallel. Each sub-sequence takes
O((m−1)n3+(n−2)m) time to compute theWY representation andO((n−2)2m)
time to compute I−2WYT . Combining all the sub-sequence needs extra time
of O((n−2)3/m). This can further reduce the complexity of computing P from
O((n−3)n3) to O((m−1)n3+(n−2)m+(n−2)2m+(n−2)3/m). The computation
saving would be huge when n is large.
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Fig. 3. Visual illustration of the batched Givens diagonalization. For each QR iteration,
the Givens rotation is applied from the left top corner to the bottom right corner to
reduce the magnitude of the off-diagonal elements. The iteration continues till the off-
diagonal entries become zero or below a certain tolerance.

3.2 Batched Diagonalization based on QR Iteration

After obtaining the tri-diagonal matrix T, we use the Givens rotation to perform
the QR iterations, which can be implemented efficiently via batched matrix
multiplication. Based on the ordinary QR iteration, we further apply several
techniques to speed up the convergence and save the computational budget.

Basic QR Iteration by Givens Rotation. Given the tri-diagonal matrix T,
the QR iteration takes the following iterative update:

Tk = QkRk, Tk+1 = RkQk (8)

where Qk denotes the orthogonal matrix, and Rk is the upper-triangular matrix.
Replacing Rk with QT

kTk leads to the re-formulation of Eq. (8) :

Tk+1 = QT
kTkQk (9)

As can be seen, a single QR iteration is equivalent to performing an orthogonal
similarity transform. By performing the iterations, the sub-diagonal and super-
diagonal entries are gradually reduced till the matrix becomes diagonal.

For each QR iteration, we construct the orthogonal transform using succes-
sive Givens rotations moving from the left top corner to the right bottom corner.
The 2×2 Givens Rotation and its n×n extension are defined by:

R2×2 =

[
cos θ − sin θ
sin θ cos θ

]
,Rn×n =

I 0 0
0 R2×2 0
0 0 I

 (10)

where θ is the rotation angle, and the rotation matrix is orthogonal but not sym-
metric (i.e., RTR=I and RT ̸=R). As shown in Fig. 3, by design of the rotation
angle, the successive Givens Rotation applied onT can keep the tri-diagonal form
but reduce the magnitude of off-diagonal elements. For the derivation of Givens
rotation, please refer to the supplementary material for detail. The sequential
Givens rotations moving along the diagonal form one single QR iteration:

Tk+1 = (RT
n−2 . . .R

T
0 )Tk(R0 . . .Rn−2) (11)



8 Y. Song et al.

where Ri denotes the i-th rotation counting from the left top corner. For the
orthogonal matrix Qi in the i-th QR iteration, we can easily find out

Qk = R0 . . .Rn−2 (12)

Taking the Householder tri-diagonalization and Givens diagonalization together,
our batch-efficient ED algorithm can be formally defined by:

A = (PQ0 . . .Qk)Λ(PQ0 . . .Qk)
T (13)

where k is the iteration times of the QR iteration, Λ is the eigenvalue matrix,
and PQ0. . .Qk is the eigenvector matrix. For the convergence, we have:

Theorem 2 (Convergence of QR iteration) Let T be the positive definite
tri-diagonal matrix with the eigendecomposition QΛQT and assume QT can be
LU decomposed. Then the QR iteration of T will converge to Λ.

We defer the proof to the Supplementary Material. The key results of this
theorem is that the convergence speed depends on the adjacent eigenvalue ratio
λi

λj
for i>j. The QR iterations usually take 2n iterations to make the resultant

matrix diagonal [15]. Consider the fact that each iteration takes (n−1) Givens
rotation. The computation overhead would be huge. For deriving the eigenvalues,
we need 4n(n−1)n3 time, while it takes the complexity of 2n(n−2)n3+(2n−1)n3

to compute the eigenvector. The time complexity of the QR iteration is quin-
tic to the matrix dimension n, which would make this method only applicable
to the tiny matrices (<9). Existing deflation techniques [6, 7] to accelerate the
computation cannot be applied to our batched matrices. To resolve this issue,
we propose the following techniques:

Double Wilkinson Shift. As indicated in Theorem 2, the convergence speed
of QR iteration depends on the ratio λi

λj
, where i>j. A natural approach to accel-

erate the convergence is to shift the matrix by T−µI such that the convergence
speed becomes λi−µ

λj−µ . A preferable shift coefficient should be u=λj , as this can

help the matrices to converge quickly: λi−µ
λj−µ=∞. This is particularly useful for

matrices in a mini-batch as the speed can be made consistent by shifting.
Since each Givens rotation will affect the area rotated by the previous one,

only the last 2×2 Givens rotation will not be influenced, i.e., the two eigenvalues
of the last block can be locally estimated. Thus, we propose to extract the shift
coefficients from the 2×2 block on the right bottom corner:

µn−2, µn−1 = Wilkinson(Tk[n− 2 : n]) (14)

where Tk[n−2:n] denotes the last 2×2 block of Tk, and µn−2 and µn−1 are the
two eigenvalues computed from this block. These shifting coefficients are referred
to as the Wilkinson shift [47], and we give the derivation in the supplementary
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material. After attaining the shifts, we can reformulate the QR iterations with
double shifts:

Tk+1/2 = QT
k (Tk − µn−1I)Qk + µn−1I

Tk+1 = QT
k (Tk+1/2 − µn−2I)Qk + µn−2I

(15)

With the shifts, the integrated iteration consists of two sequential QR iterations
shifted by the eigenvalues µn−2 and µn−1, respectively.

Fig. 4. Illustration of the progres-
sive dimension reduction in the QR
iterations. After one iteration, if
the last sub-diagonal entry is be-
low a small threshold ϵ, we can re-
move the last row and column.

Progressive Dimension Shrinkage. One
direct benefit brought by the Wilkinson shift
is that, for all the matrices in a mini-batch, the
last two diagonal entries can quickly converge
to the corresponding eigenvalues and the off-
diagonal elements can converge to zero:

tn−2,n−2→λn−2, tn−2,n−3=tn−3,n−2→0

tn−1,n−1→λn−1, tn−2,n−1=tn−1,n−2→0
(16)

We can use this property to speed up the
computation by gradually reducing the ma-
trix dimension, i.e., shrinking the matrix by
T∈Rn×n→T∈R(n−1)×(n−1) after one itera-
tion. As shown in Fig. 4, when the last sub-
diagonal entry is below a given small thresh-
old (e.g., 1e−5), we could shrink the matrix
by removing the last row and column. In doing so, the matrix size is progres-
sively reduced during the QR iterations. With the dimension reduction, one QR
iteration would take (n−1−r) Givens rotations, where r is the reduction times.

Economic Eigenvalue Calculation. For a Givens rotation, it only affects the
adjacent 4×4 block. We can save the computation budget by applying the ma-
trix multiplication on the 4×4 rotation region in the neighborhood. This reduces
the time of a rotation from O(2n3) to O(2×43)=O(128), which makes each ro-
tation consume a constant time cost. Taking the above dimension reduction into
account, the QR iterations need O(256n(n−1−r)) time to derive the eigenvalues.

Economic Eigenvector Calculation. Equipped with the progressive dimen-
sion reduction, the orthogonal transform Qk in a QR iteration is defined by:

Qk = R0R1 . . .Rn−2−r (17)

where we need (n−2−r) rotations for each iteration. The computation can be
potentially simplified by the theorem:

Theorem 3 (Implicit Q Theorem [19]) Let B be an upper Hessenberg and
only have positive elements on its first sub-diagonal. Assume there exists a uni-
tary transform QHAQ=B. Then Q and B are uniquely determined by A and
the first column of Q.
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We give the proof and some discussion in the supplementary document. This
theorem implies that, without the need of explicit QR iteration, the orthogonal
transform Q and the transformed matrix B can be both implicit calculated.
However, it assumes that the sub-diagonal elements of B are positive. In our
case, the Givens rotation can easily zero out the last two sub-diagonal entries.
Consequently, directly using the theorem would cause large round-off errors and
data overflow.

Although the theorem cannot be directly applied, it allows us to simplify the
eigenvector calculation. As indicated by the theorem, the i-th rotation would
only affect the orthogonal matrix Q on the area after the i-th row and column.
We can reduce the computation by involving only part of the matrix and simplify
the calculation in Eq. (17) as:

Qk = R0[1:]R1[2:] . . .Rn−2−r[n−2−r:] (18)

where [i:] denotes part of the matrix that excludes the first i rows and columns.
By doing so, the time complexity of calculating Qk can be reduced to:

(n−2−r)2n+(n−3−r)2n+ . . .+12n

=

n−2−r∑
i=1

i2n=
(n−2−r)(n−1−r)(2n−3−2r)

6
n

(19)

Compared with the original time cost O((n−2−r)n3), the saving would be con-
siderable for large n and r.

3.3 Computation Complexity Summary

Table 1. Comparison of time complexity of the basic QR-based ED solver and our ED
solver dedicated for batched matrices. Here n denotes the matrix size and r represents
the average reduction times during the QR iterations.

Time
Basic QR-based ED Solver

Eigenvalue Eigenvector

Tri-diag. 2n3 (n−3)n3

QR 4n(n−1)n3 2n(n−2)n3+(2n−1)n3

Sum (4n2−4n+2)n3 (2n2−n−4)n3

Time
Our Batched ED Solver

Eigenvalue Eigenvector

Tri-diag. n3+2n2 (m−1)n3+(n−2)m+(n−2)2m+ (n−2)3

m

QR 256(n−1−r)n (n−2−r)(n−1−r)(2n−3−2r)
6

2n2+(2n−1)n3

Sum n3+258n2−256n(1+r)
2
3
n5−(2r+1)n4+(2r2+6r+ 7

3
+m)n3

−( 3
2
r3+3r2+ 13

3
r+2−m)n2−(3m− 3

m
)n+2m− 6

m

Table 1 summarizes the time complexity of the basic QR-based ED solver and
our proposed ED solver dedicated for batched matrices. Taking the highest-order
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term for simpler analysis, our ED solver reduces the time from O(4n5) to O(n3)
for computing the eigenvalues, and saves the time from O(2n5) to O( 23n

5) for
eigenvectors. Moreover, depending on the reduction times r, the complexity can
be further reduced with the term −256(1+r)n for eigenvalues and −(2r+1)n4

for eigenvectors.

3.4 Convergence and Error Bounds

For the tri-diagonalization process, the convergence is guaranteed with n−2
Householder reflectors. The error is only related to the machine precision and
data precision, which can be sufficiently neglected. For the QR iterations, the
convergence mainly depends on the adjacent eigenvalue ratio λi+1

λi
and the shift

µ. In certain cases when the two eigenvalue are close (λi+1

λi
≈1), the convergence

speed is slow and the residual term (λi+1−µ
λi−µ )2n becomes the error. Another error

source comes from the tolerance ϵ for the dimension reduction. Let Λ̄ represent
the exact eigenvalues and Λ denote the eigenvalues calculated by our ED solver.
Then the error is bounded by:

||Λ̄−Λ||F ≤ max
i

((
λi+1 − µ

λi − µ
)2n|li+1,i|) + ϵ (20)

where li+1,i is the entry of L computed byQT=LU, and the shift µ changes every
QR iteration. Since Q is orthogonal, the magnitude of li+1,i is often quite small.
Considering the small magnitude of li+1,i and the additional shifting technique,
the accuracy of our method will not get affected.

4 Experiments

In this section, we first perform a numerical test to compare our method with
SVD for matrices in different dimensions and batch sizes. Subsequently, we eval-
uate the effectiveness of the proposed methods in three computer vision ap-
plications: decorrelated BN, second-order vision transformer, and neural style
transfer. The implementations details are referred to supplementary material.

4.1 Numerical Test

Fig. 5 depicts the computational time of our Batched ED against the SVD for
different matrix dimensions and batch sizes. The time cost of the SVD grows
almost linearly with the batch size, while the time consumption of our Batched
ED only has slight or mild changes against varying batch sizes. For matrices
whose dimensions are smaller than 24, our Batched ED is consistently faster
than the SVD for any batch size. When the matrix dimension is 32, our method
is faster than the SVD from batch size 256 on. The speed of our Batched ED is
more advantageous for smaller matrix dimensions and larger batch sizes.
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Fig. 5. The speed comparison of our Batched ED against torch.svd for different
batch sizes and matrix dimensions. Our implementation is more batch-friendly and the
time cost does not vary much against different batch sizes. For matrices in small and
moderate sizes, our method can be significantly faster than the Pytorch SVD.

Table 2. Validation error of decorrelated BN on ResNet-18 [21]. The results are re-
ported based on 5 runs, and we measure the time of the forward ED in a single step.

Solver Group Size Time (s)
CIFAR10 CIFAR100

mean±std min mean±std min

SVD
16 16×4×4

0.172 4.52±0.09 4.33 21.24±0.17 20.99
Batched ED 0.006 4.37±0.11 4.29 21.25±0.20 20.90

SVD
8 8×8×8

0.170 4.55±0.13 4.34 21.32±0.31 20.88
Batched ED 0.016 4.36±0.11 4.25 20.97±0.27 20.62

SVD
4 4×16×16

0.165 4.52±0.14 4.33 21.30±0.33 20.86
Batched ED 0.075 4.45±0.11 4.32 21.19±0.21 20.98

4.2 Decorrelated BN

Following [38], we first conduct an experiment on the task of ZCA whitening. In
the whitening process, the inverse square root of the covaraince is multiplied with
the feature as (XXT )−

1
2X to eliminate the correlation between each dimension.

We insert the ZCA whitening meta-layer into the ResNet-18 [21] architecture and
evaluate the validation error on CIFAR10 and CIFAR100 [27]. Table 2 compares
the performance of our Batched ED against the SVD. Depending on the number
of groups, our method can be 2X faster, 10X faster, and even 28X faster than
the SVD. Furthermore, our method outperforms the SVD across all the metrics
on CIFAR10. With CIFAR100, the performance is also on par.

4.3 Second-order Vision Transformer

We turn to the experiment on the task of global covariance pooling for the
Second-order Vision Transformer (So-ViT) [48]. To leverage the rich semantics
embedded in the visual tokens, the covariance square root of the visual tokens
(XXT )

1
2 are used to assist the classification task. Since the global covariance

matrices are typically very ill-conditioned [37], this task poses a huge challenge
to the stability of the ED algorithm. We choose the So-ViT architecture with
different depths and validate the performance on ImageNet [14]. As observed
from Table 3, our Batched ED has the competitive performance against the
standard SVD. Moreover, our method is about 44% and 27% faster than the
SVD for covariance in different sizes.
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Table 3. Validation accuracy on ImageNet [14] for the second-order vision transformer
with different depths. Here 32 and 36 denote the spatial dimension of visual tokens.
We report the time consumption of the forward ED in a single step.

Solver Size Time (s)
Architecture

So-ViT-7 So-ViT-10

SVD
768×32×32

0.767 76.01 / 93.10 77.97 / 94.10
Batched ED 0.431 76.04 / 93.05 77.91 / 94.08

SVD
768×36×36

0.835 76.10 / 93.14 78.09 / 94.13
Batched ED 0.612 76.07 / 93.10 78.11 / 94.19

Fig. 6. Exemplary visual comparison. The red circle/rectangular indicates the region
with subtle details. In this example, our method generates sharper images with more
coherent style information and less artifacts. Zoom in for a better view.

4.4 Universal Style Transfer

Now we apply our Batched ED in the WCT for neural style transfer. Given
the content feature Xc and the style feature Xs, the WCT performs succes-
sive whitening ((XcXc)

− 1
2Xc) and coloring ((XsXs)

1
2Xc) to transfer the target

style. We follow [31, 46] to use the LPIPS distance and the user preference as the
evaluation metrics. Table 4 presents the quantitative comparison with different
groups. Our Batched ED achieves very competitive performance and predomi-
nates the speed. To give a concrete example, when the group number is 64, our
method is about 35X faster than the default SVD. Fig. 6 displays the exemplary
visual comparison. In this specific example, our Batched ED generates images
with better visual appeal.

Similar to the finding in [9], we also observe that the number of groups has an
impact on the extent of transferred style. As shown in Fig. 7, when more groups
are used, the style in the transferred image becomes more distinguishable and the
details are better preserved. Since the number of groups determines the number
of divided channels and the covariance size, more groups correspond to smaller
covariance and this might help to better capture the local structure. Despite
this superficial conjecture, giving a more comprehensive and rigorous analysis is
worth further research.
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Table 4. The LPIPS distance between the transferred image and the content image and
the user preference (%) on the Artworks [26] dataset. We report the time consumption
of the forward ED that is conducted 10 times to exchange the style and content feature
at different network depths. The batch size is set to 4.

Solver Group Size Time (s) LPIPS [49] (↑) Preference (↑)
SVD

64 256×4×4
3.146 0.5776 48.25

Batched ED 0.089 0.5798 47.75

SVD
32 128×8×8

2.306 0.5722 47.75
Batched ED 0.257 0.5700 48.75

SVD
16 64×16×16

1.973 0.5614 46.25
Batched ED 0.876 0.5694 47.75

Fig. 7. Visual illustration of the impact of groups. When more groups are used, the
strength of the target style is increased and the details are better preserved.

To sum up, our ED solver has demonstrated the superior batch efficiency
for small matrices in various real-world experiments and numerical tests. The
limitation on large matrices indicates the key difference: our method is more
batch-efficient, while torch.eig/svd is more dimension-efficient.

5 Conclusion

In this paper, we propose a batch-efficient QR-based ED algorithm dedicated for
batched matrices which are common in the context of computer vision and deep
learning. Aided by the proposed acceleration techniques, our solver is much faster
than Pytorch SVD function for a mini-batch of small and medium matrices. Our
method can directly benefit a wide range of computer vision applications and
we showcase this merit in several applications of differentiable ED. Extensive
experiments on visual recognition and image generation demonstrate that our
method can also achieve very competitive performances.
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