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Abstract. Snapshot compressive imaging (SCI) can record a 3D datacube
by a 2D measurement and algorithmically reconstruct the desired 3D
information from that 2D measurement. The reconstruction algorithm
thus plays a vital role in SCI. Recently, deep learning (DL) has demonstrated
outstanding performance in reconstruction, leading to better results than
conventional optimization-based methods. Therefore, it is desirable to
improve DL reconstruction performance for SCI. Existing DL algorithms
are limited by two bottlenecks: 1) a high-accuracy network is usually
large and requires a long running time; 2) DL algorithms are limited
by scalability, i.e., a well-trained network cannot generally be applied
to new systems. To this end, this paper proposes to use ensemble
learning priors in DL to achieve high reconstruction speed and accuracy
in a single network. Furthermore, we develop the scalable learning
approach during training to empower DL to handle data of different sizes
without additional training. Extensive results on both simulation and real
datasets demonstrate the superiority of our proposed algorithm. The code
and model can be accessed at https://github.com/integritynoble/

ELP-Unfolding/tree/master.

Keywords: Deep Unfolding, Ensemble, Snapshot Compressive Imaging,
Scalable Learning

1 Introduction

Recently, video snapshot compressive imaging (SCI) [7, 30, 60] has attracted
much attention because it can improve imaging speed by capturing three-
dimensional (3D) information from 2D measurement. When video SCI works,
multiple frames are first modulated by different masks (in the optical domain),
and these modulated frames are mapped into a single measurement. After
this, the reconstruction algorithm recovers these multiple frames from single
measurement [56]. At present, the mask can easily be adjusted with a higher
speed than the capture rate of the camera [20, 38, 41]. Thus, SCI enjoys the
advantages of high speed, low memory, low bandwidth, low power and potentially
low cost [58,59].

� Corresponding author.

https://github.com/integritynoble/ELP-Unfolding/tree/master
https://github.com/integritynoble/ELP-Unfolding/tree/master


2 Yang C., Zhang S. and Yuan X.

ELP-Unfolding Dense3D-Unfolding

GAP-net

MetaSCI

RevSCI
BIRNAT

PnP-FastDVDNet
DeSCI

GAP-TV

PnP-FFDNet

Testing time (s)

Q
u

al
it

y 
 (

P
SN

R
 in

 d
B

)

Fig. 1: Trade-off between quality and
testing-time of various algorithms for
SCI reconstruction. Our proposed
Ensemble Learning Priors (ELP)
unfolding achieves the state-of-the-
art results in a short testing time.
Besides, after scalable learning, our
ELP-Unfolding can be used in different
masks and different compression ratios
and thus can be applied to various
scenes by a single trained model.

How to recover the original multiple
frames from the single measurement
always plays a vital role in SCI. Recently,
deep learning reconstruction methods
have outperformed traditional iterative
reconstruction methods not only in
reconstruction accuracy but also in test
time [8–10,24,34,43,50,51]. But most deep
learning methods lack interpretability. To
increase interpretability, deep unfolding
method has been developed, which
simulates the iterative algorithm [17,
31, 51, 63]. Deep unfolding method
adopts iterative framework but replaces
traditional denoiser (such as total
variation [4, 26] and nonlocal self-
similarity [12, 29]) with the trained
neural network denoiser. So far, the deep
unfolding method has achieved the best
result for SCI. Among deep unfolding

algorithms, GAP-net [31] can use the shortest time (0.0072 s) to achieve 32
dB for PSNR for benchmark dataset. Dense3D-Unfolding [46] achieved the best
result (35 dB), though it costs a long time (1.35 s) due to the use of complex
3D convolutional neural networks (CNNs). Thus, the speed and accuracy have
not coexisted in one algorithm yet. What’s worse, most of these deep learning
algorithms are limited by scalability. To apply the trained model to new systems,
the model usually should be trained again. Although MetaSCI [45] can be quickly
applied to new SCI modulations (in spatial but not in temporal dimension), it
still requires adaptation (retraining).

Bearing the above concerns in mind, in order to achieve a higher reconstruction
accuracy with a high computing speed, we develop the Ensemble Learning Priors
(ELP) unfolding based on 2D-CNN for SCI. Specifically, 2D-CNN can retain fast
processing and ensemble learning can increase reconstruction accuracy. Ensemble
learning is powerful in achieving reconstruction accuracy and has also achieved
state-of-the-art (SOTA) results in a number of models on other tasks [36, 65, 68],
due to the fact that mutiple models/priors have complementary advantages over
a single model/prior. Fortunately, the deep unfolding algorithm can include many
neural network priors, even if these priors stay at different (iteration) stages.
In this paper, we first propose to gather multiple neural network priors in one
stage to realize ensemble learning for SCI without increasing training time. To
further increase the reconstruction accuracy, dense connection is employed in our
network, which can help the latter (stage) models learn some useful information
from the previous (stage) models. In this manner, our ELP-unfolding can achieve
SOTA result, outperform Dense3D-Unfolding [46], and use a shorter running
time.
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Furthermore, to realize the scalability, we develop a scalable learning procedure
for SCI. Our method not only has scalability in the spatial dimensions but also
in the temporal dimension. Considering the spatial scalability, we set our ELP-
unfolding to be fully convolutional without the multilayer perception (MLP)
structure. For temporal dimension scalability, the input of neural network priors
is set to have the same channels even for different temporal dimensional scenes.
Based on this, our scalable learning method can have the same capability as
traditional iteration algorithms, to be applied to different systems. Specific
contributions of our paper are listed as follows:

– We develop the ensemble learning prior unfolding for SCI. ELP unfolding
is a general method for inverse algorithms, which can also be applied to
other fields, such as single pixel camera [16, 19, 40], MRI [2, 28], lensless
imaging [3, 57, 61], spectral compressive imaging [6, 18, 21, 27, 32, 66], and
tomography imaging [11,39,52].

– We first propose the scalable learning for SCI. After training once, our
model can be used in new systems with different modulations or different
compression ratios. Besides, scalable learning can achieve better results than
PnP algorithm with a fast inference speed.

– We adopt skip connection techniques in unfolding. In our ELP-unfolding, the
skip connection only uses the simple adding and concatenating. By contrast,
the Dense3D-Unfolding [46] adopts complex methods such as DFMA (dense
feature map adaption) to realize connection.

– Our method achieves SOTA results for SCI in benchmark dataset based on
2D-CNN, outperforming the 3D-CNN method at a faster inference speed [46]
as shown in Fig. 1.

In a nutshell, our ensemble learning priors unfolding has two periods. In the
first period, i.e. a single prior period, each stage contains one neural network
prior. Afterwards, in the second (ensemble priors) period, each stage contains all
previous stage priors in the ensemble manner.

2 Related Work

SCI is related to compressive sensing (CS) [22, 67], where reconstruction is
significantly important as it provides the desired signals (such as images) from
the compressed measurements. For CS [22,24,31,34,43], there are two kinds of
reconstruction methods: traditional iterative method and deep learning method.
The traditional iteration method contains a lot of iterations and each iteration
contains the projection operation and denoising operation (and optionally some
other steps). The denoising operation generally determines the performance of
one algorithm. For example, total variation [4, 26] denoiser has a fast speed but
usually can only provide blurry images while the nonlocal self-similarity based
denoiser [12, 29] can achieve a clearer image but take a long time. Recently,
deep learning has shown strong power in reconstructing images [24, 34, 43, 50, 51].
At first, deep learning was regarded as a black box and the trained model can
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get the better images than traditional iterative method at a fast speed. As a
black box to train, the trained model will contain measurement matrix (masks)
information. Thus, the training model usually can not be applied to new masks
(such as a new hardware system). To address this problem, the deep unfolding
method for CS has be developed. Deep unfolding method simulates traditional
iterative method using a few iterations (stages), each of which has projection
operation and denoising operation. Different from traditional methods, deep
unfolding uses a trained neural network as a denoising prior. Therefore, deep
learning mainly contributes to denoising in deep unfolding method with little
dependence on mask information. The mask information is mainly processed by
the projection operation. Thus, deep unfolding algorithms has a strong robustness
to a variety of masks [31,63]. Besides, Dense3D-Unfolding [46] obtained SOTA for
SCI by combining deep unfolding method and 3D-CNN, but at the cost of slow
computation. Though the unfolding method can solve the scalability problem
of various masks, the scalability problem of various sizes (both spatial size and
temporal size, a.k.a., the compression ratio) still remains in unfolding method.
Deep unfolding method still does not have the same scalability as the traditional
iterative method.

To address these challenges, in this paper, we develop the ensemble learning
priors unfolding for scalable SCI. We use ensemble learning and 2D-CNN to
realize high reconstruction accuracy and speed, and develop scalable learning to
realize scalability.

3 Preliminary: Video SCI System
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Fig. 2: Principle of Video SCI (left) and our ELP-unfolding (right). Left: the high speed
dynamic scene at timestamps t1 to tB , encoded by high-speed variant masks (dynamic
coded apertures) and then integrated to a single coded measurement (a compressed
image) Y. Right: our whole ELP-unfolding reconstructs the original dynamic scene
from the masks {C1, . . . ,CB} and the compressed image Y, which includes the single
prior period in Fig. 3(a) and ensemble priors period in Fig. 3(b). Sm represents the
mth stage.

As depicted in Fig. 2, let {X1, . . . ,XB} denote the discretized video frames
at timestamps {t1, . . . , tB}. These video frames are modulated by dynamic coded
aperture, a.k.a., the masks {C1, . . . ,CB}, respectively. The modulated frames are
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then integrated into a single coded measurement (a compressed image) Y. Here,
{Xb}Bb=1 ∈ Rnx×ny×B, {Cb}Bb=1 ∈ Rnx×ny×B and Y ∈ Rnx×ny . This forward
model can be written as

Y =
∑B

b=1 Cb ⊙Xb + Z, (1)

where ⊙ and Z ∈ Rnx×ny denote the matrix element-wise product and noise,
respectively. Eq. (1) is equivalent to the following linear form

y = Hx+ z, (2)

where y = Vec(Y) ∈ Rnxny ,z = Vec(Z) ∈ Rnxny and x = Vec(X) = [Vec(X1) , . . . ,
Vec(XB) ] ∈ RnxnyB . Different from traditional compressive sensing [13–15], the
sensing matrix H in (2) has a very special structure and can be written as

H = [D1, . . . ,DB ], (3)

where {Db = diag(Vec(Cb)) ∈ Rnxny×nxny}Bb=1are diagonal matrices of masks.
Therefore, the compressive sampling rate in SCI is equal to 1/B. The reconstruction
error of SCI is bounded even when B > 1 [22].

4 Our proposed methods

4.1 Ensemble learning priors unfolding for SCI

Given the compressed measurement Y and coding pattern {Cb}Bb=1 captured by
the SCI system, there exist two optimization frameworks to predict the desired
high speed frames {Xb}Bb=1: penalty function method and augmented Lagrangian
(AL) method. The performance of AL method is better than that of the penalty
function method, which has been proved in previous work [1,25,48]. Therefore
the AL method is adopted here, which is formulated as follows:

x = argminx Φ(x)− λT
1 (y −Hx) + γ1

2 ∥y −Hx∥22 , (4)

where Φ(x),λ1 and γ1 denote the prior regularization, Lagrangian multiplier and
penalty parameter, respectively. For convenience, Eq. (4) is further written as

x = argminx Φ(x) + γ1

2

∥∥∥y −Hx− λ1

γ1

∥∥∥2
2
. (5)

Single prior. To solve Eq. (5), an auxiliary variable v is introduced. Then
Eq. (5) is further written as

x = argminx Φ(v) + γ1

2

∥∥∥y −Hx− λ1

γ1

∥∥∥2
2
subject to v = x. (6)
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(a) Single prior (b) Ensemble priors

Fig. 3: (a) Principle of the single prior period. Here, Di represents the ith denoising
operation, as in Eq. (11) while P i represents the ith projection operation, as in Eq. (10).
(b) Principle of ensemble priors period. Here, several denoising results vm...vm+1 are
gathered together projection operation.

By adopting alternating direction method of multipliers (ADMM) method [5,49],
Eq. (6) is further written as

x,v = argminx,v Φ(v) +
γ2

2

∥∥∥x− v − λ2

γ2

∥∥∥2
2
+ γ1

2

∥∥∥y −Hx− λ1

γ1

∥∥∥2
2
. (7)

According to ADMM, Eq. (7) can be divided into the two subproblems and solved
iteratively, as shown in Fig. 3(a)

vi = argminv Φ(v) +
γi
2

2

∥∥∥xi−1 − v − λi
2

γi
2

∥∥∥2
2
, (8)

xi = argminx
γi
2

2

∥∥∥x− vi − λi
2

γi
2

∥∥∥2
2
+

γi
1

2

∥∥∥y −Hx− λi
1

γi
1

∥∥∥2
2
, (9)

where the superscript i denotes the iteration index.
For subproblem xi, there exists a closed-form solution, which is called

projection operation

xi = (γi
2I+ γi

1H
TH)−1

[
λi
2 + γi

2v
i +HT γi

1(y − λi
1

γi
1
)
]
. (10)

Due to the special structure of H, this can be solved in one shot [29].
For subproblem vi, Eq. (8) can be rewritten as

vi = argminv Φ(v) +
γi
2

2

∥∥ui−1 − v
∥∥2
2
, (11)

where ui−1 = xi−1− λi−1
2

γi
2
. Eq. (11) is a classical denoising problem, which can be

solved by denoising prior such as TV, wavelet transformation, denoising network,
etc.In this paper, denoising network prior is adopted as shown in Fig. 4.

Ensemble priors. In every stage of unfolding, the denoising prior has different
parameters and thus plays different roles in removing noise, even these priors
have the same structure. To take full use of different denoisers among different
stages, these priors after m stages are gathered together to perform projection
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operation to produce x. Therefore, Eq. (8) and Eq. (9) in ensemble priors period,
as shown in Fig. 3(b), becomes

vm+j = argminv Φ(v1) +
γm+j
2

2

∥∥∥xm+j−1 − v − λm+j−1
2

γm+j
2

∥∥∥2
2
, (12)

and

xm+j =argminx
γm
2

2

∥∥∥x− vm − λm
2

γm
2

∥∥∥2
2
+

γm+1
2

2

∥∥∥x− vm+1 − λm+1
2

γm+1
2

∥∥∥2
2
+ · · ·

+
γm+j
1

2

∥∥∥y −Hx− λm+j
1

γm+j
1

∥∥∥2
2
. (13)

For subproblem vi, Eq. (12) can still adopt the same denoising prior form as in
single-prior period. For subproblem xi, there is a slightly difference because of
ensemble

xm+j = [(γm
2 + γm+1

2 + · · ·+ γm+j
2 )I+HT γm+j

1 H]−1[
λm
2 + γm

2 vm + · · ·+ λm+j
2 + γm+j

2 vm+j +HT γm+j
1 (y − λm+j

1

γm+j
1

)
]
. (14)

Last but not least, the Lagrangian multipliers λi
1 and λi

2 are updated by

λi
1 = λi−1

1 − γi
1(y −Hxi−1), (15)

λi
2 = λi−1

2 − γi
2(x− vi−1). (16)

Besides, the γi
1 and γi

2 are trained with the denoising prior parameters at every
stage.

In our method, the whole algorithm body should be divided into two parts: a
single prior period and an ensemble priors period, because the first several stages
can only provide rough estimates. If the priors in the first several stages are
coupled to the latter stages, the poor performance of the first several priors will
worsen the whole algorithm performance. There are 13 stages in our algorithm,
the first 8 stages are single prior periods and latter 5 stages are ensemble priors
periods. It is noted that there are 6 priors in last stage. As we can see in Eq. (13)
and Eq. (14), there exist six v’s if j = 5.

Denoising prior structure. As shown in Fig. 4, U-net [42] is used as the
backbone for denoising prior, which we adopt from FastDVDnet [44], but here
we remove batch normalization and quadruple the depth; this means that the
channels for three different features are 128, 256 and 512, respectively. Thus,
the training parameters of our proposed ELP-unfolding mainly consists of these
13 U-net structures. More details can be found in the supplementary materials
(SM). Following [44,64], the penalty parameter γi

2 is expanded to a noise map
as part of the input. To help denoising, the normalized measurement Y is also
added to the input [8, 45,46], which is defined as

Y = Y ⊘
∑B

b=1 Cb, (17)
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where ⊘ represents the matrix element-wise division. Therefore, the input consists

of noise map γi
2, normalized measurement Y and xi−1 − λi−1

2

γi
2
, and the output is

vi. Besides, dense connection is employed in the denoising prior network design.

𝐸𝑠𝑢𝑚1
i−1

𝐸3
i

…

𝑥𝑖−1 −
λ2
𝑖−1

γ2
𝑖

ത𝑦γ2
𝑖

…
𝑣𝑖
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𝐸2
i𝐸1

i 𝐸4
i 𝐸5

i
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256
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Fig. 4: Denoising prior structure based
on U-net [42]. To realize connection, sum
feature Ei−1

sumj from previous priors is
coupled into current prior and current
feature Ei

j is used to help form next sum
feature Ei

sumj .

Algorithm 1 ELP-unfolding for SCI
Reconstruction

Require: H, y, Y, {γ0
1 , . . . , γ

m+n
1 }, {γ0

2 , . . . ,

γm+n
2 }.

1: Initial v0 = 0, λ0
1 = 0, λ0

2 = 0.

2: Update x0 by Eq. (10)
3: % single prior period
4: for i = 1, ... , m do
5: Update vi by Eq. (11), λi

2 by Eq. (16).

6: Update λi
1 by Eq. (15), xi by Eq. (10).

7: end for
8: % ensemble priors period
9: for k = m+1, ... , m+n do
10: Update vk by Eq. (11), λk

2 by Eq. (16).

11: Update λk
1 by Eq. (15), xk by Eq. (14).

12: end for

Dense connection for unfolding. In traditional unfolding method, the

connection between two stages are v and u, that is xi−1 − λi−1
2

γi
2
, which have

a small number of temporal dimensions. Therefore, most latent information in
U-net structure cannot be transferred between different priors. To break this
bottleneck, the skip connection technique is used here. As shown in Fig. 4, in the
ith prior, the feature Ei

j and feature Ei−1
sumj operate in the latent space of U-net

structure as a whole feature. Besides, the feature Ei
j will add to Ei−1

sumj to form

Ei
sumj , that is, E

i
sumj = Ei−1

sumj +Ei
j .

By re-ordering the updating equations, we summarize the entire algorithm in
Algorithm 1.

4.2 Scalable learning for SCI

Existing deep learning methods usually have limited scalability, i.e., one trained
model can only be applied to one system with specific masks and compression
ratio B. When the scene data size changes, the new corresponding model usually
needs to be trained again. The most recent MetaSCI [45] can quickly be applied
to a new model but also demands new adaptation process. In addition, MetaSCI
adaptation is limited in space but not suitable for time (compression ratio). Even
some deep learning methods that are independent of multi-layer perception, such
as Dense3D-Unfolding, can be applied to different spatial size cases, but they
have no temporal scalability. They must be trained again for new applications
with different temporal dimensions B.

To address this problem, we develop scalable learning for SCI. This scalable
learning has scalability not only in the spatial dimension but also in the temporal
dimension. Specifically, to ensure spatial scalability, we only employ the convolutional
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Ground truth GAP-TV PnP-FFDnet DeSCI BIRNAT RevSCI-Net Dense3D-Unfolding ELP-Unfolding

Kobe #16
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Drop #7
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Areial #22

Fig. 5: Selected reconstruction results of benchmark dataset by GAP-TV [55],
DeSCI [29], PnP-FFDNet [58], RevSCI [8] and the proposed ELP-unfolding (Please
zoom-in to see details).

neural network, ignoring MLP; to ensure temporal scalability, we train a scalable
frames model within a certain number of frames, which is the maximum frames
M . During training, the number of frames (smaller than M) is randomly chosen;
M is also the number of channel in denoising networks. In most cases, the original
data should be repeatedly rearranged several times to satisfy the frames number
M . When M is not an integer multiple of the frame number of dynamic scene,
only the first several frames of the original data are used in the last arranging
process.

Even though the maximum temporal size needs to be pre-set, the new
maximum temporal model can conveniently use the previous different maximum
temporal models as the pre-trained model to speed up the training process.

4.3 Training

Given the measurement Y and masks {Cb}Bb=1, our ELP-unfolding can generate

{X̂b}Bb=1 ∈ Rnx×ny×B. The mean square error (MSE) is selected as our loss
function, expressed as

ℓMSE = 1
SBnxny

∑S
s=1

∑B
b=1

∥∥∥Xb − X̂b

∥∥∥2
2
, (18)

where Xb is ground truth and S is batchsize.
We use PyTorch [35] to train our model on an NVIDIA A40 GPU. For all

training processes, we adopt the Adam optimizer [23] with a mini-batch size of
3 and a spatial size of 256 × 256. We also adopt a pre-training strategy. The
whole training process has two periods. Firstly, 8 stages with a single prior model
are trained as pretrained parameters. Secondly, the whole ELP-unfolding with
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Table 1: Benchmark datasets: the average results of PSNR in dB (left entry in each
cell) and SSIM (right entry in each cell) and run time per measurement in seconds by
different algorithms on 6 benchmark datasets.

Algorithm Kobe Traffic Runner Drop Crash Aerial Average Run time (s)

GAP-TV [55] 26.92, 0.838 20.66, 0.691 29.81, 0.895 34.95, 0.966 24.48, 0.799 24.81, 0.811 26.94, 0.833 4.2 (CPU)

DeSCI [29] 33.25, 0.952 28.71, 0.925 38.48, 0.969 43.10, 0.992 27.04, 0.909 25.33, 0.860 32.65, 0.934 6180 (CPU)

PnP-FFDNet [58] 30.33, 0.925 24.01, 0.835 32.44, 0.931 39.68, 0.986 24.67, 0.833 24.29, 0.820 29.21, 0.888 3.0 (GPU)

PnP-FastDVDnet [59] 32.73, 0.947 27.95, 0.932 36.29, 0.962 41.82, 0.989 27.32, 0.925 27.98, 0.897 32.35, 0.942 6 (GPU)

BIRNAT [10] 32.71, 0.950 29.33, 0.942 38.70, 0.976 42.28, 0.992 27.84, 0.927 28.99, 0.927 33.31, 0.951 0.16 (GPU)

GAP-Unet-S12 [31] 32.09, 0.944 28.19, 0.929 38.12, 0.975 42.02, 0.992 27.83, 0.931 28.88, 0.914 32.86, 0.947 0.0072 (GPU)

Meta-SCI [45] 30.12, 0.907 26.95, 0.888 37.02, 0.967 40.61, 0.985 27.33, 0.906 28.31, 0.904 31.72, 0.926 0.025 (GPU)

RevSCI [8] 33.72, 0.957 30.02, 0.949 39.40, 0.977 42.93, 0.992 28.12, 0.937 29.35, 0.924 33.92, 0.956 0.19 (GPU)

Dense3D-Unfolding [46] 35.00, 0.969 31.76, 0.966 40.03, 0.980 44.96, 0.995 29.33, 0.956 30.46, 0.943 35.26, 0.968 1.35 (GPU)

ELP-Unfolding (Ours) 34.41, 0.966 31.58, 0.962 41.16, 0.986 44.99, 0.995 29.65, 0.960 30.68, 0.943 35.41, 0.969 0.24 (GPU)

the pretrained parameters, is then trained, with 13 stages, 6 ensemble-priors in
the last stage. And the first 8 stages just contains a single prior in each stage.
Besides, the former 8 stages in the entire ELP-unfolding match the pretrained
model very well, completely adopting the pretrained parameters. The latter 5
stages priors adopt the same last stage parameters in the pretrained model.

Regarding the learning rate, we adopt the same strategy for these two training
periods. The difference lies in the initial learning rate. For the first (pretrained)
period, the initial learning rate is set to 1×10−4. For the second (ELP-unfolding)
period, the initial learning rate is set to 2×10−5. After the first five epochs,
the learning rate decays a factor of 0.9 every 15 epochs. Besides, for the first
(pretrained) period, the total number of epoch is 200 and training time is about
8 days. For the second period, the total number of epoch is 320 and training time
is about 13 days.

In this paper we used above training strategies to train three models, namely
benchmark model, scalable model and real data model.

5 Experiment

5.1 Training Dataset

We used DAVIS2017 [37] dataset with a resolution of 480×894 (480p) as our
training dataset for all experiments. Video clips with spatial size of 256 × 256
are randomly cropped from this training dataset.

5.2 Benchmark datasets for SCI

Kobe, Traffic, Runner, Drop, Crash, and Aerial are the Benchmark datasets for
SCI[59], where the data-size is 256×256×8, i.e.nx=ny=256, B=8. Based on these
datasets, we compare our ELP-unfolding with a special temporal size of 8 to other
SOTA algorithms, including GAP-TV [55], DeSCI [29], PnP-FFDNet [58], PnP-
FastDVDnet [59], BIRNAT [10], GAP-Unet-S12 [31], Meta-SCI [45], RevSCI [8],
Dense3D-Unfolding [46]. The results are summarized in Table 1. As we can see,
iterative algorithms including PnP based algorithms (GAP-TV, DeSCI, PnP-
FFDNet, PnP-FastDVDnet) provide inferior results at a slow speed (more than
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Aerial #20

Crash #8

Drop #7

Kobe #7

Runner #3

Ground Truth GAP-TV GAP-FFDNet GAP-FastDVDNet ELP-Unfolding Ground Truth GAP-TV GAP-FFDNet GAP-FastDVDNet ELP-Unfolding Ground Truth GAP-TV GAP-FFDNet GAP-FastDVDNet ELP-Unfolding

Ground Truth GAP-TV GAP-FFDNet GAP-FastDVDNet ELP-Unfolding

256×256×24

512×512×10
1024×1024×18

1536×1536×12

Fig. 6: Scalability: Selected results by GAP-TV, PnP-FFDNet, PnP-FastDVDnet and
our ELP-unfolding with various spatial sizes and compression ratios.

one second). Deep learning algorithms can achieve better result in a short running
time (usually less than 1 second).

For direct comparison of deep learning algorithms, Table 2 shows the results
of top three algorithms, namely, RevSCI, Dense3D-Unfolding and ours. Although
Dense3D-Unfolding has achieved the best results before, it costs a long time to
test (1.35 s). Our ELP-unfolding algorithm not only achieves better result than
Dense3D-Unfolding, but also saves test time (costing 0.24 s).

Table 2: The comparison of top
three algorithms: time, memory
for training one batch and
reconstruction accuracy (PSNR).

Time Memory PSNR

RevSCI 0.19 s Flexible 33.92 dB
Dense3D-Unfolding 1.35 s 28.7 G 35.26 dB

Our method 0.24 s 12.5 G 35.41 dB

For visualization purpose, we also present
some images in Fig. 5, from the zoom areas
we can see that our ELP-unfolding provides
much clearer images with sharper edges and
more abundant details than other algorithms,
even the Dense3D-Unfolding (Crash). We
also believe that by adopting 3D-CCN, ELP-
unfolding can achieve even better results.

5.3 Scalable datasets for SCI

To verify the scalability of our ELP-unfolding method, we trained one model
to test four different size datasets: 256×256×24, 512×512 ×10, 1024 ×1024×18
and 1536×1536×12. The latter three datasets are cropped from the Ultra Video
Group (UVG) dataset [33] in the same way as in Meta-SCI [45]. The former
dataset is also the benchmark. but the compression ratio B is now set to 24.
Because previous deep learning algorithms (including Meta-SCI) cannot scale for
different compression ratios, traditional iteration algorithms including GAP-TV,
PnP-FFDNet and PnP-FastDVDnet are chosen as baselines.

It can be noticed from Fig. 7 that these algorithms yeild worse results than
ELP-unfolding meanwhile cost a longer time (details in SM). In the case of
1536×1536×12, PnP-FFDNet is able to get good results as ELP-unfolding.
However, it is unstable and gets the worst results in the case of 256×256×24.
Fig. 6 shows some selected images with much sharper boundaries and fewer
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Fig. 7: Scalability: Reconstruction results by GAP-TV, PnP-FFDNet, PnP-FastDVDnet
and the proposed ELP-unfolding with various spatial sizes and compression ratios.

artifacts reconstructed by ELP-unfolding than other algorithms. Please refer to
the reconstructed videos in SM.

5.4 Ablation Study

In our ELP-unfolding model, the single prior period contains 8 stages, ensemble
priors period contains 5 stages and thus the whole model contains 13 stages.
Stage 9 has two priors to deal with projection operation while stage 10 has three
priors and so on and so forth. In the end, in stage 13, there are six priors.

Focusing on the number of stages in Table 3b, we can see that the more stages
one model has, the better result the model can achieve. But when the number of
stages reaches 13, the reconstruction accuracy can not be improved any more.
Regarding the priors, by adopting ensemble learning priors strategy, the 6 priors
(with 13 stages) model can still improve reconstruction accuracy. Besides, the
ensemble learning model always behaves better than its single prior counterpart
in the same number of stage case. For instance, in the 9-stage model, two priors
in the last stage always leads to better results than the single prior counterpart.

Next, we consider a more complicated structure. Specifically, we use 2 priors
in stage 2 and 3 priors in stage 3 and so on and so forth. For a fair comparison, we
also use a 13stage model. The result of this complicated model is called ‘Ensemble
all’ in Table 3c. We can observe that even though the model is more complicated,
it cannot lead to better results than our proposed structure, because the first
several stages only provides rough estimates and the poor performance of first
several priors can deteriorate the whole algorithm performance if coupled to the
latter stages. In addition, the ‘Ensemble no’ in Table 3c denotes a single prior
used in all stages, and the same for the 13 stages in Table 3b. This model can lead
to decent results but not as good as ensemble priors structure. After comparison,
we set the 6 priors model as our final ELP-unfolding, the results of which are
also shown in ‘Integrating all’ in Table 3c.
Effect of dense connection. To verify the effect of the dense connection in
ELP-unfolding, we make the comparisons with and without dense connection in
the 7 stages model (‘7-1’) and 6 priors model (‘13-6’). The 7 stages model
has seven stages but each stage contains only one prior, while the 6-prior
model is the full model in our paper that achieves SOTA results. As shown in
Table 3d, removing the dense connection will lower the performance of unfolding
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Table 3: Ablations. Average PSNR and SSIM for different setups in simulation.
(a) ‘m-n’ means m stages model has n priors in the last stage.

6 single stages 7 single stages 8 single stages

’7-2’ 32.69 ’7-1’ 30.71 ’8-2’ 32.82 ’8-1’ 30.98 ’9-2’ 33.24 ’9-1’ 31.25

’9-4’ 32.92 ’9-1’ 31.25 ’9-3’ 33.03 ’9-1’ 31.25 ’11-4’ 33.33 ’11-1’ 31.45

’11-6’ 33.06 ’11-1’ 31.45 ’11-5’ 33.19 ’11-1’ 31.45 ’13-6’ 33.46 ’13-1’ 31.75

’aver’ 32.89 ’aver’ 31.14 ’aver’ 33.13 ’aver’ 31.23 ’aver’ 33.34 ’aver’ 31.48

(b) Different stages and ensemble priors in the last stage

1 stage 3 stages 5 stages 7 stages 8 stages 9 stages 11 stages 13 stages 1 prior 2 priors 4 priors 6 priors 8 priors

31.21, 0.926 33.29, 0.953 34.33, 0.964 34.50, 0.965 34.83, 0.966 34.92, 0.967 35.11, 0.968 35.07, 0.968 34.83, 0.966 34.98, 0.967 35.15, 0.968 35.41, 0.969 35.34, 0.969

(c) Running 13 stages in different situations.

Ensemble all Ensemble no Part training-set Removing connection Integrating all

34.97, 0.967 35.09, 0.968 34.73, 0.966 34.77, 0.966 35.41, 0.969

(d) ‘7-1’ means 7 stages 1 prior while ‘13-6’means 13 stages 6 priors.

7-1 w/o connection 7-1 w/ connection 13-6 w/o connection 13-6 w/connection

34.23, 0.961 34.85, 0.967 34.77, 0.966 35.41, 0.969

algorithms including the single prior model and the ensemble prior model, because
the information transmitted between priors is limited. It should be noticed
that our dense connection operation is simple, only consisting of adding and
concatenating, instead of complex operations such as the dense feature map
adaption in Dense3D-Unfolding [46]. Thus our ELP-unfolding provides a simple
strategy (dense connection) to improve the performance of deep unfolding.

Effect of ensemble priors. Table 3b can’t completely reflect the effect of
ensemble priors, because we adopt a large model by using connection technique
and wide channels (512 channels in unet middle layer) to get SOTA accuracy
to outperform Dense3D-Unfolding, which leaves little room for ensemble priors
improvement. In most circumstances, it is unnecessary to use such big models.
Thus, we use the normal 128 channels and remove connection technique to display
the effect of ensemble priors, as shown in Table 3a. As we can see, the ensemble
priors method can improve the reconstruction accuracy of PNSR by more than
1.75 dB on average. Besides, ensemble priors method doesn’t increase memory to
train and time to test. Thus, ensemble priors have a huge advantage in the field
of deep unfolding.

Effect of training dataset. Training dataset plays a key role in performance of
deep learning algorithms, and ELP-unfolding is no exception. We verify this by
using part of the training dataset, i.e.the dataset in DAVIS2017 that only trains
on 480p videos, but does not include the test dataset and test challenge dataset.
The results are shown in ‘Part training-set’ in Table 3c. By comparing ‘Part
training-set’ and ‘Integrating all’, we find that reducing the amount of training
set hurts the performance of ELP-unfolding.
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(a) (b)

(c) (d)

Fig. 8: Real data duomino (a, 512×512×10), waterballon (b, 512×512×10), hand (c,
512×512×10) and chop (d, 256×256×14) reconstructed from a compressed measurement.

6 Real datasets for SCI

We now apply the proposed ELP-unfolding to real datasets, namely chopwheel [30],
waterBalloon [38], duomino [38] and hand [56]. Because of the unavoidable
measurement noise, it is more challenging to reconstruct real measurements.
The size of the Chopwheel data is 256×256×14, while the size of the other
three datasets is 512×512×10. From Fig. 8, we can see that our method can
generate more apparent contours while reducing artifacts and ghosting. What’s
more, previous deep learning algorithms didn’t succeed in reconstructing hand
because of the big noise in this data. Our ELP-unfolding firstly obtains the
hand reconstruction by deep learning. Thus, we can only show the comparison
with traditional iteration algorithms such as GAP-TV, PnP-FFDNet and DeSCI.
Therefore, we can conclude that in practical applications, our method is powerful
in reconstructing high-speed scenes. The relative videos can be seen in SM.

7 Conclusions and Future Work

Inspired by ensemble learning and iterative based optimization algorithm, we
develop ensemble learning priors unfolding for scalable snapshot compressive
imaging. Our ELP-unfolding algorithm has achieved state-of-the-art results in a
short running time. Besides, we have firstly proposed the scalable function for
SCI, not only in the spatial dimension but also in the temporal dimension.

To further improve the reconstruction accuracy, we will consider combining 3D-
CNN with ELP-unfolding. Besides, to reduce the testing time and the parameters
of neural network, a distilling method will be employed. We believe that our
proposed ELP-unfolding framework can also be used for other inverse problems
such as image CS, spectral compressive imaging, and so on [47,53,54,62].
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