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1 Proof of Thm. 6

Theorem 6 Given vy, vy € P(R?), the auxiliary measure is y, Ty : u — vy are
the OT maps with k=1,2. Suppose the distance from p to the geodesic connecting
v1 and vy is d, then T o Tfl 1 V1 — Vs is measure preserving and its transport
cost C is bounded by

We(vr,v0) < C2(Th 0 T V) < Welvr, v2) + 2d (1)

Proof. Suppose the geodesic connecting 11 and vs is -y, p* is the closest point to
p on v. By definition, (T%)gp = vk, then we have

(To o Ty g = (To) (T Hgpin = (To)yp = vo. (2)

Thus, T5 o T} 1'is measure preserving, but it may not be optimal. Since here
we assume that the cost function is given by the L? distance, we have C(T}) =
W2(u, Ty). Then

C(Ty o Ty 1Y) > W2(vy, 10). (3)

Ty’s are the optimal transport maps, according to the triangle inequality, we
have

C3(Ty) + C3 (Tz) < We(v1, 1) + 2d. (4)

Assume the cell decomposition of Ty and Ty is given by {W'} and {W7?}, and the

refined cell decomposition of {W;'} and {W7?} is {W;;} with Wy; := W}' n W7,
If we set d(x,y) = ||z — yl|2 and by Minkowski inequality,
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Thus, )
C2(Tyo Ty ) < Welvy, o) + 2d. (6)
Combining the above estimates, we obtain the bounds
We(v1,v2) < C2(Ty 0 TiY) < Wy(v, 1v2) + 2d (7)
2 Proof of Proposition 7
Proposition 7 Given p = > ;% v} N(z;,0%1;) and vy = Y vio(z — 2;),

then we have W.(u,v1) < o under the quadratic Euclidean cost. Moreover, if
o is small enough, then the cell W; of the cell decomposition induced by the
semi-discrete OT map from u to v1 should cover z; itself.

Proof. If we transport all the mass corresponding to N (x;, aId) to x; of vy, then
exp{”z”z} the

we get a transport plan from p to v1. By defining f(x) =

27ro’
transport cost of such a transport plan is given by

m

c=3 0t [l st 0

Thus, the optimal transport cost from u to vy, namely W2 (u, v1), should be no
more than 2. This gives
We(p, 1) <o 9)

When o < min;z; ||z; — xj]|2, the cell Wis of the cell decomposition induced
by the semi-discrete OT map from p to v; should cover the corresponding x;s,
namely nearly all mass of v} N (x;,021,;) should be transported to x;. If W; does
not cover x;, some mass of N(xj7021d) with x; # x; will be transported to
x;, as a result W,(u, 1) will be larger than ¢. This corresponds to the cyclical
monotonicity of the optimal transport (Chapter 5 of [4]).
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Algorithm 1 Semi-discrete OT Map
1: Input: the absolutely continuous source measure u and the discrete target measure
v =31 vid(x — x;), number of Monte Carlo samples N, positive integer s and
the measure accuracy 6.
Output: Optimal transport map T'(-).
Initialize h = (h1, he, ..., hi7) < (0,0,...,0).
repeat
Sample N samples {z;})_; ~ p.
Calculate Vi = (w;(h) — v;)7.
Vh = Vh —mean(Vh).
Update h by Adam algorithm with 81 = 0.9, 82 = 0.5.
9:  if E(h) has not decreased for s steps then
10: N < N x 2.
11:  end if
12: until 37 | abs(wi(h) — vi) < 6
13: OT map T(-) < V(max;(-, ;) + hs).

Algorithm 2 Construct the sparse matrix

1: Input: the absolutely continuous source measure pu, the computed hy for vy, and
the computed hsy for vs.
Output: Sparse matrix S of the transport plan.
Initialize S = Opmxn.-
repeat
Sample z ~ p.
Find the cell W' in {W;'} that contains z.
Find the cell W} in {W}} that contains 2.
Set S(i,j) =1

until converge

3 Algorithm Pipeline for the SDOT algorithm

Based on [1], we summarize the whole pipeline of the SDOT (semi-discrete op-
timal transport) algorithm in Alg.

4 Algorithm Pipeline for constructing the spare matrix

We also summarize the whole pipeline of constructing and extending the sparse
matrix S in Alg.

5 Algorithm for Discrete OT plan with continuous p
where the source measure is sampled from

In the section, we give the algorithm pipeline for computing the discrete OT
plan with the continuous g where the source measure v; is sampled from, as
shown in Alg.
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Algorithm 3 Discrete Optimal Transport Plan

1:

o

Input: The absolutely continuous source measure p, v1 = > v, vid(x — x;) and

ve =30, v:6(y — y;), the p-volume distortion @ and the number k of the nearest
neighbours.

Output: The approximate OT plan.

Compute the semi-discrete OT map 77 and 7> from p to v1 and v2 with the
parameter 6.

Initialize the sparse matrix S according to Alg.

Extend S according to its k nearest neighbours.

Solve the sparse LP problem Eqn. (7).

Algorithm 4 Discrete Optimal Transport Plan by GM model

1:

w

Input: vy = Y7 v/6(x — x;) and vy = Z;.lzl v36(y — y;), the measure accuracy
0 and the nearest number of k.

Output: The transport plan.

Construct p = >_7" | viN(zs,014), with ¢ = 0.1 min; 2 d(zi, Tp)-

Compute the semi-discrete OT map T> from p to vo with the parameter 6 based
on Alg.

Initialize the sparse matrix S: for each sample x;, find the cell Wf covering it. Then
set S(i,7) = 1.

Extend S according to the k nearest neighbours.

Solve the sparse LP problem of Eqn. (7).

6

Algorithm for Discrete OT plan with Gaussian Mixture
p defined by the source measure

In this section, we introduce the algorithm to compute the discrete OT plan with
1 being Gaussian mixture model defined by the source measure v, as shown in

Alg.

7

More results of Color Transfer

In Fig. |1} we show the additional color transfer results of (i) autumn to co-
munion; (ii) autumn to graffiti; (iii) autumn to rainbow-bridge; (iv) comunion
to graffiti; and (v) comunion to rainbow-bridge. It is obvious that the results
of the proposed method are sharper than those of Sinkhorn [3]. And though
the color transferred images of SOT [2] are sharp, the color spaces of them are
problematic, as shown in the first three images of the 4th column.



(a)
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Source (b) Target (c) Sinkhorn (d) sOT
Fig. 1. Additional comparison of the results on color transfer tasks.

() urs.
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