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1 Proof of Thm. 6

Theorem 6 Given ν1, ν2 ∈ P(Rd), the auxiliary measure is µ, Tk : µ → νk are
the OT maps with k=1,2. Suppose the distance from µ to the geodesic connecting
ν1 and ν2 is d, then T2 ◦ T−1

1 : ν1 → ν2 is measure preserving and its transport
cost C is bounded by

Wc(ν1, ν2) ≤ C
1
2 (T2 ◦ T−1

1 ) ≤ Wc(ν1, ν2) + 2d (1)

Proof. Suppose the geodesic connecting ν1 and ν2 is γ, µ∗ is the closest point to
µ on γ. By definition, (Tk)#µ = νk, then we have

(T2 ◦ T−1
1 )#ν1 = (T2)#(T

−1
1 )#ν1 = (T2)#µ = ν2. (2)

Thus, T2 ◦ T−1
1 is measure preserving, but it may not be optimal. Since here

we assume that the cost function is given by the L2 distance, we have C(Tk) =
W 2

c (µ, Tk). Then

C(T2 ◦ T−1
1 ) ≥ W2

c (ν1, ν2). (3)

Tk’s are the optimal transport maps, according to the triangle inequality, we
have

C 1
2 (T1) + C 1

2 (T2) ≤ Wc(ν1, ν2) + 2d. (4)

Assume the cell decomposition of T1 and T2 is given by {W 1
i } and {W 2

j }, and the

refined cell decomposition of {W 1
i } and {W 2

j } is {Wij} with Wij := W 1
i ∩W 2

j .
If we set d(x, y) = ∥x− y∥2 and by Minkowski inequality,
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C
1
2 (T2 ◦ T−1

1 )

=

[
m,n∑
i,j=1

∫
Wij

d(y1
i , y

2
j )

2dµ(x)

] 1
2

≤

[
m,n∑
i,j=1

∫
Wij

(d(x, y1
i ) + d(x, y2

j ))
2dµ(x)

] 1
2

≤

[
m,n∑
i,j=1

∫
Wij

d(x, y1
i )

2dµ(x)

] 1
2

+

[
m,n∑
i,j=1

∫
Wij

d(x, y2
j )

2dµ(x)

] 1
2

=

[
m∑
i=1

∫
W1

i

∥x− y1
i ∥2dµ(x)

] 1
2

+

[
n∑

j=1

∫
W2

j

∥x− y2
j ∥2dµ(x)

] 1
2

= C
1
2 (T1) + C

1
2 (T2)

(5)

Thus,
C 1

2 (T2 ◦ T−1
1 ) ≤ Wc(ν1, ν2) + 2d. (6)

Combining the above estimates, we obtain the bounds

Wc(ν1, ν2) ≤ C 1
2 (T2 ◦ T−1

1 ) ≤ Wc(ν1, ν2) + 2d (7)

2 Proof of Proposition 7

Proposition 7 Given µ =
∑m

i=1 ν
1
i N(xi, σ

2Id) and ν1 =
∑m

i=1 ν
1
i δ(x − xi),

then we have Wc(µ, ν1) ≤ σ under the quadratic Euclidean cost. Moreover, if
σ is small enough, then the cell Wi of the cell decomposition induced by the
semi-discrete OT map from µ to ν1 should cover xi itself.

Proof. If we transport all the mass corresponding to N(xi, σId) to xi of ν1, then

we get a transport plan from µ to ν1. By defining f(x) = 1√
2πσ

exp{∥x∥2
2σ2 }, the

transport cost of such a transport plan is given by

C =

m∑
i=1

ν1i

∫
∥x∥2f(d)dx = σ2 (8)

Thus, the optimal transport cost from µ to ν1, namely W2
c (µ, ν1), should be no

more than σ2. This gives
Wc(µ, ν1) ≤ σ (9)

When σ ≪ mini ̸=j ∥xi − xj∥2, the cell Wis of the cell decomposition induced
by the semi-discrete OT map from µ to ν1 should cover the corresponding xis,
namely nearly all mass of ν1i N (xi, σ

2Id) should be transported to xi. If Wi does
not cover xi, some mass of N (xj , σ

2Id) with xj ̸= xi will be transported to
xi, as a result Wc(µ, ν1) will be larger than σ. This corresponds to the cyclical
monotonicity of the optimal transport (Chapter 5 of [4]).
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Algorithm 1 Semi-discrete OT Map

1: Input: the absolutely continuous source measure µ and the discrete target measure
ν =

∑n
i=1 νiδ(x − xi), number of Monte Carlo samples N , positive integer s and

the measure accuracy θ.
2: Output: Optimal transport map T (·).
3: Initialize h = (h1, h2, . . . , h|I|)← (0, 0, . . . , 0).
4: repeat
5: Sample N samples {zj}Nj=1 ∼ µ.
6: Calculate ∇h = (ŵi(h)− νi)

T .
7: ∇h = ∇h−mean(∇h).
8: Update h by Adam algorithm with β1 = 0.9, β2 = 0.5.
9: if E(h) has not decreased for s steps then
10: N ← N × 2.
11: end if
12: until

∑n
i=1 abs(ŵi(h)− νi) < θ

13: OT map T (·)← ∇(maxi⟨·, xi⟩+ hi).

Algorithm 2 Construct the sparse matrix

1: Input: the absolutely continuous source measure µ, the computed h1 for ν1, and
the computed h2 for ν2.

2: Output: Sparse matrix S of the transport plan.
3: Initialize S = 0m×n.
4: repeat
5: Sample z ∼ µ.
6: Find the cell W 1

i in {W 1
i } that contains z.

7: Find the cell W 2
j in {W 2

j } that contains z.
8: Set S(i, j) = 1
9: until converge

3 Algorithm Pipeline for the SDOT algorithm

Based on [1], we summarize the whole pipeline of the SDOT (semi-discrete op-
timal transport) algorithm in Alg. 1.

4 Algorithm Pipeline for constructing the spare matrix

We also summarize the whole pipeline of constructing and extending the sparse
matrix S in Alg. 2.

5 Algorithm for Discrete OT plan with continuous µ
where the source measure is sampled from

In the section, we give the algorithm pipeline for computing the discrete OT
plan with the continuous µ where the source measure ν1 is sampled from, as
shown in Alg. 3.
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Algorithm 3 Discrete Optimal Transport Plan

1: Input: The absolutely continuous source measure µ, ν1 =
∑m

i=1 ν
1
i δ(x − xi) and

ν2 =
∑n

j=1 ν
2
j δ(y− yj), the µ-volume distortion θ and the number k of the nearest

neighbours.
2: Output: The approximate OT plan.
3: Compute the semi-discrete OT map T1 and T2 from µ to ν1 and ν2 with the

parameter θ.
4: Initialize the sparse matrix S according to Alg. 2.
5: Extend S according to its k nearest neighbours.
6: Solve the sparse LP problem Eqn. (7).

Algorithm 4 Discrete Optimal Transport Plan by GM model

1: Input: ν1 =
∑m

i=1 ν
1
i δ(x − xi) and ν2 =

∑n
j=1 ν

2
j δ(y − yj), the measure accuracy

θ and the nearest number of k.
2: Output: The transport plan.
3: Construct µ =

∑m
i=1 ν

1
i N(xi, σId), with σ = 0.1mini ̸=k d(xi, xk).

4: Compute the semi-discrete OT map T2 from µ to ν2 with the parameter θ based
on Alg. 1.

5: Initialize the sparse matrix S: for each sample xi, find the cell W 2
j covering it. Then

set S(i, j) = 1.
6: Extend S according to the k nearest neighbours.
7: Solve the sparse LP problem of Eqn. (7).

6 Algorithm for Discrete OT plan with Gaussian Mixture
µ defined by the source measure

In this section, we introduce the algorithm to compute the discrete OT plan with
µ being Gaussian mixture model defined by the source measure ν1, as shown in
Alg. 4.

7 More results of Color Transfer

In Fig. 1, we show the additional color transfer results of (i) autumn to co-
munion; (ii) autumn to graffiti; (iii) autumn to rainbow-bridge; (iv) comunion
to graffiti; and (v) comunion to rainbow-bridge. It is obvious that the results
of the proposed method are sharper than those of Sinkhorn [3]. And though
the color transferred images of SOT [2] are sharp, the color spaces of them are
problematic, as shown in the first three images of the 4th column.
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(a) Source (b) Target (c) Sinkhorn (d) SOT (e) Ours.
Fig. 1. Additional comparison of the results on color transfer tasks.
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