
Approximate Discrete Optimal Transport Plan
with Auxiliary Measure Method

Dongsheng An1, Na Lei⋆2, and Xianfeng Gu1

1 Stony Brook University
2 Dalian University of Technology

{doan, gu}@cs.stonybrook.edu, nalei@dlut.edu.cn

Abstract. Optimal transport (OT) between two measures plays an es-
sential role in many fields, ranging from economy, biology to machine
learning and artificial intelligence. Conventional discrete OT problem
can be solved using linear programming (LP). Unfortunately, due to the
large scale and the intrinsic non-linearity, achieving discrete OT plan
with adequate accuracy and efficiency is challenging. Generally speaking,
the OT plan is highly sparse. This work proposes an auxiliary measure
method to use the semi-discrete OT maps to estimate the sparsity of
the discrete OT plan with squared Euclidean cost. Although obtaining
the accurate semi-discrete OT maps is difficult, we can find the spar-
sity information through computing the approximate semi-discrete OT
maps by convex optimization. The sparsity information can be further
incorporated into the downstream LP optimization to greatly reduce the
computational complexity and improve the accuracy. We also give a the-
oretic error bound between the estimated transport plan and the OT
plan in terms of Wasserstein distance. Experiments on both synthetic
data and color transfer tasks demonstrate the accuracy and efficiency of
the proposed method.

Keywords: Optimal transport, Convex optimization, Linear Program-
ming, Auxiliary measure

1 Introduction

Optimal transport (OT) is a powerful tool to compute the Wasserstein distance
between probability measures, which are widely used to model various natural
phenomena, including those observed in economics [13], optics [15], biology [28],
differential equations [17] and other domains. Recently, OT has been success-
fully applied in the areas of machine learning, such as parameter estimation in
Bayesian nonparametric models [25], computer vision [3,10,32], natural language
processing [21,34] etc. In these applications, the complex probability measures
are approximated by Dirac measures supported on their samples. To compute
Wasserstein distances among Dirac measures, we have to solve the discrete OT

⋆ Corresponding author



2 D. An et al.

problems. Unfortunately, solving large scale discrete OT problem with high ac-
curacy still remains a great challenge. To tackle this problem, we propose a novel
method to improve the accuracy by utilizing the sparsity of discrete OT plan .

Semi-discrete OT Problem The origin of the optimal transport problem
can be traced back to 1781, when Monge asked if there existed an OT map be-
tween two measures with the given cost function. Depending on the cost function
and the measures, the OT map may not exist. In 1950’s, Kantorovich relaxed
the OT map to OT plan, and showed the existence and the uniqueness of the
plan under mild conditions [33]. In 1980’s, Brenier [6] discovered that when the
density of the source measure is absolutely continuous and the cost function is
the squared Euclidean distance, the OT map is given by the gradient of a convex
function, the so-called Brenier potential.

Recently, the equivalence between the Brenier potential and Alexandrov’s
convex polytope has been rigours proved in [16], both of them can be obtained
by solving the non-linear Monge-Ampère equation. This connection leads to a
practical algorithm to solve the semi-discrete OT problem using convex geome-
try. According to Thm. 2 in this paper, the Brenier potential can be represented
as the upper envelope of a set of hyperplanes, and its projection induces a power
diagram of the source domain, which gives the semi-discrete OT map. Moreover,
the power diagram can be estimated efficiently using Monte Carlo based method
in high dimensional space [2].

Discrete OT Problem In this work, we focus on computing the OT plan
between two discrete measures. Suppose the source and target discrete distribu-
tions are represented by ν1 =

∑m
i=1 ν

1
i δ(x− xi) and ν2 =

∑n
j=1 ν

2
j δ(y − yj), re-

spectively. The transport plan is denoted as π : ν1 → ν2, and π = {πij |
∑

i πij =
ν2j ,

∑
j πij = ν1i , πij ≥ 0}, where πij represents the total mass transported from

xi to yj . For the Kantorovich problem (Eqn. (5)), there aremn unknowns in total
andm+n constraints. We can solve it using the conventional linear programming
(LP) method, whose time complexity is O(n2.5) with Vaidya’s algorithm [8]. For
large scale problems, this is prohibitively high.

The Proposed Method In this paper, to compute the optimal transport
plan between two discrete measures, we propose the auxiliary measure method.
Basically, we construct an auxiliary measure µ with absolutely continuous den-
sity function defined on a convex domain Ω. Then we compute two semi-discrete
OT maps Tk : µ → νk, k = 1, 2. Each Tk induces a cell decomposition (power
diagram) of Ω:

Ω =

m⋃
i=1

W 1
i =

n⋃
j=1

W 2
j , T1 : W 1

i → xi, T2 : W 2
j → yj .

The overlap of the two cell decomposition induces a refined cell decomposition:

Ω =

m⋃
i=1

n⋃
j=1

W 1
i ∩W 2

j =

m⋃
i=1

n⋃
j=1

Wij

where Wij := W 1
i ∩W 2

j . If we treat T1 : W 1
i → xi as invertible, its inverse will

be a set-valued map T−1
1 : xi → W 1

i , then the following diagram commutes,
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(Ω,µ) ν1

ν2

T1

T2
π̃

The composition π̃ = T2 ◦T−1
1 is a transport plan from

ν1 to ν2, where π̃ij = µ(Wij). Algorithms for finding a
transport plan π̃ need to solve two semi-discrete OT prob-
lems with m+n unknowns in total, which is much simpler
than the LP method with mn unknowns. Both T1 and T2 are OT maps, but
π̃ may not be optimal. Even so, π̃ is a transport plan with explicit sparsity.
Namely, if Wij is empty, then π̃ij is 0. Suppose the OT plan is π̂ : ν1 → ν2, we
can use the sparsity of π̃ to predict the sparsity of π̂. Thus, by carefully choosing
the auxiliary measure µ, we can make π̃ a good approximation of π̂, and π̃ tells
which π̂ij ’s are zeros beforehand.

However, computing the accurate semi-discrete OT map for general OT prob-
lems is difficult [31]. In our settings, we only need the overlap information of
{W 1

i } and {W 2
j }, namely if Wij = ∅ or not. To achieve this, there is no need to

accurately compute the semi-discrete OT map. With the SDOT algorithm [2],
we can obtain good estimations of the semi-discrete OT maps T1, T2, and thus
get a coarse approximation of {Wij}. Then by extending the coarse cell decom-
position with nearest neighbour, we finally obtain the sparsity information of π̃,
or equivalently {Wij}. This greatly improves the efficiency of finding π̂.

Contribution The contribution of the paper includes: (i) We propose an
auxiliary measure method to solve the discrete OT problem by computing two
approximate semi-discrete OT maps with O(m+n) unknowns in total. With the
auxiliary measure, we can greatly reduce the storage complexity of the discrete
OT problem. (ii) The sparsity of the transport plan obtained by the auxiliary
measure is used to estimate the sparsity of the discrete OT plan. The sparsity
information is incorporated into the downstream LP to reduce the computational
complexity and improve the accuracy of the computed OT cost. (iii) We give a
theoretic error bound for the estimated transport plan and the OT plan in terms
of Wasserstein distance. Experiments demonstrate the accuracy and efficiency
of the proposed auxiliary measure method.

2 Related Work

OT plays an important role in various kinds of fields, and there is huge of research
in this area. For detailed overview, we refer the readers to [26].

The semi-discrete OT problem computes the OT map between continuous
and Dirac measures. Kitagawa et al. [19] use the damped Newton’s method to
solve such a problem. Genevay et al. [14] propose a semi-dual approach to solve
the OT problems under discrete, semi-discrete or continuous settings. However,
this method does not give an explicit form of the transport map. Arjovsky et
al. [3] propose an approach that specializes to 1-Wasserstein distance, where the
Lipschitz constraints are replaced by weight clipping at each iteration. This re-
stricts the approximation accuracy of Wasserstein distance. By approximating
the Alexandrov potential with DNN, Seguy et al. [30] solve a relaxed OT prob-
lem, and the resulting OT map can be obtained. However, their approximation
using DNN is not globally convex and thus is not guaranteed to achieve global
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optimum. Earlier, Gu et al. [16] propose to minimize a convex energy through the
connection between the OT problem and convex geometry. In [22] the authors
link the convex geometry viewed optimal transport with Kantorovich duality by
Legendre dual theory. Recently, An et al. [2] extend the method to solve high
dimensional semi-discrete OT problems by Monte Carlo Sampling.

When both the source and target measures are discrete, the OT problem can
be treated as a standard LP task. To extend the problem into large dataset,
Cuturi [11] adds an entropic regularizer into the prime OT problem. As a result,
the regularized problem can be quickly solved with the Sinkhorn algorithm.
Later, other entropy regularization based methods are proposed [1,12,23,9]. The
problem of the Sinkhorn based methods is that they lose the sparse information
of the OT plan. To solve this problem, Blondel et al. [4] incorporate structural
information directly into the OT problem and keep the sparsity of the solution.
However, the result, which is only an approximation of the OT plan, is not a
transport plan. Schmitzer [29] then proposes a coarse-to-fine scheme to find the
sparse plan for the entropy regularized problem.

Another genre to approximate the Wasserstein distance is the sliced Wasser-
stein distance [5], which projects the high-dimensional distribution into infinitely
many one-dimensional spaces and then computes the average of the Wasserstein
distance between these one-dimensional distributions. Then Kolouri et.al [20]
generalize the sliced Wasserstein distance by the generalization of the Radon
Transform. By selecting the most informative projection directions, Meng et.al [24]
proposed the projection pursuit Monge map, which accelerates the computation
of the original sliced optimal transport problem. But this kind of methods cannot
give the OT plan.

3 Optimal Transport Theory

In this section, we will introduce some basic concepts and theorems in classic OT
theory, focusing on the Brenier’s approach and its generalization to the discrete
settings. The details can be found in Villani’s book [33].

Optimal Transport Problem Suppose X,Y are both subsets of d-dimensional
Euclidean space Rd, µ and ν are two probability measures defined on X and Y ,
respectively, with equal total measure µ(X) = ν(Y ).

Definition 1 (Measure-Preserving Map). A map T : X → Y is measure
preserving if, for any measurable set B ⊂ Y , the set T−1(B) is µ-measurable and
µ(T−1(B)) = ν(B). The measure-preserving condition is denoted as T#µ = ν.

Given the cost function c(x, y) : X × Y → R≥0, which indicates the cost of
moving each unit mass from x to y, the total transport cost of the map T : X → Y
is defined to be

∫
X
c(x, T (x))dµ(x).

The Monge’s OT problem aims to find the measure-preserving map that
minimizes the total transport cost.
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Problem 1. [Monge Problem] Given the cost function c : X×Y → R≥0, find the
measure preserving map T : X → Y that minimizes the total transport cost

(MP )Mc(µ, ν) := min
T#µ=ν

∫
X

c(x, T (x))dµ(x). (1)

The solution to the Monge’s problem is called the optimal transport map, whose
total transport cost is called the optimal transport cost between µ and ν, denoted
as Mc(µ, ν).

Kantorovich’s Approach Depending on the cost functions and the mea-
sures, the OT map between (X,µ) and (Y, ν) may not exist. Kantorovich re-
laxed the OT maps to OT plans, and defined the joint probability measure
π : X × Y → R≥0, such that the marginal probability of π equals to µ and ν,
respectively. Formally, let the projection maps be ρx(x, y) = x, ρy(x, y) = y,
then we define

Π(µ, ν) := {π : X × Y → R≥0 : (ρx)#π = µ, (ρy)#π = ν}

Problem 2 (Kantorovich Problem). Given the cost function c : X × Y → R≥0,
find the joint probability measure π : X → Y that minimizes the total transport
cost

(KP )Mc(µ, ν) = min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y). (2)

Brenier’s Approach For the quadratic Euclidean distance cost, the exis-
tence, uniqueness and the intrinsic structure of the OT map were proven by
Brenier [7].

Theorem 1 (Brenier Theorem). Suppose X and Y are the subsets of the
Euclidean space Rd and the transport cost is given by the quadratic Euclidean
distance c(x, y) = ∥x − y∥2. Furthermore, µ is absolutely continuous, both µ
and ν have finite second order moments. Then there exists a convex function
u : X → R, the so-called the Briener potential, and its gradient map ∇u gives
the solution to the Monge’s problem. The Brenier potential is unique up to adding
a constant, hence the optimal transport map is unique.

Semi-discrete OT Problem Suppose the source measure µ is absolutely continu-
ous and defined on a convex domain Ω ⊂ Rd, the target measure is a Dirac mea-
sure ν =

∑n
i=1 νiδ(y−yi), i ∈ [n] and yi ∈ Rd. Also, we assume µ(Ω) =

∑n
i=1 νi.

The semi-discrete OT map is the measure-preserving map that minimizes the
transport cost, T ∗ := argminT#µ=ν

∫
Ω
c(x, T (x))dµ(x).

When the cost function is set to be the quadratic Euclidean distance c(x, y) =
∥x − y∥2, the Brenier potential can be expressed as uh(x) = maxi{⟨x, yi⟩ +
hi, ∀i ∈ [n]}. The induced OT map pushing forward µ to ν is T ∗ : Wi → yi,
where Wi = {x| ⟨x, yi⟩+ hi ≥ ⟨x, yk⟩+ hk, ∀k ∈ [n]}.

Under the semi-discrete OT map T ∗ : Ω → Y , a cell decomposition (also
a power diagram) is induced Ω =

⋃n
i=1 Wi, such that every x in the cell Wi is

mapped to the target yi, T : x ∈ Wi 7→ yi, and µ(Wi) = νi. As shown in Fig.
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(a) (b)

Fig. 1. (a) Brenier potential and the corresponding power diagram. Each cell Wi is
mapped to the corresponding yi, and µ(Wi) = νi. (b) The illustration of the sparsity
of π̂. {W 1

i } and {W 2
j } are two cell decomposition induced by the semi-discrete OT

maps from µ to ν1 and ν2. The refined cell decomposition {Wij} with Wij = W 1
i ∩W 2

j

not only gives the solution of π̃, but also gives a good approximation of the sparsity of
the OT plan between ν1 and ν2.

1(a), the cell Wi is mapped to the corresponding yi, which corresponds to the
hyperplane ⟨x, yi⟩ + hi. The total cost of T is given by

∫
Ω
c(x, T (x))dµ(x) =∑n

i=1

∫
Wi

c(x, yi)dµ(x).
The following gives the generalization of the Brenier theorem to compute the

semi-discrete OT map [16].

Theorem 2. Let µ be a probability measure defined on a compact convex domain
Ω in Rd, ν =

∑n
i=1 νiδ(y − yi) with yi ∈ Rd. If

∑n
i=1 νi = µ(Ω) and c(x, y) =

∥x − y∥2, then there exists h = (h1, h2, . . . , hn) ∈ Rn, unique up to adding a
constant (k, k, . . . , k), so that wi(h) = νi ∀i ∈ [n], where wi(h) = µ(Wi(h)) with
Wi(h) = {x| ⟨x, yi⟩ + hi ≥ ⟨x, yk⟩ + hk, ∀k ∈ [n]}. The vector h is the unique
minimum of the convex energy

E(h) =

∫ h

0

n∑
i=1

wi(η)dηi −
n∑

i=1

hiνi, (3)

defined on an open convex set H = {h ∈ Rn :
∑n

i=1 hi = 0}. Furthermore, if
we define uh(x) = maxi{⟨x, yi⟩ + hi, ∀i ∈ [n]}, the map ∇uh(x) : Wi(h) →
yi ∀i ∈ [n] minimizes

∫
Ω
∥x− T (x)∥2dµ(x) among all measure preserving maps

T#µ = ν.

Now, the gradient of the above energy is given by:

∇E(h) = (w1(h)− ν1, w2(h)− ν2, . . . , wn(h)− νn)
T (4)

Discrete OT Problem Given both the source measure ν1 =
∑m

i=1 ν
1
i δ(x − xi)

and the target measure ν2 =
∑n

j=1 ν
2
j δ(y − yj), with the supports defined by

X = {xi}mi=1 and Y = {yj}nj=1, there may not exist an OT map T : X → Y , but
the OT plan always exists, which is the solution of the Kantorovich problem:

Mc(ν1, ν2) = min
π≥0

m∑
i=1

n∑
j=1

cijπij

s.t.

m∑
i=1

πij = ν2
j ,

n∑
j=1

πij = ν1
i

(5)
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where cij = c(xi, yj) and π ∈ Rm×n is the transport plan. And the problem of
Eqn. (5) can be solved by classical LP.

Sparse Discrete OT Problem It requires mn unknown variables of πij to solve
the discrete OT problem with LP. But in general cases, the discrete optimal
transport plans are highly sparse. For example, if the OT problem is an assign-
ment problem, that is m = n and ν1i = ν2j = 1/n ∀ i, j ∈ [n], then the OT

plan degenerates to an OT map, and among the n2 πij ’s, only n of them are
non-zeros. If the πijs that are zeros can be determined beforehand, we will only
need to consider the non-zero ones during the optimization, and this will greatly
improve the computational accuracy and efficiency of the Kantorovich problem
of Eqn. (5).

In the following, we give some theoretical analysis to estimate the approx-
imation error bound for the auxiliary measure method. Suppose the discrete
measures ν1 and ν2 are given, both of them are defined in a Euclidean space Rd.
All the probability measures defined in Rd form an infinite dimensional metric
space P(Rd), with the Wasserstein distance Wc as the metric, where c is the
squared Euclidean distance. Then there is a unique geodesic γ in P(Rd) con-
necting ν1 and ν2. Let µ ∈ P(Rd) be the auxiliary measure, the closest point on
γ to µ is µ∗ := argminν∈γ Wc(µ, ν), and the distance from µ to the geodesic is
d = Wc(µ, µ

∗).

Theorem 3. Given ν1, ν2 ∈ P(Rd), the auxiliary measure µ, Tk : µ → νk, k =
1, 2 are the OT maps. Suppose the distance from µ to the geodesic connecting ν1
and ν2 is d, then T2 ◦T−1

1 : ν1 → ν2 is measure preserving and its transport cost
C is bounded by

Wc(ν1, ν2) ≤ C
1
2 (T2 ◦ T−1

1 ) ≤ Wc(ν1, ν2) + 2d (6)

The proof of the theorem can be found in the supplement. From the inequality
of Eqn. (6), it is obvious that the quality of the approximate transport map
T2 ◦T−1

1 is determined by the Wasserstein distance d = Wc(µ, µ
∗). If µ is on the

geodesic, then π̃ = T2 ◦ T−1
1 is the desired OT plan between ν1 and ν2. If d is

relatively small, then the approximated transport plan is close to the OT plan,
therefore the sparsity of π̃ is similar to that of the OT plan. In practice, we use
the sparsity of the approximate plan π̃ as the constraints to compute the OT
plan between ν1 and ν2 and obtain π̂. It can be seen that

W2
c (ν1, ν2) ≤ C(π̂) ≤ C(T2 ◦ T−1

1 )

therefore π̂ is a better approximation than T2 ◦T−1
1 , but with the same sparsity.

Assume {W 1
i } and {W 2

j } are the cell decomposition induced by T1 and T2,

respectively, the newly refined cell decomposition {Wij |Wij = W 1
i ∩W 2

j } (shown
in Fig. 1(b)) gives π̃i,j = µ(Wij). With the cost function between ν1 and ν2
being cij = ∥xi − yj∥2, define Φ = {(i, j)|W 1

i ∩W 2
j ̸= ∅}, Kantorovich problem
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of Eqn. (5) can be approximated by:

Mc(ν1, ν2) = min
π≥0

m∑
i=1

n∑
j=1

cijπij

s.t.

m∑
i=1

πij = ν2
j ,

n∑
j=1

πij = ν1
i

πij = 0 ∀(i, j) /∈ Φ

(7)

4 Computational Algorithms

This section explains the computational algorithms for the auxiliary measure
method in detail.

4.1 Semi-discrete OT Algorithm

Based on Thm. 2, finding the semi-discrete OT map from the given absolutely
continuous measure µ to the discrete measure ν =

∑n
i=1 νiδ(x−xi) is equivalent

to optimizing the convex energy in Eqn. (3) with respect to the height vector h.
The optimization can be carried out using the gradient descend method. In the
gradient formula of Eqn. (4), we need to estimate the µ-volume wi(h) for each cell
Wi(h) with the Monte Carlo method proposed in [2]: N random samples {zj}nj=1

are drawn from µ, then the µ-volume of the cell Wi(h) is estimated by ŵi(h) =
#{zj | zj ∈ Wi(h)}/N . Given a random sample zj , let i = argmaxk{⟨zj , xk⟩ +
hk, k ∈ [n]}, then zj ∈ Wi(h). When N goes to infinity, ŵi(h) converges to wi(h).

Hence the gradient of the energy can be approximated by ∇E ≈ (ŵi(h)− νi)
T
.

Once the gradient is estimated, we can use the Adam algorithm [18] to minimize
the energy.

When N is small, the estimated µ-volume is coarse but the computation is
fast; when N is large, the estimated µ-volume is accurate but the computation
is slow. To balance the efficiency and accuracy, we first use a small N to coarsely
estimate h, when the energy E(h) stops decreasing, we increase N to improve the
accuracy of the estimation. The predefined total µ-volume distortion θ gives the
stop condition, namely the algorithm stops when ∥∇E(h)∥1 ≤ θ. The sampling
of zjs is independent of each other and the cell location estimation for each zj
can be paralleled, therefore the whole algorithm can be accelerated by GPUs.
The algorithm is called SDOT and its details can be found in Alg. S1 of the
supplement.

4.2 Discrete OT Plan with Auxiliary Measure

With the cell decompositions induced by the approximate OT maps computed by
the SDOT algorithm, we firstly use a sparse matrix S to represent the overlap
information. Then S is extended by nearest neighbours. Finally, we give two
strategies for the choice of the auxiliary measure µ.
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(a) (b)

Fig. 2. (a) The orange cells and the purple cells represent the power diagrams induced
by the computed semi-discrete OT maps T1, T2 from µ to ν1 and ν2 with µ-volume
accuracy θ. When computing the overlap information of W 1

i , we take both W 1
i (the

dark orange cell) and its neighbours (the light orange cells) into consideration. (b) The
cell decomposition of ν1 =

∑m
i=1 ν

1
i δ(x − xi) when µ =

∑m
i=1 ν

1
i N(xi, σI) with small

σ. The cell W 1
i that is mapped to xi by the semi-discrete OT map T1 covers xi.

Estimate the Sparsity MatrixGiven two discrete measures ν1 =
∑m

i=1 ν
1
i δ(x−

xi) and ν2 =
∑n

j=1 ν
2
j δ(y− yj), and an auxiliary measure µ defined on a convex

support Ω, we use the SDOT algorithm with µ-volume distortion parameter θ
to compute the semi-discrete OT maps Tk : µ → νk, k = 1, 2. Each map induces
a cell decomposition {W 1

i } and {W 2
j }.

We use an m × n matrix S = (sij) to represent the overlapping relation
among the cells of the two power diagrams, and call the matrix as the sparsity
matrix. The sparsity matrix is defined as

sij =

{
1 W 1

i ∩W 2
j ̸= ∅

0 W 1
i ∩W 2

j = ∅
The sparsity matrix can be estimated by random sampling. We randomly sample
zk ∼ µ, then compute the cells containing zk. If both W 1

i and W 2
j contain zk,

then we set sij to be 1. The procedure keeps running until the sparsity matrix S
converges to the steady state. The algorithm for computing the sparsity matrix
is given in Alg. S2 of the supplement.

Note that the above {W 1
i } and {W 2

j }, which are computed by the SDOT
algorithm under the µ-volume distortion parameter θ, are just approximations
of the groundtruth power diagrams induced by the groundtruth semi-discrete OT
maps. To make S better represent the sparse information of the groundtruth OT
plan, we then not only use the computed {W 1

i } and {W 2
j } to compute S, the

neighborhoods of each cell is also used to extend S. As shown in Fig. 2(a), to
find the cells in {W 2

j } that overlapping with the real Ŵ 1
i of the groundtruth

semi-discrete OT map, we not only use the cell W 1
i (the dark orange cell) to

compute S, but also use the cells around W 1
i (the light orange cells) to extend

S. Based on the property of the semi-discrete OT map, the cells around W 1
i

corresponds to the neighbours of xi in X. Therefore, we can use neighbours of
xi to update S.

Specifically, we extend S so that it includes the overlap information of the
neighbours of each W 1

i and W 2
j . For each sample xi of ν1, we find the k nearest

neighbours of it, namely xi1, xi2, . . . , xik. Then the rows of i1, i2, . . . , ik of S
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are added to the ith row of S. Thus, the ith row of S includes the overlap
information of both W 1

i and its neighbour cells. Similarly, for each yj , the k
nearest neighbours of it are also found, marked as yj1, yj2, . . . , yjk. Then columns
j1, j2, . . . , jk of S are added to its jth column. By replacing Φ with the new
sparse matrix S, which represents the sparsity of the OT plan, the problem of
Eqn. (7) can be solved effectively through LP.

Auxiliary Measure µ In theory, the auxiliary measure µ should locate at
the geodesic from the source measure ν1 to the target measure ν2, which will
make the bound tight in Thm. 3 and the computed transport plan be the OT
plan. However, given two general distributions, it is hard to compute the geodesic
between them without computing the OT plan first. Thus, in practice we make
the distance d from the auxiliary measure µ to the geodesic between ν1 and ν2
small enough, then the computed transport cost should approximate the OT
cost well according to Thm. 3. To achieve this, we can utilize the information
inherited in the source distribution ν1. If we can find a continuous µ that is close
to ν1, namely Wc(µ, ν1) is small, that we can deduce that the distance d from µ
to the geodesic between ν1 and ν2 is smaller than Wc(µ, ν1) accordingly.

Strategy 1: if we know the continuous distribution ν̂1 where ν1 is sampled
from, it is reasonable to set µ to be ν̂1. In such a situation, Wc(µ, ν1) should be
reasonably small (See Alg. S3 in the supplement).

Strategy 2: alternatively, we can set µ to be a Gaussian mixture model
based on ν1, i.e. µ =

∑m
i=1 ν

1
i N(xi, σId), where σ ≪ min d(xi, xk) ∀ i, k ∈ [m]

and i ̸= k, and Id represents the d-dimensional identity matrix. In such case, we
have the following proposition (proof in the supplement):

Proposition 1. Given µ =
∑m

i=1 ν
1
i N(xi, σId) and ν1 =

∑m
i=1 ν

1
i δ(x − xi),

then we have Wc(µ, ν1) ≤ σ under the quadratic Euclidean cost. Moreover, if
σ is small enough, then the cell Wi of the cell decomposition induced by the
semi-discrete OT map from µ to ν1 should cover xi itself.

Then Eqn. (6) can be written as:

Wc(ν1, ν2) ≤ C
1
2 (T2 ◦ T−1

1 ) ≤ Wc(ν1, ν2) + 2σ (8)

Fig. 2(b) illustrates the relationship of the cell decomposition {Wi} and {xi}.
Then we only need to compute the semi-discrete OT map T2 : µ → ν2. The
sparse matrix S can be estimated as follows: firstly we set sij to be 1 if and
only if xi ∈ W 2

j , then the sparse matrix S is extended with the neighbourhood
information. This method (see Alg. S4 in the supplement) is more applicable
and makes the computation much faster.

5 Experiments

This section reports our experimental results. All of our experiments are con-
ducted on Intel Core i7-9800X CPU with 32GB RAM and NVIDIA GeForce
RTX 2080 Ti GPU. We investigate the influence of different parameters, includ-
ing the auxiliary measure µ, the µ-volume distortion parameter θ for the SDOT
algorithm, and the number k of the nearest neighbours to extend the sparsity
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The performances of the proposed algorithm on synthetic data with different
parameters θ, µ and k.

matrix S. We first test our algorithm on synthetic tasks, and then apply it to
the color transfer problem. Experimental results demonstrate that the proposed
method outperforms the state-of-the-arts.

5.1 Performance on Synthetic dataset

We test the proposed method on two synthetic tasks with different parameters.

Two Tasks We set ν1 =
∑m

i=1 ν
1
i δ(x−xi), where xis are randomly sampled from

the d-dimensional uniform distribution [0, 1]d; ν2 =
∑n

j=1 ν
2
j δ(y − yj), where

yj ’s are sampled from d-dimensional Gaussian distribution N(0, Id). We conduct
two tasks with d = 5: (i) compute the OT plan from ν1 to ν2, where m =
1000, n = 2000, the weights ν1i , i ∈ [m] and ν2j , j ∈ [n] are randomly sampled

from the uniform distribution and then normalized by ν1i = ν1i /
∑m

k=1 ν
1
k and

ν2j = ν2j /
∑n

k=1 ν
2
k ; and (ii) the assignment problem with m = n = 1500 and

ν1i = ν2j = 1/n ∀ i, j ∈ [n].

Choice of parameters We use different parameters for the testing, including (i)
the µ-volume accuracy threshold θ for computing the semi-discrete OT map
between µ and ν1, ν2; (ii) the number k of the nearest neighbors to extend the
sparsity matrix S; and (iii) the auxiliary measure µ, one is the 5-dimensional
uniform distribution where ν1 is sampled from; the other is the Gaussian mixture
distribution with σ = 0.1mini ̸=j d(xi, xj).
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Comparison Results We compare the computational results obtained with differ-
ent parameters using three indicators: (i) The transport cost C of the computed
transport plan; (ii) The sparsity, represented by |S|/mn, where |S| is the num-
ber of nonzero entries in the sparsity matrix S; and (iii) The running time of
the whole pipeline.

Fig. 3 summarizes the comparison results. Fig. 3(a-c) show the statistics of
the first task and Fig. 3(d-f) show results for the second task. In Fig. 3(a-f), the
green curves correspond to the results of the real OT plan computed by LP. The
red curves show the results computed with µ being the uniform distribution, and
the blue curves are the results of µ as Gaussian mixture distribution. Different
blue (or red) curves are with different ks (number of neighbors).

In Fig. 3(a), the horizontal axis represents the threshold θ; the vertical axis is
the computed transport cost. Since the OT cost between ν1 and ν2 is independent
of θ, the green curve is a horizontal line. It can be observed that the transport cost
decreases when θ decreases; the cost decreases when k increases; and the costs for
uniform µ, where ν1 is sampled from, are smaller than those for Gaussian mixture
µ. In Fig. 3(b), the horizontal axis represents θ, the vertical axis represents the
sparsity. It is easy to see that the real OT plan is with the minimal sparsity;
the Gaussian mixture µ induces better sparsity than the uniformly distributed
µ; and the sparsity decreases when k increases. In Fig. 3(c), the horizontal axis
is θ, the vertical axis is the running time. The green curve is not shown, because
the LP method is far slower than our method. It is obvious that the method
using Gaussian mixture µ is faster than that using uniform µ; when k decreases,
the computation is faster. Fig. 3(d-f) show the statistics for the second task, i.e.,
the assignment problem. The comparison results are similar to those obtained
from the first task.

In summary, comparing with the Gaussian mixture auxiliary measure µ con-
structed through the source measure ν1, the known µ where ν1 is sampled from,
gives more accurate transport plan (with less transport cost), but less sparsity
and slower computation speed.

5.2 Comparison with state-of-the-art techniques

We compare our algorithm with the state-of-the-art methods, including the
Sinkhorn method [11], SOT [4], and PPMM [24].

To demonstrate that our method can compute accurate transport plans in
different dimensions, we choose the dimension parameter d to be 2, 5 and 20. The
nearest neighbor parameter k is set to be 10, the µ-volume accuracy threshold θ
is 0.3. For Gaussian-mixture auxiliary measure µ, we set σ = 0.1mini̸=j d(xi, xj).

Fig. 4 shows the comparisons. The horizontal axis shows the sizes of the data
sets, represented as m× n× d, meaning ν1 has m points in Rd and ν2 n points
in Rd. The vertical axis illustrates the difference between the computed transport
cost and the OT cost, both using the squared Euclidean distance as the cost
function. The green circles are the OT cost obtained by LP. The red crosses,
yellow triangles, blue stars, black squares and Cyan diamonds denote the results
obtain by our method with uniform µ where ν1 is sampled from, our method
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(a) Source (b) Target (c) Sinkhorn (d) SOT (e) Ours.

Fig. 5. Comparison of the results on color transfer tasks. (Zoom in/out for better
visualization.)

with Gaussian mixture µ, Sinkhorn, SOT with L-BFGS solver for the smoothed
semi-dual formula and PPMM, respectively.

Fig. 4. Comparison among our
proposed method and others.

From Fig. 4, we can see that our pro-
posed method with auxiliary measures always
obtains the minimal discrepancy in terms of
OT cost. SOT method gives accurate result
in general, but sometimes it leads to invalid
transport plan (TP), as shown by the negative
result in the second test. Similarly, the sixth
result of PPMM method is negative. Further-
more, the figure shows that the results of the
Sinkhorn method tends to become inaccurate
when d is large.

5.3 Application to Color transfer

Given a color image, its color distribution can be represented by the histogram in
the RGB color space. Assume there are m colors represented by x1, x2, . . . , xm,
each xi = (ri, gi, bi) is a point in R3, and the corresponding normalized fre-
quencies are ν1, ν2, . . . , νm, then the image color distribution is represented by
a discrete distribution in R3 [27]: ν =

∑m
i=1 νiδ(x − xi). Given two images,

the source image color distribution is ν1 =
∑m

i=1 ν
1
i δ(x − xi) and the target is

ν2 =
∑n

j=1 ν
2
j δ(y− yj). We can find the OT plan π : ν1 → ν2. For each color xi,

we apply the barycentric interpolation to get the mapping T (xi) =
∑n

j=1 πijyj∑n
j=1 πij

.

By replacing the color xi of the source image with T (xi), we obtain a new image
with content coming from the source and color distribution from the target.

Here we use four different images. The number of samples in the color space
R3 for each input image is 13892 for ’autumn’, 18103 for ’comunion’, 17820 for
’graffiti’ and 15129 for ’rainbow-bridge’. Fig. 5 shows the color transfer results
from ’graffiti’ to ’rainbow-bridge’ using our proposed method and other state-
of-the-art methods (please see the supplement for more experiments). Fig. 5(a)
shows the source image and the second column the target image. Fig. 5(c) shows
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Sinkhorn SOT Ours
Cost TP Sparse Cost TP Sparse Cost TP Sparse

autumn → comunion 88.7535
√

× 69.5143 ×
√

87.4280
√ √

graffiti → rainbow 84.5362
√

× 74.0894 ×
√

84.3785
√ √

autumn → graffiti 131.0952
√

× 86.3683 ×
√

129.6989
√ √

autumn → rainbow 83.1778
√

× 55.2500 ×
√

81.9912
√ √

comunion → graffiti 70.7658
√

× 41.9410 ×
√

70.1804
√ √

comunion → rainbow 39.7300
√

× 27.0912 ×
√

39.4653
√ √

Table 1. The comparison between our method, Sinkhorn [11] and SOT [4] on the color
transfer tasks.

the result of the Sinkhorn algorithm [11], which is blurry due to the dense trans-
port plan. Fig. 5(d) illustrates the results of SOT [4]. Fig. 5(e) shows the result
of our method, which have consistent color distribution with the target image,
and is much sharper than those generated by Sinkhorn. This shows our method
obtains more accurate transport plan with higher sparsity.

We also estimate the OT cost among the color distributions of the 4 input
images, using the Sinkhorn method [11], SOT [4] and our method. The results
are reported in Table 1. In the table, ’TP’ represents ’valid transport plan’.
From the table, we can find that both the results of the Sinkhorn algorithm and
the proposed method are valid transport plans, and our method outperforms
Sinkhorn both in the estimated OT cost and the sparsity. Though the solutions
of SOT are sparse, they are not even valid transport plans. In conclusion, the
proposed method gives more accurate OT plan with higher sparsity.

6 Conclusions

This work proposes an auxiliary measure method using semi-discrete OT maps to
estimate the discrete OT plan by reducing the number of unknowns from O(mn)
to O(m + n). The sparsity information of the transport plan obtained by the
auxiliary measure is used to estimate the sparsity of the discrete OT plan. And
the sparsity of the OT plan is incorporated into the downstream LP optimiza-
tion to greatly reduce the computational complexity of the discrete Kantorovich
problem and improve the accuracy. We also give a theoretic error bound for the
estimated transport plan and the OT plan in terms of Wasserstein distance. Ex-
periments on synthetic data and color transfer of real images demonstrate the
accuracy and efficiency our method. In the future, we will explore to find much
better auxiliary measures to further improve the accuracy of the method.
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14. Genevay, A., Cuturi, M., Peyré, G., Bach, F.: Stochastic optimization for large-
scale optimal transport. In: Advances in Neural Information Processing Systems.
pp. 3440–3448 (2016)

15. Glimm, T., Oliker, V.: Optical design of single reflector systems and the Monge–
Kantorovich mass transfer problem. Journal of Mathematical Sciences 117(3),
4096–4108 (Sep 2003)

16. Gu, D.X., Luo, F., Sun, J., Yau, S.T.: Variational principles for minkowski type
problems, discrete optimal transport, and discrete monge-ampère equations. Asian
Journal of Mathematics (2016)

17. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the fokker–
planck equation. SIAM Journal on Mathematical Analysis 29(1), 1–17 (1998)

18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)
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